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We consider a spun-up system of an inner cylinder of fluid surrounded by an outer fluid
layer within a rotating cylindrical container, in the absence of gravity. The outer layer
may be of differing density and viscosity to the inner layer. If the inner layer is denser
than the outer layer then the effect of rotation, in the presence of a perturbation to
the interface between the two layers, is to force the inner fluid outwards and the outer
fluid inwards, subject to possible surface tension stabilisation. The relative importance of
viscosity to rotation is described by an Ekman number. We investigate the behaviour of
perturbations to the interface in the inviscid limit and low and high viscosity limits. In the
low viscosity limit perturbations grow as an O(Ek1/2) correction to the inviscid growth
rate. In the high viscosity limit perturbations grow as O(Ek−1). In the absence of surface
tension the preferred mode of growth is independent of the layer density difference and
depends only upon the domain aspect ratio, initial position of the interface, and viscosity
contrast.
Numerical simulations of the flow are carried out using a volume-of-fluid formulation.

The growth rates from these simulations are compared with the theoretical predictions
in both low and high viscosity limits and the agreement is seen to be good.
Finally, we examine the special case of a single-layer rotating viscous column and

describe the preferred-mode boundary between a varicose mode and a spiral mode in the
high viscosity, high surface tension limit.

1. Introduction

The Rayleigh-Taylor instability (Rayleigh 1883; Taylor 1950) has received sustained
research interest over the past century. Many natural occurrences of the flow have been
discovered and the uses and applications of the instability have been increasingly ex-
ploited (see Zhou 2017a,b, for a comprehensive recent review of the subject or e.g.,
Bofetta & Mazzino 2017). The original work of Rayleigh considered the instability due
to heavier fluid overlaying lighter fluid in both cases of either a continuous or a step
density stratification. In 1950 Taylor showed that the instability due to a heavy uniform
layer overlying a light uniform layer under the action of gravity was identical to that of
a stable two-layer stratification being accelerated vertically downwards at a rate faster
than gravity. The initial linear growth rate is determined by the wavelength of a given
perturbation, the effective gravitational acceleration that the system experiences and the
density contrast between the two fluids. The growth rate may be further affected by
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fluid viscosity and surface tension between the fluid layers. To some extent these fluid
properties are set by the situation in which the instability is occurring and there may
not be a way for these properties to be manipulated if the intention is to influence the
instability in some beneficial way. As such, investigators have sought to understand the
influence of long-range effects, including rotation and magnetic fields on the instability
(see e.g., Chandrasekhar 1961). A further motivation for such study is that the presence
of strong rotation and magnetic fields in astrophysical scale flows is commonly under-
stood to occur. Previous studies have considered rotation perpendicular or parallel to a
density stratification (e.g., Carnevale et al. 2002; Tao et al. 2013; Dávalos-Orozco 1993)
or more general rotation of the system (e.g., Dávalos-Orozco & Aguilar-Rosas 1989b,a;
Dávalos-Orozco 1996a,b). As these studies have been often motivated by astrophysical
applications (e.g., Garćıa-Senz et al. 2018) the influence of viscosity on the development
of the instability has not necessarily been considered, though investigations have been
conducted into the global stability of rotating viscous systems (e.g., Joseph et al. 1985).
Here our emphasis is on the effects of viscosity on the growth rate of the three-dimensional
rotating Rayleigh-Taylor instability in a cylindrical domain with an initially cylindrical
interface between the two fluids that may support surface tension effects.
Recent work has considered the effect of rotation on the Rayleigh-Taylor instability

both experimentally (Baldwin et al. 2015; Scase et al. 2017a, 2020) and theoretically
(Scase et al. 2017b) in the low rotation rate limit focussing on the importance of the
initial hydrostatic state. This work builds upon previous studies by Chandrasekhar (1961)
and Miles (1964). Chandrasekhar considered the effect of rotation on a two-layer unstable
stratification with an initially planar interface. However, Miles showed that the frequency
of free-surface oscillations predicted by Lamb (1932) on a body of rotating liquid were
in error, due to the assumption of a planar free-surface, by the same order of magnitude
as the correction for rotation. In Scase & Hill (2018) the authors consider the high
rotation limit of the Rayleigh-Taylor instability in inviscid and viscous configurations
and investigate the effects of surface tension and interfacial diffusion. However, this study
was strictly two-dimensional, considering only azimuthal perturbations to two fluid layers
confined in a circular domain; the effect of axial perturbations was necessarily neglected.
Here we extend that study to three dimensions.
We consider an inner cylindrical column of fluid surrounded by an outer fluid layer all

within a cylindrical container (unlike Weidman et al. 1997; Dávalos-Orozco & Vázquez-
Luis 2003, we do not consider the case of a solid inner cylinder such as in a Taylor-
Couette configuration). The outer fluid may differ from the inner fluid both in density and
viscosity. The fluids are considered initially to be ‘spun-up’ into solid-body rotation (there
is no initial shear between the fluid layers unlike one of the cases considered by Hocking &
Michael 1959). We further allow for the possibility that there may also be surface tension
between the two fluid layers. We consider the system as the extreme high rotation rate
limit of the rotating Rayleigh-Taylor instability, where the influence of gravity may be
neglected; it may be considered as a fully three-dimensional fluid-fluid centrifuge for cases
where a Hele-Shaw approximation is not appropriate. The set up is illustrated in figure
1 for an axial wavenumber n = 10 and azimuthal wavenumber m = 12. By considering
the system in the limits of high and low viscosity we are able to show the dependence of
the growth rate on the Ekman number, Ek, that characterizes the relative importance
of viscosity to rotation. When the system is in the low viscosity regime, Ek ≪ 1, the
effect of viscosity is to modify the inviscid growth rate by an order Ek1/2 correction that
we derive. Conversely, when the system is in the high viscosity regime, Ek ≫ 1, the
instability growth rate behaves as Ek−1. The effect of surface tension in the unstable
configuration is to suppress the growth rate and possibly completely stabilise otherwise
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Figure 1: Left: The initial perturbation for axial wavenumber n = 10, and azimuthal
wavenumber m = 12. If the inner fluid layer is denser than the outer the perturbation
on the interface will grow as the two fluids move in opposite radial directions. Right:
schematic of the meridional plane. Quantities associated with the inner layer have sub-
script 1, quantities associated with the outer layer have subscript 2. The interface, S , is
a perturbation about r = aR (using dimensional quantities).

unstable modes of instability. The effect is greatest upon perturbations with the shortest
wavelengths.
A special case of the flow configuration investigated is that of a rotating viscous column

of fluid. In § 4 we examine this limit by allowing the density and viscosity of the outer
fluid layer to tend to zero. Important applications of this flow are discussed in Kubitschek
& Weidman (2007a) together with a linear stability analysis. As part of their extensive
study, Kubitschek & Weidman (2007a) considered which mode of instability has the
greatest growth rate in the limit of high viscosity and high surface tension. They estab-
lished that in this region the two most unstable modes are an axisymmetric ‘varicose’
mode and a ‘spiral’ mode. Their numerical results suggested that there is an asymptotic
form of the boundary at which the preferred mode of instability switches from varicose
to spiral. We are able to derive and confirm their conjectured form of this boundary.
Though our flow configuration is idealised it provides a connection between practical,

realisable flows including, amongst others, stable coating flows on the inside of cylinders
(e.g., Johnson 1988) with applications in turbo jet engine cooling (e.g., Chew 1996),
unstable liquid atomization and combustion flows (discussed in Kubitschek & Weidman
2007a) and liquid jet instability in fusion processes (e.g., Chen et al. 1997).
The layout of the paper is as follows: in § 2 we introduce the governing model and

the required boundary conditions and matching conditions at the interface between the
two fluids. We first find a dispersion relation for the development of the instability for
two inviscid fluid layers that may have surface tension acting between them. We then
develop the inviscid solution by considering an asymptotic correction for the case of
weakly viscous fluid layers. We next consider the case of highly viscous fluid layers and
derive an expression for the growth rate in the case of equal viscosity in each layer (the full



4 M. M. Scase & S. Sengupta

solution for highly viscous fluids with a viscous contrast is given in Appendix B). In § 3 we
show the results of numerical simulations of the instability in both high and low viscosity
cases and compare the observed growth rates of the simulations with the theoretical
predictions of § 2 and show that they are in good agreement. In § 4 we investigate the
special limiting case of a rotating viscous column. Finally, in § 5 we draw our conclusions.

2. Modelling

We consider two layers of uniform density and uniform viscosity fluid arranged as
concentric cylinders. The equations of motion for the fluid velocity ui, and pressure pi,
in each layer i = 1 (inner) and i = 2 (outer) are the rotating Navier-Stokes equations
with incompressibility given by

ρi
Dui

Dt
= −∇pi − ρiΩ× (Ω× x)− 2ρiΩ× ui + µi∇2

ui, (2.1a)

∇ · ui = 0. (2.1b)

We work in cylindrical polar coordinates with unit basis vectors r̂, θ̂, and ẑ in the radial,
azimuthal and axial directions respectively. Ω is the rotation vector, taken without loss
of generality to be Ω = Ω ẑ. Following Scase & Hill (2018) we nondimensionalise time
by Ω−1, and length by the radial extent of the domain a (see figure 1). The density and
viscosity in each layer is nondimensionalised as in Scase & Hill (2018) using a system
mean density ρ0 = (ρ1 + ρ2)/2 and system mean viscosity µ0 = (µ1 + µ2)/2. Hence we
have that

Dui

Dt
= − 1

ρi
∇pi + r r̂ − 2ẑ × ui + Ek

µi

ρi
∇2

ui, (2.2a)

∇ · ui = 0, (2.2b)

where all quantities are nondimensional and the Ekman number characterizing the rel-
ative importance of viscosity to rotation is defined by Ek = µ0/ρ0Ωa

2. The nondimen-
sional density ρi ∈ [0, 2] and the nondimensional viscosity µi ∈ [0, 2]. We now proceed
by defining the linear differential operator, L, by

L[φ] =
(

1

2

∂

∂t
− Ek

2

µi

ρi
∇2

)

φ. (2.3)

We are able to write the velocity and pressure perturbations to the hydrostatic initial
condition in terms of a generalised potential, φ, in each layer (Hart 1981) as

ui = ǫ
{(

1 + L2
)

∇φi − L [ẑ ×∇φi] + ẑ × (ẑ ×∇φi)
}

, (2.4a)

pi = p0i(x, t)− 2ǫρi
(

1 + L2
)

L[φi], (2.4b)

where |ǫ| ≪ 1. For suitable p0i in each layer, this posed ansatz satisfies the equation of
motion (2.2a) at leading order and at order ǫ. The incompressibility condition (2.2b) leads
to the governing equation for the generalised potential. Noting that ∇ · (ẑ ×∇φi) ≡ 0
and that ∇ · [ẑ × (ẑ ×∇φi)] = −∇2

Hφi, where we define the horizontal Laplacian ∇2
H =

∂rr + r−1∂r + r−2∂θθ, we have that
(

1 + L2
)

∇2φi −∇2
Hφi = 0, (2.5)

a sixth order, linear partial differential equation for φi.
The initial unperturbed location of the interface is taken to be at r = R for R ∈ (0, 1]
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(see figure 1) and we assume that the position of the perturbed interface between the
two fluid layers is given by S where

S := r −
(

R+ ǫ cos

(

nπ [z − δ]

2δ

)

ei (mθ+ωt)

)

= 0, (2.6)

for axial (varicose) wavenumber n ∈ N, azimuthal wavenumber m ∈ N, and domain
aspect ratio δ = d/a and note that this definition of the interface sets the small quantity
ǫ. The precession and growth rate of the instability are determined by the real and
imaginary parts of ω respectively. In particular, if Im(ω) < 0 the perturbation to the
interface will grow exponentially in time. We now seek normal mode solutions for φ, in
each layer, of the form

φi(x, t) = φ̂i(r) cos

(

nπ [z − δ]

2δ

)

ei (mθ+ωt). (2.7)

We further note that for modified Bessel functions of the first and second kind we have
that for a scalar k ∈ C

∇2[Im(kr)] =

(

m2

r2
+ k2

)

Im(kr), ∇2[Km(kr)] =

(

m2

r2
+ k2

)

Km(kr), (2.8)

Hence, taking φ̂(r) as a linear combination of both Im(kr) and Km(kr), (2.5) yields an
eigenvalue equation for the generalised potential given by

{

1 +

[

iω

2
+

Ek

2

µi

ρi

(

1

δ2n
− k2

)]2
}

(

1

δ2n
− k2

)

+ k2 = 0, (2.9)

where we have set δn = 2δ/(nπ). This is a cubic equation in k2 that yields six linearly

independent solutions for φ̂i in each layer corresponding to the three values of
√
k2 given

by (2.9) and the modified Bessel functions of the first and second kind. (By consideration
of the appropriate Wronskians for z ∈ C it can be shown that Im(−z) and Km(−z) are

linearly dependent on Im(z) and Km(z) so solutions to (2.9) corresponding to −
√
k2 may

be disregarded without loss of generality.) Denoting the three roots of (2.9) as k2ij for

j = 1, 2, 3 for each layer i = 1, 2 we therefore have, taking kij =
√

k2ij

φi(r) = ǫ cos

(

z − δ

δn

)

ei(mθ+ωt)
3
∑

j=1

[bijIm(kijr) + cijKm(kijr)] , for i = 1, 2. (2.10)

Enforcing the requirement that |uj | < ∞ on r = 0 gives that c1j = 0 for all j due to the
properties of the modified Bessel function Km at the origin. Hence we have, in general,
six unknown coefficients, bij , three unknown coefficients, c2j , and an unknown quantity
ω to determine by appropriate matching and boundary conditions.

2.1. Boundary and matching conditions

The required boundary and matching conditions are split into two groups, the first group
being ‘universal’ and applying in all cases. The second group of conditions apply only
when the fluids under consideration are viscous. In the first universal group of conditions
are the no-penetration conditions on the boundaries of the domain and the kinematic
and pressure continuity conditions at the interface (conditions of continuity of normal
velocity and normal stress at the boundary between the two fluids). The second group of
boundary and matching conditions that apply when the fluids are viscous are referred to
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as ‘viscous conditions’ and comprise no-slip conditions and the continuity of tangential
velocity and tangential stress at the interface S defined by (2.6).
The first universal boundary and matching conditions are the no-penetration condi-

tions

r̂ · u2(r = 1) = 0, and ẑ · ui(z = ±δ) = 0, for i = 1, 2. (2.11 a,b)

It follows from (2.4a) that wi = ui · ẑ =
(

1 + L2
)

∂φi/∂z and so wi is proportional to
sin([z − δ]/δn) and hence the second of these conditions, ẑ · ui(z = ±δ) = 0, for i = 1, 2
is automatically satisfied.
The interface is described by (2.6) and the associated kinematic conditions are that

D

Dt

(

r −
[

R + ǫ cos

(

z − δ

δn

)

ei (mθ+ωt)

])∣

∣

∣

∣

S

= 0

⇒ r̂ · ui(r = R) = ǫiω cos

(

z − δ

δn

)

ei(mθ+ωt), (2.12)

for i = 1, 2 (taking care with the index i, and the unit imaginary number i). The remaining
universal matching condition is given by the normal component of the stress continuity
condition at the interface.
Denoting by ∆{·} a jump in a quantity from the outer fluid 2 to the inner fluid 1, the

stress continuity condition is that

∆
{

σ
i
· n̂
}

=
1

We
(∇ · n̂) n̂, (2.13)

where σ i = −piI+2µiEk e i is the nondimensional stress tensor, e i is the nondimensional
rate of strain tensor, n̂ is the unit normal to the interface S pointing from fluid 1 to
fluid 2 and We is a Weber number given by We = ρ0Ω

2a3/γ where γ is the coefficient
of surface tension (cf. Scase & Hill 2018) (We is related to the inverse of the Hocking
parameter).
We first satisfy the hydrostatic stress continuity condition that is given by continuity

of the pressure across the unperturbed interface r = R. It follows from (2.6) and the
definition of n̂ that on S

∇ · n̂
∣

∣

∣

S

=
1

R
+ ǫ

{

m2 − 1

R2
+

1

δ2n

}

cos

(

z − δ

δn

)

ei(mθ+ωt). (2.14)

Substituting (2.4b) into (2.2a) with ui = 0 we have that the leading order pressure
satisfies ∇p0i = ρir r̂ and so take without loss of generality

p0i(x, t) =











ρ1
2

(

r2 −R2
)

+
1

WeR
, i = 1

ρ2
2

(

r2 −R2
)

, i = 2.
(2.15)

It follows that on the perturbed interface

p0i

∣

∣

∣

S

∼ p0i(R) + ǫρiR cos

(

z − δ

δn

)

ei(mθ+ωt) + O(ǫ2), (2.16)

and hence the pressure at the perturbed interface is given by

pi

∣

∣

∣

S

∼ p0i(R) + ǫρi

{

R cos

(

z − δ

δn

)

ei(mθ+ωt) − 2
(

1 + L2
)

L[φi]

}

+O(ǫ2). (2.17)

The continuity of stress σ i across the interface S in the radial, azimuthal and axial
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directions is hence given respectively by

[

−ǫρi

{

R cos

(

z − δ

δn

)

ei(mθ+ωt) − 2
(

1 + L2
)

L[φi]

}

+ 2Ek µi
∂ui

∂r

]+

−

=
ǫ

We

(

m2 − 1

R2
+

1

δ2n

)

cos

(

z − δ

δn

)

ei(mθ+ωt), (2.18)

[

µi

(

r
∂

∂r

(vi
r

)

+
1

r

∂ui

∂θ

)]+

−

= 0, (2.19a)

[

µi

(

∂ui

∂z
+

∂wi

∂r

)]+

−

= 0, (2.19b)

where [ ]
+
−
indicates the jump takes place across the unperturbed interface location, r = R

and (2.15) has been used to simplify (2.19).
The condition (2.18) must be satisfied in all cases including the inviscid case when

Ek ≡ 0, µi ≡ 0, and so (2.18) is the final universal boundary and matching condition
that is used in conjunction with (2.11) and (2.12). The conditions of tangential stress
continuity (2.19) are in the second group of viscous matching conditions that are required
when the fluids are viscous.
In the viscous case we must also enforce continuity of tangential velocity at the interface

[

θ̂ · ui

]+

−

= 0, [ẑ · ui]
+
−
= 0, (2.20)

and the no-slip conditions

θ̂ · u2(r = 1) = 0, ẑ · u2(r = 1) = 0. (2.21)

The viscous boundary and matching conditions are given by (2.19), (2.20) and (2.21).

2.2. Inviscid Solution

We first consider solutions to the system in the inviscid case. If the fluids in both layers
are inviscid then Ek = 0. As a result of this assumption, (2.9) becomes linear in k2

and independent of both µi and ρi, giving one value of
√
k2, the same value for each

layer. Hence, the number of eigensolutions reduces from nine in the general viscous case
to three in the present inviscid case. The number of boundary and matching conditions
are reduced accordingly since we do not enforce the viscous conditions, i.e., the no-slip
conditions or continuity of tangential stress and velocity at the interface.
In the inviscid case (2.9) is reduced to

(

1− ω2
0

4

)(

1

δ2n
− k20

)

+ k20 = 0, (2.22)

where we write k = k0 for the unique inviscid wavenumber and ω = ω0 for the inviscid
eigenvalue, such that the growth rate of an inviscid system is determined by −Im(ω0).
As (2.9) in this case is independent of both µi and ρi, and therefore k is the same in each
layer, we take

ki = k0 =
1

δn

(

1− 4

ω2
0

)1/2

, for i = 1, 2 (2.23)

and the eigensolution in each layer is given by φi(x, t) = ǫφ̂i(r) cos([z−δ]/δn) exp{i(mθ+
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ω0t)} where

φ̂1(r) = b1Im(k0r), φ̂2(r) = b2Im(k0r) + c2Km(k0r). (2.24)

Substitution into the kinematic condition (2.12) forces

ω0Rφ̂′

i(R) + 2mφ̂(R) = −4iR, i = 1, 2. (2.25)

We define

fI(r) = (ω0 + 2)mIm(r) + ω0rIm+1(r), (2.26a)

fK(r) = (ω0 + 2)mKm(r) − ω0rKm+1(r), (2.26b)

such that the kinematic condition in the inner and outer layer may be respectively ex-
pressed as

b1fI(k0R) = −4iR, b2fI(k0R) + c2fK(k0R) = −4iR. (2.27)

The no-penetration condition on r = 1 (2.11) requires that

b2fI(k0) + c2fK(k0) = 0. (2.28)

Combining (2.24), (2.27) and (2.28) we have that

φ̂1(r) = −4iR
Im(k0r)

fI(k0R)
, φ̂2(r) = 4iR

fK(k0)Im(k0r)− fI(k0)Km(k0r)

fI(k0)fK(k0R)− fI(k0R)fK(k0)
. (2.29a)

Defining the Atwood number to be

A =
ρ2 − ρ1
ρ2 + ρ1

, (2.30)

the pressure continuity condition, (2.18) with Ek = 0, yields the dispersion relation
[

1 + A

A
φ̂2(R)− 1− A

A
φ̂1(R)

](

ω2
0

4
− 1

)

ω0 = 2iR+
i

A We

(

m2 − 1

R2
+

1

δ2n

)

. (2.31)

Note that our definition of the Atwood number, A is negative for an unstable configura-
tion. This is consistent with e.g., Scase et al. (2017b); Scase & Hill (2018) but differs in
sign from the standard definition used by authors who are considering only an unstable
arrangement.
This dispersion relation is consistent with the global stability criteria determined by

Joseph et al. (1985) (stability when J > 1 in their notation; see also Weidman et al.

1997). In the limit n → 0 the two dimensional dispersion relation ((3.16) Scase & Hill
2018) is recovered. This follows from k ∼ O(n) and small argument approximations to
the Bessel function following Abramowitz & Stegun (§9.1.7, §9.1.9 1964) that gives

φ̂1(R) ∼ − 4iR

m(ω0 + 2)
+O(n2), φ̂2(R) ∼ 4i

[

Rω0

(

1 +R2m
)

+ 2R
(

1−R2m
)]

m (ω2
0 − 4) (1−R2m)

+O(n2).

(2.32)
We may also show that for weakly unstable configurations where −A ≪ 1 and A We =
O(1), the growth of the unstable modes satisfy

ω0 ∼ A i

2

(

R

δn
+

m2δn
R

)[

1 +
1

2RA We

(

m2 − 1

R2
+

1

δ2n

)]

+O(A 2). (2.33)

We now consider the moderating effects of small quantities of fluid viscosity on the
inviscid growth rate.
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2.3. Low viscosity solutions

For fluids with low but non-zero viscosity, 0 < Ek ≪ 1, the growth of the instability
behaves as ω ∼ ω0+ω1Ek1/2+O(Ek) where ω0 is the inviscid solution as described in § 2.2
and ω1 is the coefficient of the first order correction. In the limit Ek → 0 the governing
wavenumber equation (2.9) is a singular perturbation problem. The three required roots
are the regular inviscid solution and two singular roots. The regular root in each layer
i = 1, 2 is given by

ki1 ∼ k0 +
ω1

ω0

(

1

δ2nk0
− k0

)

Ek1/2 +O (Ek) , (2.34)

where k0 is as defined in (2.23). The two singular roots behave as

kij ∼ eiπ/4
(

ρi
µi

)1/2

ω
1/2
0 Ek−1/2

{

1 +

[

ω1

2ω0
∓ eiπ/4

δn

(

µi

ρi

)1/2

ω
−3/2
0

]

Ek1/2 +O (Ek)

}

.

(2.35)
for i = 1, 2, j = 2, 3, where we take j = 2 to correspond to choosing the negative sign
in (2.35) and j = 3 to correspond to choosing the positive sign. We define the viscosity
contrast, η, similarly to the Atwood number (2.30) such that

η =
µ2 − µ1

µ2 + µ1
. (2.36)

Now, noting that

ρ1
µ1

=
1− A

1− η
,

ρ2
µ2

=
1 + A

1 + η
, (2.37)

the regular behaviour and singular behaviour of the wavenumbers means that we rescale
the coefficients of the eigensolutions Im(kr) and Km(kr) as

b11Im(kr) = Im(k11r)
{

b110 + b111Ek1/2 +O(Ek)
}

(2.38)

b1jIm(kr) =
Im(k1jr)

Im

(

eiπ/4R
[

1−A

1−η

]1/2

ω
1/2
0 Ek−1/2

)

{

b̂1j +O(Ek1/2)
}

, (2.39)

for j = 2, 3 in the inner layer (defining the constants b110, b111 and b̂1j) and

b21Im(kr) = Im(k21r)
{

b210 + b211Ek1/2 +O(Ek)
}

(2.40)

b2jIm(kr) =
Im(k2jr)

Im

(

eiπ/4
[

1+A

1+η

]1/2

ω
1/2
0 Ek−1/2

)

{

b̂2j +O(Ek1/2)
}

, (2.41)

c21Km(kr) = Km(k21r)
{

c210 + c211Ek1/2 +O(Ek)
}

(2.42)

c2jKm(kr) =
Km(k2jr)

Km

(

eiπ/4R
[

1+A

1+η

]1/2

ω
1/2
0 Ek−1/2

)

{

ĉ2j +O(Ek1/2)
}

, (2.43)

in the outer layer, for j = 2, 3 (defining the constants b210, b211, c210, c211, b̂2j and ĉ2j).
The inviscid solution for ω0 and the associated coefficients b110, b210, and c210 are given

by (2.27), (2.28), and (2.31) and follow from enforcing the universal boundary conditions.

The six modified coefficients b̂ij and ĉ2j for i = 1, 2 and j = 2, 3 are determined in terms
of the inviscid solution and the corrections b111, b211, c211 and ω1 by enforcing the viscous
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ω0 1.15 × 10−1
− 2.25i ω1 −5.47× 10−1 + 2.15 × 101i

k0 2.52 × 101 − 5.64× 10−1i

b110 1.75 × 10−8 + 3.83× 10−9i b̂12 −6.75× 10−2
− 4.08 × 10−2i

b210 −4.94× 10−15
− 3.57 × 10−15i b̂13 −9.17× 103 + 5.02× 103i

c210 −9.07× 106 + 2.83× 106i b̂22 2.02× 10−6 + 2.12 × 10−6i

b111 −1.04× 10−6
− 1.08× 10−7i b̂23 4.82× 101 − 1.79× 101i

b211 2.86 × 10−13 + 1.33 × 10−13i ĉ22 8.91× 10−1
− 4.87 × 10−1i

c211 −1.00× 109 + 4.01× 108i ĉ23 6.56× 10−6 + 3.97 × 10−6i

Table 1: Numerical evaluation of the coefficients of the low viscosity expansions in the
case A = −1/2, R = 1/

√
2, m = 3, δn = (6π)

−1
, η = 0.

boundary conditions at first order. These solutions (given in appendix A) may then be
substituted into the O(Ek1/2) universal conditions yielding a system in the remaining
four unknowns, b111, b211 c211 and ω1 from which the correction ω1 may be determined.
A particular solution for A = −1/2, R = 1/

√
2, m = 3, δn = (6π)−1, η = 0 is given in

table 1.

In order to calculate the growth rate correction ω1 we use the results of (A 1) to write
four linear equations for b111, b211, c211 and ω1. We define the functions

f̂I(r) = mδ2nk0ω0Im(k0r) + r(ω0 − 2)Im+1(k0r). (2.44a)

f̂K(r) = mδ2nk0ω0Km(k0r)− r(ω0 − 2)Km+1(k0r). (2.44b)

Hence we are able to show

f̂I(R) b111 = − ω1

ω2
0(ω

2
0 − 4)

{

b110

[

2f̂I(R)
[

ω0(ω
2
0 − 4) + 4m

]

+2k0
[

mδ2n(−ω0 + 2m) + 2R2
]

(ω0 − 2)ω0Im(k0R)
]

+ 4iRδ2nk0ω
2
0(ω0 − 2)

}

+ e−iπ/4
{

k0ω0(m
2δ2n +R2)(ω0 − 2) [(b110 − b210)Im(k0R)− c210Km(k0R)]

+2m
[

f̂I(R)(b110 − b210)− f̂K(R)c210

]}

×
{

ω
3/2
0 R

(

1− A

1− η

)1/2
[

1 +

(

1− A

1 + A

)1/2(
1− η

1 + η

)1/2
]}

−1

, (2.45a)

1− A

1 + A
b111 − b211 −

Km(k0R)

Im(k0R)
c211 =

ω1

Im(k0R)ω0(ω2
0 − 4)

{(

b210 −
1− A

1 + A
b110

)

×
(

4k0RIm+1(k0R) +
[

3ω2
0 + 4(m− 1)

]

Im(k0R)
)

+ c210
[

(3ω2
0 + 4(m− 1))Km(k0R)− 4Rk0Km+1(k0R)

]

}

, (2.45b)
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f̂I(R)b211 + f̂K(R)c211 =
ω1

ω2
0(ω

2
0 − 4)

{

2k0ω0(ω0 − 2)
[

(mδ2n(ω0 − 2m)− 2R2)

×(Im(k0R)b210 + c210Km(k0R))− 2iRδ2nω0

]

− (2f̂I(R)b210 + 2f̂K(R)c210)(ω0(ω
2
0 − 4) + 4m)

}

− e−iπ/4
{

k0ω0(m
2δ2n +R2)(ω0 − 2) [c210Km(k0R) + Im(k0R)(b210 − b110)]

+2m(f̂K(R)c210 + (b210 − b110)f̂I(R))
}

×
{

ω
3/2
0 R

(

1 + A

1 + η

)1/2
[

1 +

(

1 + A

1− A

)1/2(
1 + η

1− η

)1/2
]}

−1

, (2.45c)

f̂I(1)b211 + f̂K(1)c211 = − 2ω1

ω2
0(ω

2
0 − 4)

{

k0ω0(ω0 − 2)
[

2−mδ2n(ω0 − 2m)
]

×(Im(k0)b210 +Km(k0)c210) +
[

ω0(ω
2
0 − 4) + 4m

]

(f̂I(1)b210 + f̂K(1)c210)
}

+e−iπ/4
{

k0ω0(m
2δ2n + 1)(Im(k0)b210 +Km(k0)c210)(ω0 − 2) + 2m(f̂I(1)b210 + f̂K(1)c210)

}

×
{

ω
3/2
0

(

1 + A

1 + η

)1/2
}

−1

. (2.45d)

For parameters A = −1/2, R = 1/
√
2, m = 3, δn = (6π)−1, η = 0 values of the invscid

solution and the coefficients for the low viscosity asymptotic correction are quoted in
table 1. For the same parameters, figure 2a is a plot of the difference between the exact
eigenvalue ω for non-zero Ek, and the inviscid solution ω0. Both the real and imaginary
parts of ω−ω0 behave as Ek1/2 as Ek → 0, consistently with the asymptotic description.
The upper solid line is Im(ω−ω0) which is positive as the effect of the fluid viscosity is to
inhibit the growth of the perturbation. The lower solid line is −Re(ω − ω0). The dashed
straight lines that coincide with the solid lines as Ek → 0 are the correction ω1Ek1/2

calculated as described above by solving the linear system (2.45).

Figure 2b shows contours of Im(ω0), the growth rate of the inviscid solution, for the
same Atwood number and initial interface location as figure 2a. The contours show the
behaviour of the inviscid system; the higher the azimuthal wavenumber, m, and the
higher the axial wavenumber, n (corresponding to lower values of δn), the greater the
growth rate in general. Figure 2c is contours of the imaginary part of the coefficient ω1.
The change in sign compared to Im(ω0) shows that the viscous correction ω1Ek1/2 acts
to suppress the growth of the perturbation. Contours are shown for η = 0 (solid) where
the viscosity is the same in each layer, µ1 = µ2. Also shown are contours of η = −1/4
(dashed) where the inner layer is more viscous than the outer layer, µ1 > µ2, and η = 1/4
(dot-dashed) where the inner layer is less viscous than the outer layer, µ1 < µ2. For the
chosen parameters the plot shows that for a given Ekman number and Atwood number,
having the more viscous fluid in the outer layer is more stable than having the more
viscous fluid in the inner layer.

The effects of surface tension may be included in the low viscosity correction by using
values of b110, b210, c210 and ω0 from the inviscid solution, including surface tension
effects, in (2.45). No further modification of the linear system (2.45) for the remaining
coefficients b111, b211 c211 and ω1 is required. Figure 3 shows an example where A =
−10−2, R = 1/

√
2, m = 60, δn = (10π)−1, We = 106, η = 0. The solution without

the correction for surface tension is shown dot-dashed. The asymptotic correction to
the inviscid growth rate including the effects of surface tension is shown dashed and
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Figure 2: (a) The solid lines are the real and imaginary parts of the difference between
the exact eigenvalue ω calculated numerically and the inviscid eigenvalue ω0 (the upper
line is the imaginary part, the lower line is the real part) for varying Ek. The parameters

chosen were A = −1/2, R = 1/
√
2, m = 3, δn = (6π)

−1
. The imaginary part controls

the growth of the instability and the correction to the inviscid growth rate behaves as
Ek1/2. The dashed lines that coincide with the numerical solution are the asymptotic
correction calculated as described in § 2.3. (b) Contours of the imaginary part of the
inviscid eigenvalue ω0 for A = −1/2, R = 1/

√
2. As m and n increase the growth rate of

the instability increases. (c) Contours of the imaginary part of the order Ek1/2 correction,
ω1 for A = −1/2, R = 1/

√
2. The solid lines are for fluids of equal viscosity η = 0, the

dashed lines are the same value contours, but for an inner layer that is more viscous than
the outer with η = −1/4, and the dot-dashed lines are the same value contours again,
but for an outer layer that is more viscous than the inner with η = 1/4.

behaves as Ek1/2, just as the solution without the correction for surface tension. As
the surface-tension-corrected solution (dashed) lies above the correction without surface
tension (dot-dashed) the effect of the surface tension is to inhibit the growth rate of the
instability as might be anticipated on physical grounds.
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Figure 3: The correction to the inviscid solution, ω0 for Ek ≪ 1. The chosen parameters
were A = −10−2, R = 1/

√
2, m = 60, δn = (10π)−1, η = 0, We = 106. The low viscosity

asymptotic solution is ω ∼ 7.58×10−3−3.47×10−1i+(−6.70×10−1+9.94×101i)Ek1/2+
O(Ek). The positive imaginary part of the viscous correction shows viscosity damping
the growth rate of the mode. The dot-dashed line is the low viscosity behaviour without
the correction for surface tension. As the dashed line lies above the dot-dashed line the
effect of the surface tension is to further dampen the growth rate of the instability.

2.4. High viscosity solutions

For very viscous fluids whereEk ≫ 1 the three solutions for k2 to the governing wavenum-
ber equation (2.9) behave as

k2ij ∼
1

δ2n
− λj

(

2ρi
δnµi

1

Ek

)2/3

+
2iρiω∞

3µi

1

Ek2
+O

(

1

Ek3

)

, (2.46)

where ω ∼ ω∞Ek−1+O(Ek−2) for the three values j = 1, 2, 3 of λj that satisfy λ3
j = −1.

Specifically we take

λj = exp {i [2j − 3]π/3} for j = 1, 2, 3. (2.47)

We seek the leading order growth rate ω∞Ek−1 and so must determine the coefficients
bij and c2j for i = 1, 2 and j = 1, 2, 3 to a high enough order of accuracy that ω∞

may itself be determined. For each of the nine coefficients, as with (2.46), this requires
finding the first three terms of the asymptotic expansion. Motivated by observations from
numerical solutions we pose, for i = 1, 2, that the coefficients be of the form

bi1 ∼ αi1
1

Ek
+ βi1

λ1

Ek4/3
+ γi1

λ3

Ek5/3
+O

(

1

Ek2

)

, (2.48a)

bi2 ∼ αi1
1

Ek
+ βi1

λ3

Ek4/3
+ γi1

λ1

Ek5/3
+O

(

1

Ek2

)

, (2.48b)

bi3 ∼ αi1
1

Ek
+ βi1

λ2

Ek4/3
+ γi1

λ2

Ek5/3
+O

(

1

Ek2

)

, (2.48c)
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Numerical
k11 18.85 + 7.29× 10−4 i b11 −7.19× 10−13 + 1.14 × 10−15i c21 4.17 × 10−2 + 4.06 × 10−5i
k12 18.85 − 7.29× 10−4 i b12 −7.17× 10−13 + 2.99 × 10−16i c22 4.18 × 10−2 + 2.17 × 10−5i
k13 18.85 + 1.48× 10−19i b13 −7.17× 10−13

− 1.44 × 10−15i c23 4.18 × 10−2
− 6.24 × 10−5i

k21 18.85 + 3.51× 10−4 i b21 1.13 × 10−16
− 1.00 × 10−19i ω 5.56 × 10−14

− 9.10 × 10−7i
k22 18.85 − 3.51× 10−4 i b22 1.13 × 10−16

− 1.51 × 10−20i
k23 18.85 + 4.92× 10−20i b23 1.13 × 10−13 + 1.15 × 10−19i

Asymptotic
k11 18.85 + 7.29× 10−4i α11 −7.18× 10−9 α22 4.18 × 102

k12 18.85 − 7.29× 10−4i β11 −2.69× 10−10
− 1.55 × 10−10i β22 −1.16 × 101 − 6.72× 100 i

k13 18.85 γ11 1.13 × 10−9
− 1.96 × 10−9 i γ22 2.53 × 101 − 4.39× 101 i

k21 18.85 + 3.51× 10−4i α21 1.13 × 10−12 ω∞ − 9.10× 10−3i
k22 18.85 − 3.51× 10−4i β21 2.15 × 10−14 + 1.24 × 10−14i
k23 18.85 γ21 −1.14× 10−13 + 1.97 × 10−13i

Table 2: Numerical and asymptotic approximations in the high viscosity regime for the
unknown coefficients and growth rates for parameters Ek = 104, A = −1/2, R = 1/

√
2,

δn = (6π)−1, m = 3, η = 0. The difference in order of magnitude of coefficients requires
a high degree of numerical accuracy to be used. The agreement between the numerical
value of ω and the asymptotic value ω∞Ek−1 is good.

and similarly for c2j for j = 1, 2, 3. This form of approximation to the coefficients re-
places the nine unknown general coefficients bij and c2j with nine unknown coefficients
in the large Ek expansion; α11 in the inner layer, α21 and α22 in the outer layer, and
similarly for β and γ. The leading and second order boundary and matching equations
at O(Ek−4/3) and O(Ek−5/3) are automatically satisfied, leaving a system of ten linear
equations (see (B 1)–(B10) in appendix B) in the nine unknown coefficients α, β, and γ
and the eigenvalue ω∞ that may be solved by standard methods.

Here we give the solution for ω∞ in the special case of equal viscosity in each fluid layer,
η = 0 and no surface tension. The general expression for arbitrary η and surface tension
is considerably more cumbersome, but may be found from (B 1)–(B 10). We express ω∞

in terms of the following functions

F1(r) = 2δnrKm+1

(

r

δn

)

+
[

(m− 2)mδ2n + r2
]

Km

(

r

δn

)

, (2.49a)

F2(r) = −
[

(m− 2)
mδ2n
2

+
R2r2

2

]

Km+1

(

1

δn

)

+mδn

[

(m− 2)mδ2n +
R2 + r2

2

]

Km

(

1

δn

)

, (2.49b)

F3(r) = 2
(

m2 − 4
)

m2δ4n +
[

m2(r2 +R2) + 2m(1 + r2 +R2)
]

δ2n −R2

(

1− r2

2

)

.

(2.49c)



Cylindrical Rotating Rayleigh-Taylor Instability 15

We also define the constants G1 and G2 in terms of the parameters m, δn and R

G1 =
1

2
I3m+1

(

1

δn

)

+
3m+ 2

2
δnIm

(

1

δn

)

I2m+1

(

1

δn

)

+

[

(m+ 2)mδ2n − 1

2

]

I2m

(

1

δn

)

Im+1

(

1

δn

)

− mδn
2

I3m

(

1

δn

)

, (2.50a)

G2 = Im+1

(

R

δn

)

Km

(

R

δn

)

+Km+1

(

R

δn

)

Im

(

R

δn

)

. (2.50b)

Finally, we define the following five constants in terms of the m, δn and R and the
functions F1, F3 and constants G1 and G2

H1 =
[

(m+ 2)R2 −m
]

δnKm+1

(

1

δn

)

+
[

(m− 2)mδ2n +R2
]

Km

(

1

δn

)

, (2.51a)

H2 =
[

(m+ 2)mδ2n +R2
]

RKm+1

(

R

δn

)

− 2mδnF1(R), (2.51b)

H3 =
[

1 + (m+ 2)2δ2n
]

Km+1

(

1

δn

)

+ 2δnKm

(

1

δn

)

, (2.51c)

H4 = −mδn
[

(m− 2)mδ2n +R2
]

Km+1

(

1

δn

)

+
1

2

[

4(m− 2)m3δ4n + (4R2 + 1)m2δ2n +R4
]

Km

(

1

δn

)

(2.51d)

H5 =
R2

2

{

[

1 + (m+ 2)mδ2n
]

Km+1

(

1

δn

)

+ (m+ 2)δnF1(1)

}

I2m+1

(

R

δn

)

+R

{

F3(0)Km

(

1

δn

)

− δn
[

(m2 − 4)mδ2n + 2R2(m+ 1)−m
]

Km+1

(

1

δn

)}

× Im

(

R

δn

)

Im+1

(

R

δn

)

+

{

1

2

(

[

(m+ 2)mδ2n −R2
]

(1−R2)− F3(0)
)

Km+1

(

1

δn

)

+mδn

[

F3(R)− mδ2n
2

(m+ 2)

]

Km

(

1

δn

)}

I2m

(

R

δn

)

. (2.51e)

We may now write the coefficient of the asymptotic growth rate as

ω∞ =
iA

RG1G2

{[

mδnI
2
m

(

1

δn

)

F2(R)−H4I
2
m+1

(

1

δn

)]

I2m

(

R

δn

)

+R

[(

mδnH1Im

(

1

δn

)2

− 2F2(1)I
2
m+1

(

1

δn

)

)

Im

(

R

δn

)

+G1F1(R)

]

Im+1

(

R

δn

)

−R2

2

[

mδnH3I
2
m

(

1

δn

)

+ F1(1)I
2
m+1

(

1

δn

)]

Im+1

(

R

δn

)2

−G1H2Im

(

R

δn

)

−H5Im+1

(

1

δn

)

Im

(

1

δn

)}

. (2.52)
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Figure 4: Numerical solutions for A = −1/2, R = 1/
√
2, η = 0, m = 3, δn = (6π)

−1
.

(a) The real and (negative) imaginary parts of the eigenvalue ω. The imaginary part
controls the growth of the instability and behaves as Ek−1 as Ek → ∞. The dashed
line that coincides with the numerical solution is calculated using (2.52). The upper
horizontal solid line is the imaginary part of the inviscid solution given by (2.31). The
real part of the solution behaves as Ek−2 as Ek → ∞ and again tends to the real part
of the inviscid solution shown by the lower solid horizontal line as Ek → 0. (b) The real
part of û and (c) the imaginary part of û where the horizontal velocity is written as
u = û(r) cos(δ−1

n [z − δ])ei(mθ+ωt) and here Ek = 1. The transitions between the inner
and outer solutions occur at r = R (vertical dotted line) and are indicated by the white
circles.

As with the special η = 0 case above, for arbitrary η the leading order growth rate in
the absence of surface tension, ω∞Ek−1, is linear in the Atwood number, A , and its
dependence upon the aspect ratio δ and the axial wavenumber n is only through δn. A
solution for the purposes of verification of any implementation is provided in table 2.
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Figure 4a shows the behaviour of ω (solid curves) for parameters A = −1/2,R = 1/
√
2,

m = 3, δn = (6π)−1, η = 0 and no surface tension. As Ek → ∞, the imaginary part of
ω behaves as Ek−1, whereas the real part behaves as Ek−2. The precession, controlled
by Re(ω), is suppressed more rapidly than the growth of the perturbation as the Ekman
number is increased. The horizontal solid lines are the imaginary (upper) and real (lower)
parts of the inviscid solution ω0. It can be seen that as Ek → 0 the solid curves tend
toward the inviscid solution since ω → ω0. The dashed line that coincides with the upper
solid curve as Ek → ∞ is the asymptotic high viscosity approximation −Im(ω∞Ek−1)
given by (2.52). This approximation is an estimate of the instability in the high viscosity
limit and can be seen to be in good agreement with the numerical value as Ek → ∞.

Figures 4b and 4c show typical profiles of the radial dependence of the radial velocity
field. Writing u = û(r) cos(δ−1

n [z − δ])ei(mθ+ωt) the real and imaginary parts of û are
shown in figures 4b and 4c respectively. The inner layer solutions extend from r = 0 to
r = R and are shown as solid lines. At r = R the inner solution matches smoothly onto
the outer solution as a result of the requirements of continuity of velocity and stress at
the interface. The points at which the two solutions match, at r = R, is indicated by a
white circle. The outer solution extends from r = R to r = 1 and is also shown as a solid
line. The continuation of the inner layer solution into the outer layer is shown dashed
and the continuation of the outer layer solution into the inner layer is shown dot-dashed.

In the absence of surface tension, ω∞ is proportional to A and hence the most unstable
mode pairing (m,n) is a function of R, δ and η alone. Furthermore, the dependence of
ω∞ on δ and n is through δn only. Hence, provided we are in the high viscosity regime,
Ek ≫ 1, and surface tension is negligible, we have that the most unstable mode pairing
(m,n), for a given aspect ratio δ is determined by the interface location, R, and the
viscosity contrast η alone. Figure 5 shows contours of Im(ω∞) for different choices of R
and η. The minimum value of Im(ω∞) in each case is shown with a black circle (treating
ω∞ as continuous in m) and the most unstable mode of growth is shown with a white
circle (treating ω∞ as dependent on m ∈ N).

In figure 5a the parameters are R = 1/
√
2 (equal volumes of fluid in each layer) and

η = 0 (no viscosity contrast between the two layers, µ1 = µ2). Treating ω∞ as continuous
in m, the minimum value of Im(ω∞) is located at m = 1.76, δn = 0.18. However, for
the most unstable mode of growth we require m ∈ N and the minimum subject to this
constraint is located at m = 2, δn = 0.19, an elliptical deformation of the inner fluid
layer about the axis.

In figures 5b and 5c the location of the interface is kept as in figure 5a, but the viscosity
contrast between the layers is varied. In figure 5b η = −9/11 meaning that the inner
layer is a factor of 10 times more viscous than the outer layer. The minimum of Im(ω∞)
is located at m = 1.19, δn = 0.38 and constraining m to integer values gives the most
unstable mode at m = 1, δn = 0.39. This corresponds to a translational motion of the
inner layer away from the axis toward the outer boundary.

In figure 5c η = 9/11 meaning that the outer layer is a factor of 10 times more viscous
than the inner layer. The minimum of Im(ω∞) is located at m = 0.09, δn = 0.14 and
corresponds to a most unstable mode given by m = 0, δn = 0.14. This indicates that the
instability develops as a varicose instability, the outer layer is sufficiently viscous that it
does not allow the inner layer to move its centre of mass radially and the two fluids tend
to change places initially through the growth of axial perturbations alone. The value of
min{Im(ω)} in figure 5c is greater than the value of min{Im(ω)} in figure 5b indicating
that, as in the low viscosity limit, for a given Ekman number and Atwood number having



18 M. M. Scase & S. Sengupta

-0.0187

-0.0187

-0
.0

187

-0.0187-0.0187

-0.0159
-0.0159-0.0159

-0.0159

-0
.0

159

-0
.0

1
5
9

-0.0123-0.0123-0.0123

-0
.0123

-0
.0

1
2
3

-0.0088-0.0088-0.0088

-0
.0

0
8
8

-0.0053-0.0053-0.0053
-0.0018-0.0018-0.0018

-0.0191

-0.0191

-0.0191

-0.0176

-0.0176

-0.0176

-0
.0141

-0
.0

141

-0
.0

106

-0
.0

1
0
6

-0
.0

0
7
1

0 1 2 3 4

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

δn

(a)

-0.0361

-0
.0

2
9
5

-0
.0

2
9
5

-0.0295

-0.0295

-0
.0

2
9
5

-0
.0

2
9
5

-0.023

-0.023-0.023

-0.0164-0.0164-0.0164

-0.0098-0.0098-0.0098

-0.0033-0.0033-0.0033
-0

.0
3
2
8

-0.0328

-0
.0

3
2
8

-0.0328

-0
.0

2
6
3

-0.0263

-0.0263

-0.0263-0.0263

-0
.0

1
9
7

-0
.0

1
3
1

0 1 2 3 4

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

δn

(b)

-0.0165

-0
.0

165

-0.0165

-0.0135-0.0135-0.0135

-0.0135

-0.0135

-0
.0

1
3
5

-0.0105-0.0105-0.0105

-0.0105

-0
.0

1
0
5

-0.0075-0.0075-0.0075

-0
.0

0
7
5

-0.0045-0.0045-0.0045
-0.0015-0.0015-0.0015

-0.015
-0.015

-0.015

-0.012

-0
.0

12

-0
.0

1
2

-0.009

-0
.0

0
9

-0
.0

0
6

0 1 2 3 4

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

δn

(c)

-0
.0

2
3
4

-0.0191

-0.0191

-0
.0

1
9
1

-0.0191
-0.0191

-0
.0

1
4
9

-0
.0

149

-0.0149
-0.0149

-0.0106
-0.0106-0.0106

-0.0064-0.0064-0.0064

-0.0021-0.0021-0.0021

-0.0213

-0
.0

213

-0
.0

2
1
3

-0
.0

1
7

-0
.0

17

-0
.0

1
7

-0
.0

1
7

-0.017-0.017

-0
.0

1
2
8

-0
.0

0
8
5

0 1 2 3 4

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

δn

(d)

Figure 5: Contours of Im(ω), the most unstable mode in the absence of surface tension
for: (a) η = 0, R = 1/

√
2; (b) η = −9/11, R = 1/

√
2; (c) η = 9/11, R = 1/

√
2; (d) η = 0,

R = 1/2 as a function of azimuthal wavenumber, m, and δn. The minimum value in each
case is shown by a black circle. The minimum value with m constrained to integer values
is shown by a white circle.

the more viscous fluid in the outer layer is more stable than having the more viscous fluid
in the inner layer.

Figure 5d shows contours of Im(ω∞) for layers of equal viscosity (η = 0) but with the
interface at R = 1/2. As with figure 5b, a preference is shown for a translational motion
of the inner layer to the outer boundary as the two fluids start to move.

Figure 6 is a comparison of the high viscosity solution with and without surface tension.
The solution without the correction for surface tension is shown dot-dashed. The high
viscosity asymptotic solution for the growth rate including the effects of surface tension
is shown dashed and behaves as Ek−1 (just as the solution without the correction for
surface tension). As the surface tension solution (dashed) lies below the solution without
surface tension (dot-dashed) the effect of the surface tension is as in the low-viscosity
case, to inhibit the growth rate of the instability.
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Figure 6: The growth rate −Im(ω) for the chosen parameters A = −10−2, R = 1/
√
2,

m = 60, δn = (10π)−1, η = 0, We = 106 (the same parameters as in figure 3). The high-
viscosity asymptotic solution is ω ∼ −1.65×10−5iEk−1+O(Ek−2) shown as the diagonal
dashed line. The horizontal dashed and dot-dashed lines are the inviscid solution with
and without the correction for surface tension respectively. The dot-dashed diagonal line
is the high viscosity asymptotic solution without the correction for surface tension. As
the dot-dashed line lies above the dashed line, as with the low-viscosity case, the effect
of the surface tension is to dampen the growth rate of the instability.

3. Numerical Simulation of instability

The numerical simulations of the instability were performed using the volume-of-fluid
method implemented in the ‘interFoam’ solver which is part of the OpenFOAM distribu-
tion (Weller et al. 1998). The solver is reviewed and discussed in Deshpande et al. (2012)
and the modifications for use in rotating frames of reference are described in Scase &
Hill (2018). A volume-of-fluid approach is used to solve the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0, (3.1)

and the rotating momentum equation

∂

∂t
(ρu) +∇ · (ρuu) = −∇p− ρΩ× (Ω× x)− 2ρΩ×u+ [∇ · (µ∇u) +∇u · ∇µ] . (3.2)

The solution domain is taken to be a wedge where r ∈ [0, 1], θ ∈ [−2π/m, 2π/m],
and z ∈ [−1/2, 1/2]. For the simulations shown the domain is split into approximately
250× 25× 250 cells. The total number of control volumes was greater than 1.5× 106 and
the temporal step size was ∆t = 2.5× 10−3. The interface is initially perturbed with an
azimuthal wavenumber m = 60 and an axial wavenumber n = 10. The initial condition
in the numerical simulations is that the flow starts from rest in the rotating frame.
Two series of simulations were run, one series in the low viscosity regime and one series

in the high viscosity regime. The flow domain had a dimensional radius and height of
10 cm giving an aspect ratio δ = 1/2, the initial unperturbed position of the interface was
taken to be R = 1/

√
2 such that the volume of each phase was equal. In the low viscosity
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Figure 7: The developing instability at the interface for fluids in the low viscosity regime.
The simulation parameters were A = −0.01, R = 1/

√
2, δn = (10π)

−1
, m = 60, η = 0,

Ek = 3.98× 10−6. The Ekman number follows from a dimensional rotation rate of the
system of 8π rad s−1 for two fluids with mean dynamic viscosity µ0 = 10−3 kgm−1 s−1

and mean density ρ0 = 103 kgm−3 in a domain of radial extent a = 0.1m. The nondi-
mensional times shown are t = 0, 1.38, 2.14, 2.51, and 3.64 from left to right.

regime the two fluid phases had properties similar to those of water with a reference
density of 103 kgm−3 and both layers having a dynamic viscosity of 10−3 kgm−1 s−1.
The Atwood number was chosen to be an unstable A = −10−2, and the rotation rate
was set at 8π rad s−1 or 240 rpm. The theoretical predictions are that the nondimensional
inviscid growth rate is given by−Im(ω0) = 0.67, the exact growth rate in the low viscosity
regime is −Im(ω) = 0.54, and the low viscosity asymptotics give a predicted growth rate
described by −Im(ω0 + ω1Ek1/2) = 0.52.
Figure 7 shows the developing interface, defined to be the surface where ρ = ρ0,

between the two fluid phases at nondimensional times t = 0, 1.38, 2.14, 2.51 and 3.64
from left to right respectively for fluids in the low viscosity regime. The r = 0 axis is to
the left of the shown contour as drawn. For t >

∼ 2.5 nonlinear effects start to be observed
at the interface.
In the high viscosity regime the two fluid phases had properties similar to those of

a dense and viscous black treacle or molasses. The reference fluid density was 1.5 ×
103 kgm−3 and the dynamic viscosity in each layer was taken as 10 kgm−1 s−1, the At-
wood number was unchanged at A = −10−2. The rotation rate was 2π rad s−1 or 60 rpm.
The exact theoretical growth rate in the high viscosity regime is given by −Im(ω) =
3.68× 10−4 and the high viscosity asymptotics predict −Im(ω∞Ek−1) = 3.68× 10−4.
The simulated and predicted growth rates of the perturbation to the interface in the low

viscosity regime are compared in figure 8a. The amplitude of the simulated perturbation
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Figure 8: The amplitude of the interfacial perturbation with nondimensional time for
parameters A = −10−2, δn = (10π)

−1
, m = 60, η = 0. The data points are from the

numerical simulation where the amplitude of the perturbation has been calculated by
considering the axial perturbation through a meridional plane (circular data points) and
the azimuthal perturbation through a horizontal plane (square data points). (a) The
low viscosity regime: the dashed line is the predicted amplitude from the inviscid model
ω0 = 0.01− 0.67i, the dot-dashed line is the low Ekman number asymptotic prediction
ω ∼ 0.01−0.52i and the solid line is the exact solution from the full model ω = 0.01−0.54i.
(b) The high viscosity regime: the solid line is the exact solution calculated from the
model ω = 9.61× 10−9 − 3.68× 10−4i, the dashed line is the amplitude predicted by the
high viscosity asymptotics (2.52), ω∞Ek−1 = −3.68×10−4i, but cannot be distinguished
from the exact solution at the scale shown.

to the interface is shown by the circular and square data points, the circular data points
are the amplitude of the axial perturbations, and the square data points are the amplitude
of the azimuthal perturbations. The dashed line is the predicted amplitude using the
inviscid model of § 2.2 that gives ω0 = 0.01−0.67i for the chosen parameters A = −10−2,
δn = (10π)

−1
,m = 60, R = 1/

√
2. As anticipated on physical grounds, due to the absence

of viscosity, the inviscid model over-predicts the growth-rate of the perturbation. The
dashed-dot line is the asymptotic correction to the inviscid prediction using the low-
viscosity solution in § 2.3. With the chosen parameters the simulated Ekman number is
Ek = 3.98 × 10−6 and the low-viscosity prediction using § 2.3 is ω ∼ 0.01 − 0.52i. The
exact eigenvalue calculated numerically is ω = 0.01− 0.54i, and this solution is shown as
the solid line. As is observed, once the instability starts to grow its growth rate during the
linear phase is well-predicted by both the exact solution and the low-viscosity asymptotic
model.

Figure 8b compares the predicted and observed amplitudes of the interfacial perturba-
tion in a high viscosity regime. The circular and square data points indicate the amplitude
of the axial and azimuthal perturbations respectively as in figure 8a. The solid line fol-
lows the exact numerical growth rate −Im(ω) = 3.68× 104. Also plotted is a dashed line
following the high viscosity asymptotic prediction −Im(ω∞Ek−1), but at the scale shown
this lies on top of the exact numerical solution. A good agreement is observed between
the predicted growth rate and the observed amplitude of the simulated perturbation.
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4. Rotating viscous column

A special case of the configuration of fluids that has been considered so far is that
of the rotating viscous liquid column. This situation occurs in the absence of an outer
fluid layer, in the limit ρ2 → 0, µ2 → 0. We refer to this limit as the ‘viscous column’
limit which may be equivalently taken as A → −1, η → −1. The behaviour of liquid
columns has received considerable attention in the past, building from the initial work
of Rayleigh (1879, 1892) to the inclusion of rotation (Hocking & Michael 1959) and vis-
cosity (Hocking 1960). More recently a linear stability analysis of a uniformly rotating
viscous liquid column in the absence of gravity was considered by Kubitschek & Wei-
dman (2007a) together with a companion experimental study (Kubitschek & Weidman
2007b, where gravity was present) following on from the inviscid studies of Weidman
et al. (1997) and Weidman (1994). In Kubitschek & Weidman (2007a) the authors in-
vestigated an analytical description of the linear stability of a uniformly rotating viscous
column numerically, including showing how their results tend to established inviscid re-
sults in the limit Ek → 0. The authors investigated the preferred mode of instability of
a uniformly rotating viscous column as a function of the Ekman number, Ek, and the
Weber number We (Reynolds number, Re, and Hocking parameter, L, in their notation).
Through an extensive careful numerical investigation they were able to establish which
mode of instability had the greatest growth rate for a given value of Ek and We and con-
jectured an asymptotic form of the boundary between the two most unstable modes (an
axisymmeytric mode and a spiral mode) in the limit of high viscosity and high surface
tension (see figure 13 Kubitschek & Weidman 2007a, figure 1 Kubitschek & Weidman
2007b: the boundary is denoted T01).

Here we are able to compare our general asymptotic approximations derived in § 2
to the special case of a single uniformly rotating viscous column layer. By modifying
the dependence of the axial wavenumber and Weber number, such that they depend on
the Ekman number, we are able to confirm the conjectured asymptotic form of the T01

boundary identified by Kubitschek & Weidman (2007a) and find an expression for the
boundary that is in good agreement with their numerical estimate.

The boundary between the preferred modes of instability depends upon the growth
rate of the most unstable mode in each regime only. The wavelengths of the associated
most unstable modes either side of the boundary may be quite different, as may the
precession associated with the mode.

In the case of a single fluid layer, the governing system of equations described in § 2 is
reduced. The six coefficients b2j and c2j describing the behaviour of the outer layer may
all be considered identically zero as the outer layer is not present. The three boundary
conditions on r = 1 for the outer layer, (2.11a) and (2.21), the outer layer’s kinematic
condition (2.12) (when i = 2), and the two conditions of tangential velocity continuity
(2.20) (six equations in total) are removed from the system accordingly. This leaves
the kinematic condition for the inner (only) layer, and the three free-stress conditions
(subject to surface tension) to determine the three remaining coefficients, b1j , and the
eigenvalue ω. Hence the system is reduced from ten equations in ten unknowns to four
equations in four unknowns.

Kubitschek & Weidman (2007a) considered an infinitely long column of radius a sub-
ject to axial, azimuthal and temporal perturbations of the form exp{st+ i(nθ+ kz)}, in
their notation, subject to rotation, viscosity and surface tension described in terms of a
nondimensional Reynolds number, Re, and nondimensional Hocking parameter, L. As a
result of the choice of domain there is not a unique mapping between their variables and
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Figure 9: (a) The numerical solution for the imaginary part of ω in the rotating viscous
column reduced system with A = −1, η = −1, R = 1, m = 0, δn = 1. In this limit the
solution is independent of the Weber number,We. The solution of Kubitschek &Weidman
(2007a) figure 3 is shown solid and the present solution is shown dashed, overlaid, and
the two curves coincide. The inviscid solution due to (2.31) is the horizontal dashed line
ω0 ≈ −0.433i. The high viscosity asymptotic approximation is the dashed curve on the
left, given by (4.3). The low viscosity asymptotic approximation is the dashed curve on
the right, given by ω ≈ ω0 + ω2Ek, where ω2 is given by (4.4). (b) A comparison of
the imaginary part of ω − ω0 (solid) and the imaginary part of ω2Ek (dashed). As the
Ekman number increases it can be seen that the imaginary part of ω − ω0 tends toward
the imaginary part of ω2Ek in agreement with the asymptotic expansion. (Quantities in
square brackets use the notation of Kubitschek & Weidman 2007a.)

those used in the present study, but a natural choice is to take

A = −1, η = −1 (the viscous column limit), and R = 1. (4.1)

Then, writing terms in the present notation on the left and terms in the notation of
Kubitschek & Weidman (2007a) on the right, we have the equivalence

Ek ↔ 1

Re
, We ↔ 1

2L
, m ↔ n, δn ↔ 1

k
, ω ↔ −is. (4.2)

Kubitschek & Weidman (2007a) consider the growth rates for axisymmetric (m = 0)
disturbances of wavelength δn = 1 and show that in the limit Ek → 0 the growth rates
approach the inviscid growth rate, as may be anticipated (see figure 3 Kubitschek &
Weidman 2007a). The numerical calculation is repeated here, by way of verification of
our results, and the imaginary part is shown (dashed) overlaying their solution (solid) in
figure 9(a). The solutions are seen to coincide. The inviscid solution −Im(ω) = 0.433 is
shown as the horizontal dot-dashed line and is given by solution of (2.31) in the viscous
column limit with R = 1, m = 0, and δn = 1. In this special case, the eigenvalue
ω is independent of the Weber number, We. The asymptotic approximation in the high
viscosity limit may be determined from the viscous column approximation to (B 1), (B 3),
(B 7), and (B 8) and for R = 1, m = 0, and δn = 1 is given by

ω ∼ − I1(1)
2i

2I0(1)2 − 4I1(1)2
Ek−1 +O(Ek−2) ≈ −0.166iEk−1, (4.3)

shown as the dashed curved line on the left hand side of figure 9(a) that tends toward
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Figure 10: (a) A numerical solution of the reduced system for Ek = 104, We =
(10−8/3)/2, m = 1. The high viscosity asymptotics of § 2.4, where We and δn are fixed,
is shown dot-dashed. Scaling the Weber number as Ek−2/3 and δn as δn ∼ Ek1/3 leads
to the approximation (4.5) which is shown dashed. The estimated most unstable mode
is shown as the white data point. An enlargement of the approximation (dashed) in the
neighbourhood of this turning point is compared to the numerics (solid) in the inset. The
estimated most unstable mode is in good agreement with the full numerical solution. (b)
The preferred mode diagram of Kubitschek & Weidman (2007a) figure 13 is reproduced
with the asymptotic approximation to the T01 boundary, Re ∼ 9

√
3/32L−3/2, indicated

by the arrow. (Quantities in square brackets use the notation of Kubitschek & Weidman
2007a.)

the numerical solutions as Ek → ∞, Re → 0. For general m and δn the approximation
in the limit Ek → ∞ is given in appendix C, (C 1).
The correction to the inviscid growth rate in the low viscosity limit as calculated from

§ 2.3 is of the form ω ∼ ω0 + ω1Ek1/2 + O(Ek). However, in the special viscous column
limit the coefficient ω1 is identically zero, and so if a higher order approximation than
the leading order inviscid approximation is sought, a further term in the expansion is
required. Following the same method as in § 2.3 taking the viscous column limit with
R = 1, the eigenvalue ω ∼ ω0 + ω2Ek + O(Ek3/2) where ω0 is the inviscid eigenvalue
given by (2.31) and the correction term is given in appendix C, (C 2). In the special
case considered in figure 9(a) for axisymmetric instability, m = 0, and δn = 1 there is
simplification and

ω2 =
2i

ω2
0k0

{[

ω4
0 − 8k20 − 16

]

I1(k0)
2 − 2k0

[

ω4
0 − 3ω2

0 + 4
]

I0(k0)I1(k0) + 8k20I0(k0)
2
}

×
{

k0
(

4 + [ω2
0k0]

2
)

I0(k0)
2 −

[(

4 + ω2
0

)

I0(k0) + 4k0I1(k0)
]

I1(k0)
}−1

, (4.4)

where k0 is given by (2.23) and approximately ω ∼ −0.433i+ 6.63iEk. This approxima-
tion is shown as the curved dashed line on the right hand side of figure 9(a) that coincides
with the numerical solutions as Ek → 0, Re → ∞. The difference between the imaginary
part of the full viscous eigenvalue, ω, and the inviscid eigenvalue, ω0, is shown (solid line)
in figure 9(b). The first term of the asymptotic approximation to this difference, ω2Ek,
is shown dot-dashed and is in good agreement as Ek → 0.
Kubitschek & Weidman (2007a) focused interest upon which of all the modes of in-

stability has the highest growth rate for a given Ekman number and Weber number as
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it might be anticipated that this dominant mode may be the observed mode of instabil-
ity in a given realization of the flow. The question of which mode is preferred, and the
boundaries between these modes, were presented in their figure 13 (reproduced here in
figure 10b). They note that in the high viscosity, high surface tension limit the two most
unstable modes are the m = 1 ‘spiral’ mode instability and the m = 0 axisymmetric
mode instability. They further conjecture that the boundary between these two modes
appears to follow asymptotic behaviour of the approximate form Re ∼ 0.5L−3/2, in their
notation.
A solution of the reduced system in this approximate region of parameter space is

shown in figure 10(a) (solid line) for Ek = 104, L = 108/3 (= Ek2/3), α = 1, m = 1. The
high viscosity asymptotics of § 2.4 for large Ekman number and fixed Weber number and
δn is shown dot-dashed. The approximation is in good agreement in the region δ−1

n
>
∼ 0.3

but does not capture the behaviour of the full numerical solution for δ−1
n

<
∼ 0.2. As Ek

is increased the turning point of the solution at δ−1
n ≈ 0.181, Im(ω) ≈ 1.89 (indicated by

the black circle) moves to the left and the region in which the asymptotic approximation
does not agree with the full numerical solution decreases. Indeed, as Ek increases for
any fixed δn and We the asymptotic approximation improves, as it must. However, the
approximation does not capture the behaviour of the most unstable part of the solution
if we treat the Weber number and δn as fixed parameters rather than coupling the Weber
number and δn to the Ekman number. In order to capture the behaviour in the region
δ−1
n

<
∼ 0.2 we require a different asymptotic approximation to ω, where We and δn are

not fixed, but are proportional to powers of Ek.
In the region of (Re,L) space where Re ∼ L−3/2 we pose that the most unstable

mode solutions to the reduced system in the m = 1 spiral mode case behave as δn ∼
Ek1/3, We ∼ Ek−2/3, and ω ∼ ω∗

0 + ω∗

1Ek−1/3 + O(Ek−2/3), where ω∗

0 is real and
leads to precession of the mode only, rather than growth. (Equivalently in the notation
of Kubitschek & Weidman 2007a, k ∼ Ek−1/3, L ∼ Ek2/3, which implies k ∼ Re1/3,
L ∼ Re−2/3.) Here ω∗

0 is distinct from the inviscid solution, ω0, given by (2.31). We seek
solutions of the reduced system where We = α2Ek−2/3/2, δn = K−1Ek1/3 where α and
K are positive real constants of proportionality. We find in the m = 1 spiral mode case
that

ω ∼ 1− K

α
+

3i

8
(K − α)K3Ek−1/3 +O

(

Ek−2/3
)

. (4.5)

The growth rate of this spiral mode is O(Ek−1/3) and the most unstable mode is given
by the stationary point at K = 3α/4 where ω ∼ 1/4− (3α)4i2−11Ek−1/3. The imaginary
part of the approximation (4.5) is shown in figure 10(a) (dashed) and compares well with

the full numerical solution (solid) in the region δ−1
n

<
∼ 0.2. The estimate of the location

and magnitude of the maximum growth rate given by min{Im(ω)} is shown as the white
circular data point. The neighbourhood of this turning point is shown enlarged in the
inset where again the full numerical solution is shown as the solid line and the asymptotic
approximation is shown dashed. The approximation is in excellent agreement with the
numerical solution.
The equivalent result for the m = 0 axisymmetric mode is

ω ∼ − i

6α2
Ek−1/3 +O

(

Ek−2/3
)

, (4.6)

independent of K. There is no precession of the axisymmetric mode, but the growth rate
is O(Ek−1/3), the same order of magnitude as the m = 1 spiral mode. This therefore
confirms the conjectured form of the T01 boundary by Kubitschek & Weidman (2007a)
and we are thus able to determine the value of α at which the preferred mode transitions



26 M. M. Scase & S. Sengupta

from m = 0 axisymmetric instability to m = 1 spiral instability. The two growth rates
are equal when

(3α)4

211
=

1

6α2
, (4.7)

balancing powers of Ek−1/3. The only positive real solution to (4.7) is α = (4/3)5/6,
which gives the T01 boundary as Re ∼ 9

√
3/32L−3/2 ≈ 0.487L−3/2 in the notation of

Kubitschek & Weidman (2007a), in good agreement with their numerical estimate.
The straightforward forms of (4.5) and (4.6) do not reflect the manipulations required

to determine them. Asymptotic approximations to the coefficients b1j are required, and
these series begin at O(Ek1/3) and descend in powers of Ek1/9. Sufficient terms to de-
termine b1j at O(Ek−5/9) are required for the solution to be determined. Similarly the
required solution to (2.9) is a series that begins at O(Ek−1/3) and also descends in powers
of Ek1/9 and must be expanded to O(Ek−11/9) in order to determine ω∗

0 and ω∗

1 .

5. Discussion and conclusions

We have investigated the three dimensional centrifugally-driven Rayleigh-Taylor in-
stability, in particular the very high rotational limit of the rotating Rayleigh-Taylor
instability in which the effects of gravity may be neglected. A cylindrical domain and
initially cylindrical interface between the two fluid layers have been modelled. We have
considered the inviscid case, the low viscosity case and the high viscosity case. In all
three cases the system is subject to linear instability when the inner layer is denser than
the outer layer or, equivalently, the Atwood number, as we have defined it, is negative.
We defined a nondimensional Ekman number in terms of the mean viscosity, mean den-

sity, rotation rate and domain radius such that the low viscosity regime is characterised
by a small Ekman number and the high viscosity regime is characterised by a typically
large Ekman number. The growth and precession rates in the low viscosity regime are
an O(Ek1/2) correction to the inviscid growth and precession rate. The growth rate in
the high viscosity regime is O(Ek−1) while the precession rate is O(Ek−2).
In the stable configuration (A > 0) a similar asymptotic dependence on the Ekman

number is observed. In the low viscosity limit the oscillation rate and precession rate
behave as an O(Ek1/2) correction to the inviscid oscillation and precession rate. In the
high viscosity limit the oscillation and precession rate behave as O(Ek−1).
In the unstable high viscosity limit the growth rate behaves as O(Ek−1) and in the

special case that surface tension may be neglected has a linear dependence on the Atwood
number. This means that the preferred mode of instability in this limit is independent
of the absolute values of the viscosity and independent of the density in each layer;
the preferred mode in this limit is determined only by the aspect ratio of the domain,
δ, the nondimensional viscosity contrast, η, and the initial location of the unperturbed
interface, R.
Finally, we showed how our results apply to the special limiting case of a rotating vis-

cous column of fluid in the absence of gravity. For fixed wavenumber and Weber number
our asymptotics describe the growth rate of perturbations to the rotating viscous column
when the density and viscosity of the outer fluid layer a taken to be zero. In contrast to the
general two-layer arrangement, in this special single fluid layer case, in the low viscosity
limit, there is an O(Ek) correction to the inviscid growth rate. The boundary over which
the preferred mode of growth changes from varicose to spiral in a high viscosity, high
surface tension regime is shown to behave as Ek ∼ 27/23−5/2We−3/2 ≈ 0.726We−3/2.
Our results follow from a linear stability analysis and so are subject to the usual
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caveats. We cannot draw conclusions relating to any sub-critical instability or nonlinear
interactions between the various possible modes of instability.
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Appendix A. Low viscosity asymptotic system

The coefficients b̂ij , ĉ2j for i = 1, 2, j = 2, 3 are shown here for completeness, but their
values do not need to be explicitly determined if only the growth rate correction, ω1, is
required.

b̂12 = −eiR/(ω0δn)

8
exp

{

−eiπ/4
√
1− A√
1− η

Rω1

2ω
1/2
0

}{

R

[

1 +

(

1− A

1 + A

)1/2(
1− η

1 + η

)1/2
]}

−1

× {−2i [c210Km+1(k0R) + Im+1(k0R) (b110 − b210)] δnk0ω0R

+ [(iδnm+R)ω0 − 2R] [(b210 − b110)Im(k0R) + c210Km(k0R)] (ω0 + 2)} (A 1a)

b̂13 =
e−iR/(ω0δn)

8
exp

{

−eiπ/4
√
1− A√
1− η

Rω1

2ω
1/2
0

}{

R

[

1 +

(

1− A

1 + A

)1/2(
1− η

1 + η

)1/2
]}

−1

× {−2i [c210Km+1(k0R) + Im+1(k0R) (b110 − b210)] δnk0ω0R

+ [(iδnm−R)ω0 + 2R] [(−b110 + b210)Im(k0R) + c210Km(k0R)] (ω0 + 2)} (A 1b)

b̂22 =
ei/(ω0δn)

8
exp

{

−eiπ/4
√
1 + A√
1 + η

ω1

2ω
1/2
0

}

× {2iω0k0δn (b210Im+1(k0)− c210Km+1(k0))

+(ω0 + 2)(imω0δn + ω0 − 2)(Im(k0)b210 +Km(k0)c210)} (A 1c)

b̂23 = −e−i/(ω0δn)

8
exp

{

−eiπ/4
√
1 + A√
1 + η

ω1

2ω
1/2
0

}

× {2iω0k0δn (b210Im+1(k0)− c210Km+1(k0))

+(ω0 + 2)(imω0δn − ω0 + 2)(Im(k0)b210 +Km(k0)c210)} (A 1d)

ĉ22 = −e−iR/(ω0δn)

8
exp

{

eiπ/4
√
1 + A√
1 + η

Rω1

2ω
1/2
0

}{

R

[

1 +

(

1 + A

1− A

)1/2(
1 + η

1− η

)1/2
]}

−1

× {−2i [c210Km+1(k0R) + Im+1(k0R) (b110 − b210)] δnk0ω0R

+ [(iδnm−R)ω0 + 2R] [(b210 − b110)Im(k0R) + c210Km(k0R)] (ω0 + 2)} (A 1e)
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ĉ23 =
eiR/(ω0δn)

8
exp

{

eiπ/4
√
1 + A√
1 + η

Rω1

2ω
1/2
0

}{

R

[

1 +

(

1 + A

1− A

)1/2(
1 + η

1− η

)1/2
]}

−1

× {−2i [c210Km+1(k0R) + Im+1(k0R) (b110 − b210)] δnk0ω0R

+ [(iδnm+R)ω0 − 2R] [(b210 − b110)Im(k0R) + c210Km(k0R)] (ω0 + 2)} (A 1f )

Appendix B. High viscosity asymptotic system

The universal boundary and matching conditions are given by: the kinematic condition
for the inner layer

[

(

m2δ2n +R2
)

α11 − imδ2n

(

2

δn

)2/3(
1− η

1− A

)1/3

λ2β11

]

Im

(

R

δn

)

+ λ2

(

2

δn

)1/3(
1− η

1− A

)2/3 [

mδnIm

(

R

δn

)

+RIm+1

(

R

δn

)]

γ11 =
2iRδ2n

3
ω0, (B 1)

the kinematic condition for the outer layer

− imλ2δ
2
n

(

2

δn

)2/3(
1 + η

1 + A

)1/3 [

Im

(

R

δn

)

β21 +Km

(

R

δn

)

β22

]

+ λ2

(

2

δn

)1/3(
1 + η

1 + A

)2/3{[

mδnIm

(

R

δn

)

+RIm+1

(

R

δn

)]

γ21

+

[

mδnKm

(

R

δn

)

−RKm+1

(

R

δn

)]

γ22

}

+

[

m2δ2nIm

(

R

δn

)

+R2Im

(

R

δn

)]

α21+

[

m2δ2nKm

(

R

δn

)

+R2Km

(

R

δn

)]

α22 =
2iRδ2n

3
ω0,

(B 2)

the normal (radial) stress continuity condition:

2

δn

[

(

(m− 1)mδ2n +R2
)

mδnIm

(

R

δn

)

+
(

m2δ2n +R2
)

RIm+1

(

R

δn

)]

[(1− η)α11 − (1 + η)α21]

− 2

δn

[

(

(m− 1)mδ2n +R2
)

mδnKm

(

R

δn

)

−
(

m2δ2n +R2
)

RKm+1

(

R

δn

)]

(1 + η)α22

−iλ2mδ2n

(

2

δn

)5/3{[

(m− 1)δnIm

(

R

δn

)

+RIm+1

(

R

δn

)][

(1− η)4/3

(1 − A )1/3
β11 −

(1 + η)4/3

(1 + A )1/3
β21

]

−
[

(m− 1)δnKm

(

R

δn

)

−RKm+1

(

R

δn

)]

(1 + η)4/3

(1 + A )1/3
β22

}

+λ2

(

2

δn

)4/3{[
(

(m− 1)mδ2n +R2
)

Im

(

R

δn

)

−RδnIm+1

(

R

δn

)][

(1 − η)5/3

(1− A )2/3
γ11 −

(1 + η)5/3

(1 + A )2/3
γ21

]

−
[

(

(m− 1)mδ2n +R2
)

Km

(

R

δn

)

+RδnKm+1

(

R

δn

)]

(1 + η)5/3

(1 + A )2/3
γ22

}

= −4δ2nR
3A

3
− 2

3We

[(

m2 − 1
)

δ2n +R2
]

(B 3)

(The final term in the right hand side of (B 3) is the only surface tension term in the
whole system (B 1)–(B 10).) The final universal condition is the no-penetration condition
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on r = 1

− imδ2n

(

2

δn

)2/3(
1 + η

1 + A

)1/3 [

Im

(

1

δn

)

β21 +Km

(

1

δn

)

β22

]

+ λ1

(

1 +m2δ2n
)

[

Im

(

1

δn

)

α21 +Km

(

1

δn

)

α22

]

+

(

2

δn

)1/3(
1 + η

1 + A

)2/3

×
{[

mδnIm

(

1

δn

)

+ Im+1

(

1

δn

)]

γ21 +

[

mδnKm

(

1

δn

)

−Km+1

(

1

δn

)]

γ22

}

= 0.

(B 4)

The viscous boundary and matching conditions are given by: the azimuthal velocity
continuity condition

[

mδnIm

(

R

δn

)

+RIm+1

(

R

δn

)]

×
{

im (α11 − α21) + λ2

(

2

δn

)2/3
[

(

1− η

1− A

)1/3

β11 −
(

1 + η

1 + A

)1/3

β21

]}

−
[

mδnKm

(

R

δn

)

−RKm+1

(

R

δn

)]

[

imα22 + λ2

(

2

δn

)2/3(
1 + η

1 + A

)1/3

β22

]

+ imλ2

(

2

δn

)1/3
{

(

1− η

1− A

)2/3

Im

(

R

δn

)

γ11

−
(

1 + η

1 + A

)2/3 [

Im

(

R

δn

)

γ21 +Km

(

R

δn

)

γ22

]

}

= 0, (B 5)

the axial velocity continuity condition

[

(m+ 2)δnIm

(

R

δn

)

+RIm+1

(

R

δn

)]

(α11 − α21)

−
[

(m+ 2)δnKm

(

R

δn

)

−RKm+1

(

R

δn

)]

α22+λ2

(

2

δn

)1/3
{

(

1− η

1− A

)2/3

Im

(

R

δn

)

γ11

−
(

1 + η

1 + A

)2/3 [

Im

(

R

δn

)

γ21 +Km

(

R

δn

)

γ22

]

}

= 0, (B 6)
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the azimuthal stress continuity condition

imλ1

{[

(

(m− 1)mδ2n +R2
)

Im

(

R

δn

)

−RδnIm+1

(

R

δn

)]

[(1 + η)α21 − (1− η)α11]

+

[

(

(m− 1)mδ2n +R2
)

Km

(

R

δn

)

+RδnKm+1

(

R

δn

)]

(1 + η)α22

}

−
(

2

δn

)2/3{[(

(m− 1)mδ2n +
R2

2

)

Im

(

R

δn

)

−RδnIm+1

(

R

δn

)][

(1− η)4/3

(1− A )1/3
β11 −

(1 + η)4/3

(1 + A )1/3
β21

]

−
[(

(m− 1)mδ2n +
R2

2

)

Km

(

R

δn

)

+RδnKm+1

(

R

δn

)]

(1 + η)4/3

(1 + A )1/3
β22

}

−i

(

2

δn

)1/3

m

{[

(m− 1)δnIm

(

R

δn

)

+RIm+1

(

R

δn

)][

(1− η)5/3

(1 − A )2/3
γ11 −

(1 + η)5/3

(1 + A )2/3
γ21

]

−
[

(m− 1)δnKm

(

R

δn

)

−RKm+1

(

R

δn

)]

(1 + η)5/3

(1 + A )2/3
γ22

}

= 0, (B 7)

the axial stress continuity condition

2

δn

[

(

(m+ 1)mδ2n +R2
)

Im

(

R

δn

)

+RδnIm+1

(

R

δn

)]

[(1− η)α11 − (1 + η)α21]

− 2

δn

[

(

(m+ 1)mδ2n +R2
)

Km

(

R

δn

)

−RδnKm+1

(

R

δn

)]

(1 + η)α22

−iλ2

(

2

δn

)2/3

mδn

{

Im

(

R

δn

)[

(1− η)4/3

(1− A )1/3
β11 −

(1 + η)4/3

(1 + A )1/3
β21

]

−Km

(

R

δn

)

(1 + η)4/3

(1 + A )1/3
β22

}

+ λ2

(

2

δn

)4/3{[

mδnIm

(

R

δn

)

+RIm+1

(

R

δn

)][

(1− η)5/3

(1− A )2/3
γ11 −

(1 + η)5/3

(1 + A )2/3
γ21

]

−
[

mδnKm

(

R

δn

)

−RKm+1

(

R

δn

)]

(1 + η)5/3

(1 + A )2/3
γ22

}

= 0, (B 8)

the azimuthal no-slip condition

[

mδnIm

(

1

δn

)

+ Im+1

(

1

δn

)]

[

mλ1α21 − i

(

2

δn

)2/3 (
1 + η

1 + A

)1/3

β21

]

+

[

mδnKm

(

1

δn

)

−Km+1

(

1

δn

)]

[

mλ1α22 − i

(

2

δn

)2/3(
1 + η

1 + A

)1/3

β22

]

+m

(

2

δn

)1/3 (
1 + η

1 + A

)2/3 [

Im

(

1

δn

)

γ21 +Km

(

1

δn

)

γ22

]

= 0, (B 9)

and finally the axial no-slip condition

[

(m+ 2)δnIm

(

1

δn

)

+ Im+1

(

1

δn

)]

α21 +

[

(m+ 2)δnKm

(

1

δn

)

−Km+1

(

1

δn

)]

α22

+

(

2

δn

)1/3 (
1 + η

1 + A

)2/3

λ2

[

Km

(

1

δn

)

γ22 + Im

(

1

δn

)

γ21

]

= 0. (B 10)
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Appendix C. Rotating viscous column system

In (4.3) the high viscosity approximation for the rotating viscous column in the ax-
isymmetric case m = 0, with δn = 1 was given. It is a special case of the general
approximation

ω ∼ iEk−1

4We

{

2δnI
3
m+1(δ

−1
n ) +

[

(m+ 6)mδ2n − 1
]

Im(δ−1
n )Im+1(δ

−1
n )2

+2
[

(m+ 2)mδ2n − 1
]

mδnI
2
m(δ−1

n )Im+1(δ
−1
n )−2m2δ2nI

3
m(δ−1

n )

}

[

(m2 − 2We− 1)δ2n + 1
]

×
{

[

1 +m(m3 + 6m2 −m− 6)δ4n + (2m2 − 6m+ 1)δ2n

]

Im(δ−1
n )I2m+1(δ

−1
n )

+ 2δn

[

(m3 + 2m2 −m− 2)m2δ4n + (2m2 − 3m+ 1)mδ2n +m+ 1
]

I2m(δ−1
n )Im+1(δ

−1
n )

+2δn
[

(m2 − 1)δ2n − 1
]

I3m+1(δ
−1
n )−

[

1 + (m2 + 2m− 3)m2δ4n + 2(m− 1)mδ2n
]

I3m(δ−1
n )

}

−1

.

(C 1)

This expression is determined by taking the viscous column approximation, A = −1,
η = −1, to (B 1), (B 3), (B 7), and (B 8) and setting R = 1.
In (4.4) the low viscosity approximation for the rotating viscous column in the axisym-

metric case m = 0, with δn = 1 was given. The general approximation for arbitrary m
and δn is given by

ω2 =
2i

δ2nω
2
0

[

(m2 − 2We− 1)δ2n + 1
]

{

(ω2
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[

8 + ω2
0(4mω0 − ω2
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]

k0δ
2
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0(ω0 + 2)(ω0 − 1)2δ2n − 4(ω0 − 2)
]

Im(k0)
2
}

×
{

[

(m2 − 2We− 1)δ2n + 1
] [

4k0Im+1(k0) + (ω2
0 + 8m+ 4)Im(k0)

]

k0δ
2
nω

2
0Im+1(k0)

+ (ω0 + 2)
[

(ω0 + 2)
(

2
[

(ω0 − 2)
2 −m

]

We+m
(

m2 − 1
)

)

δ4nω
2
0

+
[

mω2
0 (ω0 + 2)− 4(m2 − 2We− 1)(ω0 − 2)

]

δ2n − 4(ω0 − 2)
]

Im(k0)
2

}

−1

. (C 2)
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Dávalos-Orozco, L. A. & Aguilar-Rosas, J. E. 1989b Rayleigh-Taylor instability of a
continuously stratified magnetofluid under a general rotation field. Phys. Fluids A 1 (9),
1600–1602.
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