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1 | INTRODUCTION
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Abstract

Ocular surface inflammatory disorders (OSIDs) are a group of highly prevalent, het-
erogeneous diseases which display a variety of aetiologies and symptoms and are risk
factors for serious complications including ocular and cornea impairment. Corneal
inflammation is a common factor of all OSIDs, regardless of their cause or symptoms.
Current medications include over-the-counter lubricating eye drops, corticosteroids,
and ciclosporin, which either do not treat the corneal inflammation or have been
associated with multiple side effects leading to alternative treatments being sought.
Regenerative medicine cell therapies, particularly mesenchymal stem cells (MSCs),
have shown great promise for immunosuppression and disease amelioration across
multiple tissues, including the cornea. However, for successful development and clini-
cal translation of MSC therapy for OSIDs, significant problems must be addressed.
This review aims to highlight considerations, including whether the source of MSC
isolation impacts the efficacy and safety of the therapy, in addition to assessing the
feasibility of MSC topical application to the cornea and ocular surface through analy-
sis of potential scaffolds and cell carriers for application to the eye. The literature
contains limited data assessing MSCs incorporated into scaffolds for corneal adminis-
tration, thus here we highlight the necessity of further investigations to truly exploit

the potential of an MSC-based cell therapy for the treatment of OSIDs.
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film, a thin, liquid layer,? mainly constituted of mucin and lipid. As the

cornea is avascular, the tear film plays a vital role in the supplementa-

The cornea is a highly organized, transparent tissue at the ocular sur-
face. It is comprised of three main cellular layers: the epithelium, the
stroma containing the keratocytes, and the endothelium, separated by
the Bowman's membrane and Descemet's membrane, respectively®

(Figure 1). Coating the outer mucosal surface of the cornea is the tear

tion of nutrients and oxygen, as well as the expulsion of waste such as
epithelial debris, foreign bodies, and toxins. Interactions between the
ocular surface and the tear film allow for a smooth optical surface,
correct functioning of limbal epithelial cells and protection from
mechanical and microbial insults.® Additionally, healthy corneal tissue
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is maintained through tight immunoregulatory mechanisms at the ocu-
lar surface, modulated by both the innate and adaptive immune
systems.

Ocular surface inflammatory disorders (OSIDs) occur when the
tightly regulated homeostasis at the ocular surface is disturbed, and
encompass a range of heterogeneous diseases with a variety of aetiol-
ogies and symptoms, where inflammation plays a critical role in patho-
genesis.* Dry eye disease (DED), meibomian gland dysfunction
(MGD), allergic eye diseases, cicatricial conjunctivitis, chemical eye
burn, trauma, iatrogenic insult following corneal and/or refractive sur-
gery, and contact lens-related complications are the common exam-
ples of OSIDs that are frequently encountered and managed in clinical
practice.

OSIDs are highly prevalent in the general population. For example
the global prevalence of DED has been estimated at around 5% to
50% depending on the diagnostic criteria and study population.®
MGD, a major contributor to evaporative DED, has been shown to
cause a myriad of negative impacts on the ocular surface including
heightened inflammation, oxidative stress, tear hyperosmolarity, and
increased corneal epitheliopathy.® These diseases often serve as an
important risk factor for major ocular surface complications including
infectious keratitis, corneal vascularization, opacity, visual impairment,
corneal melt, and perforation.””? In addition, OSIDs are regularly asso-
ciated with pain and irritation, causing a considerable reduction in the
patient's quality of life, activities in daily living, and work productiv-
ity.1° Irrespective of their source, insult to the cornea ultimately
results in a vicious cycle, where chronic irritation activates an immune
response, augmenting the irritation.*

Currently, treatments include over-the-counter lubricating eye-
drops to alleviate disease symptoms, and corticosteroids to ameliorate
the inflammation. However, these treatments require long-term topi-
cal application, multiple times a day (every hour), placing high demand
on patient compliance and interfering with their day-to-day life. Fur-
thermore, corticosteroids have been linked to severe adverse effects
including increased risk of infectious keratitis, inhibition of corneal
wound healing, raised intraocular pressure, and cataracts.!t'?
Ciclosporin serves as a valuable steroid-sparing immunomodulatory
agent for managing a range of OSIDs, although side effects are com-
mon.*?® Lifitegrast, a recent FDA approved drug, represents another
useful topical anti-inflammatory treatment for DED. However, both
ciclosporin and lifitegrast are associated with a high rate, up to 70%,
of side effects, including burning sensation, itching, and blurred vision,
among others.1*

Because of the abundance of therapeutic factors possessed by
human stem cells, regenerative medicine may hold the key to devel-
oping a superior treatment to alleviate OSIDs. This review outlines
the process required for the application of stem cell therapy for
OSIDs, through assessing optimum cell type and delivery method
to the ocular surface. Here, we focus on the use of mesenchymal
stem cells (MSCs) due to their well-accepted immunomodulatory
properties and suggest that applying the cells topically, via a remov-
able substrate or scaffold, may offer the most convenient and effi-

cacious therapy.

Significance statement

This is the first review focusing on the potential of engineer-
ing mesenchymal stem cell (MSC) therapies that can be
applied topically to the ocular surface, in order to treat
inflammatory disorders that cannot be managed through
steroids or other means. This study aims to highlight differ-
ent considerations, including whether the source of MSC
isolation may impact the efficacy and safety of the therapy,
in addition to assessing the feasibility of topical stem cell
application to the ocular surface through analysis of poten-

tial scaffolds.

2 | POTENTIAL SOURCES OF STEM CELLS
FOR IMMUNOMODULATION OF THE
INJURED OCULAR SURFACE

Inflammation is recognized as a significant feature in the
etiopathophysiology of OSIDs, therefore stem cells with efficacious
anti-inflammatory properties would be optimal for successful treat-
ment. Limbal epithelial stem cell transplantation (LSCT) and cultivated
corneal epithelial (CCE) sheets have shown promising therapeutic
results for restoring a normal corneal epithelial phenotype in patients
with severe chemical injury and dry eye.r>!® However, the primary
utilization of LSCT and CCE is to generate an entire new epithelial
layer in situ or in vitro, respectively, rather than for their immunosup-
pressive capacity, used predominantly in cases where injury has
resulted in a limbal epithelial stem cell deficiency (LSCD). Their inca-
pacity to suppress inflammation is supported by data demonstrating
contraindications of LSCT in the presence of active inflammation in
bilateral diseases, including Stevens-Johnson syndrome, ocular cicatri-
cial pemphigoid, and graft vs host disease (GVHD). In fact, the failure
of LSCT is often accredited to sites of active inflammation creating a
toxic microenvironment at the ocular surface.r” Although these tech-
niques have proven, in some cases, successful to treat injuries such as

chemical burn, which are associated with high levels of inflammation,
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FIGURE 1 The structure of the cornea. Working from the ocular

surface anterior to posterior, the cornea is made up of an epithelium;
Bowman's membrane; stroma; Descemet's membrane, and
endothelium
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it is likely that some of the immunosuppression was governed and

achieved by the immune-modulating, amniotic membrane

(AM) scaffold the cells were applied with.1>¢ As the pros and cons of

17.18 we wish in this

LSCT have been covered in previous reviews,
review to highlight alternative sources of stem cells that could be con-
sidered for novel regenerative medicine therapies.

Differentiating induced pluripotent stem cells (iPSCs) into
immune-mediating cells, such as regulatory T cells,? holds the poten-
tial to improve the inflammatory symptoms of OSIDs. However, this
therapeutic strategy is limited by the high tumorigenic potential, cost,
and regulation associated with the generation and application of
iPSCs.2°

MSCs are best known in regenerative medicine for their ability to
modulate both the innate and adaptive immune systems,2? suggesting
a potential use for the treatment of inflammation in OSIDs. Their
capacity to reduce inflammation has been assessed in vitro and in vivo
on multiple tissues, including the kidney, heart, cartilage, liver, brain,
skin, and cornea,?? with preclinical success demonstrated by their cur-
rent use in clinical trials.2®> MSCs encompass a group of fibroblast-like,
multipotent progenitor stromal cells, defined initially by their capacity
to differentiate into osteoblasts, adipocytes, and chondrocytes,24
however MSCs are now utilized primarily for the ability to elicit a

therapeutic response through communication with target tissue cells.

3 | DIRECT COMMUNICATION OF MSCs
AND TARGET CELLS

Limited evidence has demonstrated that MSCs can interact with the
target tissue directly via cell-cell contacts such as gap junctions and
tunneling nanotubes.2> This has been demonstrated in cardiac tissue,
where the respiratory chain in myocytes was salvaged through mito-
chondrial transfer. Although not investigated in the literature, hypo-
thetically this mechanism could restore cells at the ocular surface and

is therefore an area with potential for future exploration.

4 | PARACRINE SIGNALLING OF MSCs
AND POTENTIAL EFFECT ON CORNEAL
IMMUNOMODULATION

The main interest surrounding MSCs has shifted to their paracrine
function, as a positive therapeutic response can be achieved
irrespective of whether the cells reach the target organ.2® There is an
abundance of data demonstrating MSC secretion of anti-inflammatory
factors, cell-mobilization factors, and growth factors in response to
inflammatory mediators.?”

Stimulation of MSCs with interferon-y (IFN-y) has been studied
abundantly in the literature, demonstrating activation of the IFN-
y-Janus kinase (JAK)-signal transducer, and activator of transcription
(STAT) 1 pathway?® leading to the secretion of indoleamine
2,3-dioxygenase (IDO), a tryptophan catabolizing enzyme commonly

directly correlated with the immunomodulatory potency of MSCs.??
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MSC activation has also been investigated with pro-inflammatory
cytokines tumor necrosis factor-a (TNF-a) and interleukins (IL)-1a/-
1B, leading to upregulation of transcription factors including NFkB,
and the secretion of several factors including transforming growth
factor-B, ciliary neurotrophic factor, glial cell line-derived neurotrophic
factor, interleukins-1p, -6, -8, and -10, nitric oxide (NO), hepatocyte
growth factor (HGF), and vascular endothelial growth factor (VEGF)
(Figure 2).%°

Using paracrine signaling, MSCs can ultimately suppress the acti-
vation and function of various cells within the adaptive and innate
immune systems, including T and B lymphocytes, macrophages, natu-
ral killer cells, neutrophils, and dendritic cells. Multiple corneal and
ocular surface studies have demonstrated the reduction of inflamma-

31,32 in

tory factors following MSC administration in vitro and in vivo,
addition to their capacity to inhibit allergy driven disease, such as
allergic  conjunctivitis, through COX-2-dependent anti-allergic
mechanisms.33

An initial consideration regarding the use of MSCs for OSIDs is
the relationship between secreted growth factors and angiogenesis. In
ischemic cardiac tissue, MSCs promote neovascularization through

the upregulation of VEGF.3*

Ocular angiogenesis is a lead factor of
blinding eye diseases including retinal disease, such as age-related
macular disorder (AMD), stimulated by an increase in, VEGF.3> Con-
versely, MSCs have shown the opposite effect on neovascularization
when applied to corneal injury induced by chemical burn. One study
demonstrated downregulation of VEGF and significant reduction of
neovascularization in the MSC-treated cornea.®® This could be attrib-
uted to MSC induced upregulation of thrombospondin-1, a VEGF
inhibitor®” and signifies the importance of the microenvironment on
MSC behavior.

HGF has also been implicated as a fundamental factor in immuno-
modulation, secreted by MSCs stimulated with IL-1R8.38 HGF alone is
powerful enough to suppress antigen presenting cell activation and to
limit the generation of Th1 cells in the lymphoid tissue. Topical HGF
application significantly reduced the rejection of corneal grafts in a
murine model of GVHD, through suppression of immune cell infiltra-
tion, and has the potential to maintain and restore corneal transpar-
ency through the inhibition of a-SMA and its inducer TGF-R.3%37

Other key anti-angiogenic molecules secreted by MSCs include
TNF-a stimulated gene/protein (TSG-6), demonstrated as vital in the
inhibition of neovascularization, and suggested to function through
the inhibition macrophage infiltration and the induction of apoptosis
of vascular endothelial cells.*° As well as macrophages, TSG-6 has
been demonstrated to suppress activation and infiltration of neutro-
phils following chemical and mechanical corneal injuries,** making it a
potent modulator of both angiogenesis and inflammation.

An alternative method to exploit this paracrine signaling mecha-
nism of MSC to treat OSIDs would be through harvesting extracellular
vesicles from the MSC for therapeutic application.*? The potent ther-
apeutic factors of MSCs packaged in small vesicles could help to over-
come the safety and regulatory hurdles of cell application and have
shown potential in corneal wound healing and immunomodulation

in vivo.*®
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FIGURE 2 Immunomodulation by mesenchymal stem cells
(MSCs). Inflammatory stimuli at the ocular surface results in an
increase in pro-inflammatory factors, for example interferon-y (IFN-y),
tumor necrosis factor (TNF), ciliary neurotrophic factor (CNTF), glial
cell-line derived neurotrophic factor (GDNF), and interleukins (IL) 1
and 1a. These factors can activate and stimulate any applied MSCs to
secrete immunomodulatory factors including transforming growth
factor B (TGF-p), IL-10, indoleamine 2,3-dioxygenase (IDO), nitric
oxide (NO), prostaglandin E2 (PGE2), and vascular endothelial growth
factor (VEGF). This can result in the inhibition (red line) of
proliferation and function of T and B lymphocytes, natural killer T cells
(NKTs), and dendritic cells (DCs), however, can preserve neutrophil
viability through apoptosis inhibition. MSCs also stimulate (green
arrow) the upregulation of thrombospondin-1 (TSP-1) in the cornea,
which inhibits VEGF and prevents angiogenesis

Fully elucidating the pathways and interactions of different MSCs
and the corneal microenvironment will help to increase the safety pro-
file and therapeutic value of these cells for both tissue regeneration
and inflammation suppression, highlighting the necessity to explore
different MSC sources.

5 | MSCSOURCE

It is of utmost importance to consider MSC source, both tissue and
donor (autologous or allogeneic). Although MSCs have previously
been claimed as immune-privileged because of their lack of expression
of Major Histocompatibility Class (MHC) Il proteins and co-
stimulatory molecules B7 and CD40 ligand,** immune rejection of
MSCs derived from allogeneic sources has proven a major therapeutic
challenge for application to a wide variety of conditions.*> Similarly,
the ocular microenvironment has been claimed to be immune-

privileged, with original accounts demonstrating placement of a

foreign antigen in the eye did not elicit an immune response.*®
Although GVHD is a contraindication of an ocular allogeneic stem cell
transplant in approximately 40% to 60% of patients,*’” the immuno-
modulatory properties of MSCs may give them additional protection,
even if from an allogeneic source, with reports of multiple clinical tri-
als using MSCs to both prevent and treat GVHD.*® Although alloge-
neic cell therapy is beneficial for the manufacturing of the therapy,
potential adverse effects of foreign cells are vital to consider.

MSCs can be isolated from most tissues in the body and cultured
in vitro, however they do not all possess the same properties. For
example, literature demonstrating MSC secretion of the anti-
inflammatory cytokine, IL-10, is highly contradictory, and could be
because of the source of the cells.*” For successful translation to
clinic, it is important that multiple sources of MSCs are explored, to
develop the most efficacious and cost-effective treatment for
OSIDs.

5.1 | Bone marrow-derived MSCs (BM-MSCs)

Bone marrow is the most investigated source of MSCs in OSID cell
therapy research. BM-MSCs have demonstrated efficacy for immuno-
regulation and disease amelioration in multiple in vivo OSID models
with different administration routes. These include animal models of

chemical burns3¢>°

and inflammation-induced dry eye.’* However, a
major limitation includes the invasive and painful procedure to isolate
the bone marrow, where only 0.001% to 0.01% of the cells will

constitute MSCs.

5.2 | Adipose-derived MSCs (AD-MSCs)

AD-MSCs have similar levels of surface antigen expression, differenti-
ation ability, and immunosuppressive activity as BM-MSCs,>? and can
be isolated in abundance because of plentiful, accessible sources,
which can generate a higher yield of 100 to 1000 cells per gram of
adipose tissue. However, data demonstrating their efficacy for corneal
regeneration are scarce and conflicting. Fuentes-Julian et al®® found
that application of AD-MSCs to a rabbit model of corneal allograft
rejection increased inflammation levels. In contrast, AD-MSCs have
shown efficacious effects on numerous other organs including the

liver and brain,>*>°

achieved through suppression of the immune
response. A recent study which compared them directly to BM-MSCs
found a reduced capacity for corneal wound healing in vitro.>® Further
research is required to determine whether AD-MSCs have transla-
tional properties across tissues, or to understand their differential
behavior in the corneal allograft rejection model. Additionally, major
safety concerns regarding the use of AD-MSCs were recently uncov-
ered following intravitreal injection of autologous AD-MSCs in a clini-
cal trial for non-vascular AMD. Although a retinal disorder, it is
important to note the trial induced vision loss because of retinal
detachment and increased intraocular pressure following MSC

administration.>”
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5.3 | Corneal-derived MSCs (C-MSCs)

Each MSC niche is different, leading to a risk of cells exhibiting unex-
pected behavior when transplanted into a separate tissue. Therefore,
there may be therapeutic benefits to transplanting MSCs already
accustomed to the corneal microenvironment, back onto the ocular
surface. It has been demonstrated that when isolated and expanded
in vitro, keratocytes from the corneal limbal stroma assume an MSC
phenotype.®®¢° Furthermore, these C-MSCs show anti-inflammatory
potential when cocultured with injured corneal epithelial cells,®? can
reduce corneal scarring after wounding®® and express specific
markers of the cornea when other MSC types do not.®?%% C-MSC
secreted exosomes have also demonstrated the capacity to accelerate

corneal epithelial wound healing.*®

54 | MSCs from other sources

Dental pulp (DP) and umbilical cord blood (UCB) are alternative
sources of MSCs. DP-MSCs display similar marker characteristics and
differentiation potential to the aforementioned MSCs, in comparison
to UCB-MSCs which show higher levels of proliferation, more potent
levels of immunomodulation, and lower levels of senescence.’?
Although limited research applies these cells to the cornea, an ex vivo
study has demonstrated the capacity of DP-MSCs to enhance repair
and regeneration of human corneal epithelium, immature DP-MSCs
have shown efficacy in vivo for LSCD, causing decreased corneal
opacity and neovascularization,®* in addition to both directly and indi-
rectly inducing corneal epithelial wound healing in vitro,%>¢¢ highlight-

ing their potential as a therapeutic agent.

6 | EFFECT OF CULTURE, PASSAGE, AND
PRIMING OF MSCs

The effect of culture and passage must be balanced when considering
MSCs as a therapeutic agent. Optimally, the maintenance of MSC
phenotype and behavior is vital, however the ability to culture cells to
high passage numbers allows greater opportunity for allogeneic scale-
up. in vitro passage investigations have shown that ageing MSCs are
subject to morphological changes and reduced immunomodulatory
capacity with a significant reduction in release of trophic factors such
as VEGF,°7® |ead to the use of innovative culture techniques such as
the Quantum hollow fiber bioreactor, to culture greater number of
cells without adverse changes.®” Optimization of culture medium
should also be performed as different media have been shown to
affect the phenotype of initially identical cell populations.”®

Priming, or “licensing” of the cells, with in vitro application of
cytokines such as IFN-y has been shown to improve immunosuppres-
sive capacity and pharmaceutical utility.”? Although the mechanisms
are not fully elucidated, suggested explanations include the
upregulation of IDO, the clustering of MHC and co-inhibitory mole-
cules, and epigenetic changes.”?”® Additionally, priming the cells

¥ TRANSLATIONAL MEDICINE

through hypoxia treatment and activation of the MSC nucleotide
binding domain, as well as techniques including gene modification

existing to improve therapeutic potential.”*

7 | APPLICATION OF MSCs TO THE
OCULAR SURFACE: TOPICAL VS
ALTERNATIVE METHODS

A comparison of studies demonstrating MSC efficacy in various ocular sur-
face disease models, using different delivery mechanisms can be found in
Table 1. In contrast to developing stem cell therapies for internal organs, the
location of the ocular surface makes it an ideal candidate for the noninva-
sive topical application of stem cells. The advantages of topical application

8290 include:

of MSCs, in a similar manner to that discussed for skin healing,
the ability to deliver a concentrated population of cells to a small area, with-
out relying on cell homing mechanisms; the immediate delivery of paracrine
signaling molecules to the target area, allowing for more rapid healing; the
potential ability to remove the cells after healing if adhered to the delivery
vehicle, potentially avoiding allogeneic rejection; and the less invasive nature
of the treatment, delivered within a clinic setting rather than surgically.

Topical delivery of MSCs has potential of enhanced therapeutic
capacity, supported by in vitro studies showing increased suppression
of T-lymphocytes and corneal wound healing with direct MSC con-
tact, compared to MSC paracrine factors alone in culture medium.”*??
When applied systemically, MSCs often become entrapped in the pul-
monary circulation, and although still generate ameliorating effects on
distant organs through paracrine signalling,2® may be more efficacious
at the site of healing.

For the eye, subconjunctival injection has demonstrated success
at ameliorating disease in multiple ocular surface disorder models,
including GVHD®® and in corneal injury,?” where subconjunctival
injection was deemed more effective than systemic and topical appli-
cation. However, it is important to note that in this study, the cells
applied topically were not incorporated into a scaffold to hold them in
place and would likely have been expelled through lachrymation and
blinking. Consequently, for topical application of MSCs at the site of
injury to be efficacious, a cell carrying scaffold is required to ensure
persistence of cells placed directly into the toxic microenvironment of
an injured ocular surface.

Although, potentially overlooked, the choice of delivery sub-
strate/scaffold may have a significant impact on the eventual therapy,
with evidence demonstrating a fivefold increase of factors such as
HGF and ICAM-1 when MSCs were cultured on 3D fiber matrices
compared to 2D culture dishes, promoting faster epithelialization and

reduced scarring.”

7.1 | Potential substrates and scaffolds for topical
application of MSCs to the ocular surface

AM is often the substrate of choice for any delivery of cells to the

ocular surface, due to its long history of use within the field. AM is
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(Continued)

TABLE 1

Study

Delivery

Key findings

Animal model length

Cell passage

Procedure
2E+06 cells in PBS

mechanism

MSC source
Human UC-

MSCs lead to reduced neovascularization, corneal

4 weeks

Rabbit corneal alkali

Multiple

opacification, and VEGF and a-SMA in the cornea. They

also resulted in increased re-epithelialization and

proliferation of keratocytes

burn

MSCs

s STEM CELLS
¥ TRANSLATIONAL MEDICINE

87

MSCs administered through intravenous and

4 days

Mouse corneal

5E+05 cells in PBS

Multiple

Mouse BM-

subconjunctival injection significantly reduced

mechanical injury

MSCs

inflammation, corneal opacity, fibrosis, and restored

epithelial integrity and tissue architecture. No

significant difference observed for topical and

intraperitoneal administration

BEEKEN ET AL.

88

MSCs increased corneal transparency and increase

2 weeks

Mouse keratectomy

Unknown (after

2E+04 cells in alpha-

Multiple

Human UC-

collagen fiber organization

P4) wound

MEM (intrastromal

injection)
2E+04 cells in a fibrin gel

MSC

carrier

the translucent, inner fetal layer, lining the amniotic cavity with dem-
onstrated low immunogenic, anti-scarring, and anti-inflammatory
properties.”* For example, AM alone has the potential to induce rapid
apoptosis in adhered, inflammatory cells, including T-lymphocytes
and macrophages in corneas of herpetic stromal keratitis mouse
models.”> AM can be optimally preserved through freezing or drying
to maintain the structural and biochemical properties,”® before cells
can be seeded and the structure glued or sutured into place.?” Alter-
native, sutureless methods have been investigated, such as applica-
tion via ProKera,”® or application using bandage contact lenses
(CLs).?> AM in combination with MSCs has been shown to provide a
beneficial, additive effect, demonstrated in a chemical burn rat model
where injury was significantly improved.”” However, inter and intra
donor variation and risk of disease transmission represent a lack of
standardization.

Alternative to AM, the use of both natural and synthetic hydro-
gels may offer more consistency, easier manufacturing, and poten-
tially simpler application, as they can be manufactured as soft CLs.
Hydrogels are 3D, polymer networks, with elastic properties and
open systems for substance exchange.’®® Most research investigat-
ing stem cell-hydrogel applications are designed with the primary
intention to bioengineer an entire new epithelial layer for transplan-

tation to treat LSCD. However, Gu et al”’

incorporated MSCs with a
fibrin hydrogel for ocular surface transplantation and demonstrated
improvement of corneal injury. It is likely the therapeutic effect seen
in this study was a result of MSC immunomodulation, supported by
data demonstrating that MSCs have the capacity to secrete paracrine
signals when incorporated into a hydrogel.'°? Ke et al also found that
combination of a topical polysaccharide hydrogel and subconjunctival
injection of BM-MSCs performed additively to enhance corneal epi-
thelial cell recovery and corneal clarity in a rat model of alkali burn,®>
reinforcing the idea that the choice of substrate if as important as
the stem cell.

Synthetic hydrogel bandage CLs are currently used to protect
the corneal surface in combination with the delivery of pharmacolog-
ical or biological therapeutics.2? Most are composed of siloxane
hydrogel,2°® and hold desirable qualities, while the absence of pro-
tein reduces the risk of allogeneic rejection or disease
transmission,'%* and their shape allows self-maintenance on the cor-
nea. To avoid the undesirable effects of corneal epithelial cell attach-
ment and protein fouling when placed on the ocular surface, CL
materials rarely contain cell adhesion motifs, and consequently must
be functionalized to behave as a cell delivery device; these can be
provided by integrin binding sites from serum, 3T3 feeder layers, and
surface plasma polymerization with acid groups.1©>-1°7

Three-dimensional scaffolds produced via electrospinning have a
large surface area, with the nanofibers arranged to imitate extracellu-
lar matrix proteins. MSCs have been demonstrated to attach and pro-
liferate effectively on these scaffolds, and when applied to the
cornea aid healing and regeneration.”®1%® Further modification to
allow for the possibility of cell detachment has also been explored
with thermoresponsive, electrospun scaffolds for the culture of C-

MSCs.20%110 However, the invasive procedure of suturing the
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scaffold to the ocular surface seems unfavorable compared to non-

surgical alternatives.

8 | CONCLUSION

This review highlights important factors that must be considered
when developing topical MSC therapies for OSIDs, including stem cell
type and source; cell culture; and the choice of substrate for topical
application. There is an abundance of data demonstrating the key role
of inflammation in the pathogenesis of OSIDs, the awareness of MSC
potent immunomodulatory capacity, and the advancements in bioen-
gineering of scaffolds for application to the ocular surface. However,
there is limited research which incorporates all this information
together to treat ocular surface disorders. Although further research
is required, a topical immune-modulating, stem cell therapy for OSIDs

appears to be feasible and exciting.
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