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Abstract

A principal seeks to persuade an agent to accept an offer of uncertain value before

a deadline expires. The principal can generate information, but exerts no control over

exogenous outside information. The combined effect of the deadline and outside infor-

mation creates incentives for the principal to keep uncertainty high in the first periods so

as to persuade the agent close to the deadline. We characterize the equilibrium, compare

it to the single-player decision problem in which exogenous outside information is the

agent’s only source of information, and examine the welfare implications of our analysis.
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1 Introduction

The analysis of persuasion has lately received a lot of attention following Kamenica and

Gentzkow (2011). How is the persuasion problem affected by the possibility for the receiver

to wait in order to learn from exogenous sources?

Consider a principal who would like an agent to take a particular action. For instance, the

principal might be a lawyer aiming to make partner at a law firm. The firm’s policy requires

that she is either made partner within T years, or fired. Each year until this deadline is

reached, the firm can choose between promoting her, firing her, and delaying its final decision

in order to better evaluate her merits. Delaying the final decision gives the lawyer more time

to build a track record in court. Information generated in court is beyond the lawyer’s control

to the extent that better lawyers are able to build, on average, a better record. Yet a lawyer is

not without agency in this process: she can request from judges outcomes extremely favorable

for her customers, and by doing so test her ability to perform, or else she can aim for low-risk,

low-reward agreements with the prosecutors, and by doing so make it harder to evaluate her

ability.

We develop in this paper a simple model to analyze problems of the kind described above.

A principal (“she”) and an agent (“he”) interact over T periods. The agent has to choose

between accepting and rejecting an offer that the principal would like him to accept. Rejecting

the offer allows the agent to secure a known positive payoff. The agent’s payoff from accepting

the offer depends on the other hand on an unknown binary state of the world, such that the

agent would like to accept in one state but to reject in the other. The agent can postpone

making his final decision until period T , and waiting allows him to accumulate information.

The central novelty of our model is to allow inside as well as outside information:

• at any point in time, the principal can generate information by designing the experiments

of her choice (inside information);

• in addition, exogenous signals over which the principal exerts no control are observed

over time (outside information).

Both players discount time, neither can commit to future decisions, and all information is

symmetric.

Although in this kind of environment waiting is socially wasteful, we show that the agent

sometimes waits T periods before making his final decision.1 The basic tension is as fol-

1We show that waiting is socially wasteful even if the agent’s payoff from a type II error is negative.
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lows. Each period t, information that the agent expects to obtain –from future signals and

experiments– determines a cutoff belief above which the agent chooses to accept; we call it

the agent’s period-t threshold of acceptance.2 The closer the deadline the smaller the amount

of useful information the agent expects to obtain in the future. Hence, the threshold of accep-

tance decreases over time. This in turn creates incentives for the principal to keep uncertainty

high in the first periods with a view to persuading the agent closer to the deadline.3 We

call this mechanism the deadline effect. Yet, in order to try persuading the agent close to

the deadline the principal must let the agent observe exogenous signals. The caveat is that

favorable signal realizations could lead the belief to “overshoot” the agent’s period-1 threshold

of acceptance. The greater the overshooting the fewer mistakes the principal can induce the

agent to make in periods ahead, thus incentivizing the principal to try persuading the agent

in the first period. We call this mechanism the overshooting effect. Which one of the deadline

and overshooting effects dominates the other pins down the principal’s choice of experiment

in the first period and, via this choice, whether the agent sometimes waits before making his

final decision.

We examine two types of signals: “perfect good news” and “perfect bad news”. Under

perfect good news (respectively, bad news) the state in which accepting the offer is optimal

(resp. suboptimal) for the agent is perfectly revealed with positive probability each period.

With perfect good news, or if the deadline is sufficiently far into the future, the overshooting

effect is the dominant force. The principal then generates a sufficient amount of information

in the first period to induce the agent to make an immediate final decision. However, under

perfect bad news, if signal accuracy is intermediate and the deadline is not too far into the

future, the deadline effect then becomes the dominant force. In this case the agent might wait

up to T periods before making his final decision.

Welfare hinges on the equilibrium strategy of the principal. In one regime, the principal

generates information so as to induce the agent to act in the first period; we say in this case

that the principal is aggressive. In the other regime, the principal generates less information,

and in the first periods seeks to sustain uncertainty so as to persuade the agent closer to the

deadline; we say in this case that the principal is conservative. Pareto efficiency obtains if

and only if the principal is aggressive. Furthermore, as long as no regime switch occurs, the

2The “belief” refers to the probability attached to the state in which accepting the offer is optimal for the
agent.

3The lower the threshold of acceptance, the more errors of type II the principal can induce the agent to
make.
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agent’s equilibrium expected payoff as well as the quality of the final decision are monotonically

increasing in the amount of exogenous outside information, be it in the form of more accurate

outside information, or a deadline further away in time (allowing the agent to observe more

exogenous signals). However, any regime switch from aggressive to conservative causes the

agent’s welfare and the quality of the final decision to drop, and vice versa.

Our analysis reveals a rich interplay between inside information and exogenous outside

information, that contrasts sharply with settings in which exogenous outside information is

the agent’s only source of information (as in Wald (1947), for example). For instance, in our

setting, extending the deadline can accelerate the agent’s final decision. The reason is that

pushing the deadline further away in time increases the amount of information generated by

the principal.

The rest of the paper is organized as follows. The related literature is discussed below. The

model is presented in Section 2. The core of the analysis is in Section 3. Several extensions

of the model are examined in Section 4. Section 5 concludes.

Related Literature. We contribute to the literature on Bayesian persuasion by introducing

outside information in the canonical framework of Kamenica and Gentzkow (2011), that is, by

relaxing the assumption that the sender (or principal) fully controls the flow of information

to the receiver (or agent). This approach connects our work to two active strands of research.

A first strand of research examines the case in which multiple senders compete to persuade

the agent. This includes Gentzkow and Kamenica (2016), Li and Norman (2018) and Board

and Lu (2018). The models and applications are different from ours: we study situations in

which a single principal designs multiple experiments over time whereas these papers examine

situations in which multiple principals design one experiment each.

The second strand of research focuses like we do on the dynamic persuasion of an agent, and

begins with Au (2015) and Honryo (2018). The contemporaneous work of Orlov, Skrzypacz

and Zryumov (2020) is the study most related to ours. In their model, an evolving state affects

the principal’s and the agent’s payoff from exercising an option. This process is exogenous, and

creates an incentive for the agent to wait. However, the payoffs also depend on a second state.

The principal controls the flow of information concerning the second state, but the evolution

of the first state is publicly observable. The environment is stationary; in particular, there

is no deadline by which the agent must act. In our model, in the absence of a deadline, the

agent’s threshold of acceptance is the same in all periods. This means, in turn, that the

principal generates information inducing the agent to make a final decision in the first period.
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In equilibrium, the agent therefore never waits. In Orlov et al. (2020), by contrast, waiting

can be socially optimal, since the principal is unable to generate information about one of the

two states. The key tradeoffs in the two papers are thus different. While several other papers

examine the dynamic persuasion of an agent, including Henry and Ottaviani (2019), Che,

Kim and Mierendorff (2020), Ely and Szydlowski (2020), Smolin (2020), and Zhao, Renou

and Tomala (2020), the focus in all of them is different from ours since in these models the

principal fully controls the flow of information.

A few additional papers are related to specific aspects of our work. Our finding that the

agent’s equilibrium expected payoff is a non-monotonic function of signal accuracy is linked

in spirit to a related result in Kolotilin (2018). Gratton, Holden and Kolotilin (2017) examine

the problem of a principal deciding when to start a public flow of information about her

type and is one of very few papers which, like us, analyze the role of deadlines in contexts of

persuasion. The decision problem of the agent naturally links our analysis to the literature on

experimentation starting with Rothschild (1974), Bolton and Harris (1999), and Keller, Rady

and Cripps (2005). However, whereas we study the interplay of inside and outside information,

there is no inside information in that literature.

2 Model

A principal (“she”) and an agent (“he”) interact over T ≥2 periods. We refer to the final period

as the deadline of our game. The agent has to choose between accepting and rejecting an offer

that the principal would like him to accept. By rejecting, the agent secures a (undiscounted)

payoff VR>0; accepting yields him Vω, where ω∈{G,B} represents an unknown state of the

world. To make the model interesting, VG>VR>VB. In order to learn about the realized

state, the agent can postpone making his final decision (accept or reject) until t=T . Both

outside and inside information is observed over time: the former is exogenous whereas the

latter is strategically generated by the principal. All information being public, the players

share common beliefs about the state. The (evolving) probability assigned to ω=G will be

referred to as the belief. The payoff of the principal is 0 in case of rejection, and is normalized

to 1 in case of acceptance. Both players discount time at rate δ∈ (0, 1).4

4Section 4.2 examines the case in which players discount time differently.
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Principal
designs an
experiment

p1

Agent chooses
between accept,
reject and wait

q1

Signal s1

is observed
Principal
designs an
experiment

pT

Agent chooses
between accept

and reject

qT

Figure 1

Timing. The state of the world is drawn by nature according to P(ω=G) =p1. We suppose

for expository purposes that the agent initially leans towards rejection, that is, p1∈ (0, b),

where b := VR−VB
VG−VB

denotes the belief at which the agent is indifferent between accepting and

rejecting. The principal designs an experiment inducing the end-of-period-1 belief q1. The

agent then chooses between accept, reject and wait. If the agent makes a final decision, payoffs

are realized; if the agent waits, the exogenous signal s1 is observed, inducing the beginning-

of-period-2 belief p2. This sequence repeats until the agent makes a final decision, with the

caveat that, at t=T , the agent has to make a final decision. Figure 1 summarizes the timeline;

the broken arrow between the second and third node indicates that the game may terminate

at the second node.

Inside Information. The principal’s experiment in period t is a probability distribution

τt∈∆([0, 1]) governing the end-of-period-t belief qt; the only constraint imposed on each ex-

periment is Bayes plausibility: Eτt [qt] =pt. The support Mt of τt therefore uniquely determines

this experiment as long as |Mt|≤2. It will be convenient, whenever possible, to use Mt in

order to represent τt.

Outside Information. The signal in period t, denoted st, is drawn from the conditional

probability distribution π(· |ω) over {g, b}. The signal-generating process is assumed i.i.d.

across time periods. As is common in the literature on strategic experimentation,5 we focus for

tractability on conclusive signal-generating processes. Under perfect bad news, π(b |B) =γ and

π(g |G) = 1. In this case st= b informs players that ω=B, whereas the belief drifts upwards as

long as st=g. By contrast, under perfect good news, π(b |B) = 1 and π(g |G) =γ. The signal

realization g then informs players that ω=G, whereas the belief drifts downwards as long as

st= b. The parameter γ∈ [0, 1] capturing the informativeness of the signal-generating process

will be referred to as the signal accuracy.

5See for instance Keller and Rady (2015), Bonatti and Hörner (2017), or Frick and Ishii (2018).
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Strategies and Equilibrium. A t-history consists of experiments, end-of-period beliefs

and signal realizations for the first t−1 periods, that is {τk, qk, sk}t−1
k=1; an augmented t-history

contains in addition the experiment τt and the belief qt. A strategy for the principal maps

each t-history to an experiment τt. A strategy for the agent maps each augmented t-history

to a decision in {accept, reject,wait} for t<T , and to a decision in {accept, reject} for t=T .

The equilibrium concept is Perfect Bayesian Equilibrium (PBE): the player at each decision

node maximizes her/his expected payoff conditional on (a) the other player’s strategy and (b)

the belief obtained using Bayes’ rule.

3 Analysis

Subsection 3.1 characterizes the equilibrium of our game. A general discussion of the main

theorem is provided in Subsection 3.2, and a sketch of its proof is presented in Subsection 3.3.

All omitted proofs of this section are in Appendices A, B and C.

3.1 Main Result

As usual in models of Bayesian persuasion, equilibrium multiplicity arises from the fact that,

for a subset of beliefs, several experiments ultimately induce identical outcomes. We thus fo-

cus throughout the paper on PBE such that: (i) whenever the principal is indifferent between

experiments ordered according to Blackwell’s criterion, she chooses the least informative ex-

periment; (ii) whenever indifferent, the agent makes the decision preferred by the principal.

These refinements simplify the exposition, but are inessential for our results. The first deals

with the kind of multiplicity mentioned above;6 the second rules out inconsequential multi-

plicity off the equilibrium path.7 Henceforth, PBE satisfying (i) and (ii) will be referred to as

equilibria for short.

Proposition 1. There exists a unique equilibrium.

6For instance, imagine that in a given period the agent accepts for qt in an interval [x, y]. Then, for
pt∈ (x, y), the principal is indifferent between designing the uninformative experiment or Mt={x, y}. In this
case, we assume that the principal chooses the uninformative experiment.

7For instance, imagine that, in a given period, at qt=x the agent is indifferent between rejecting and
waiting, but that irrespective of whether the agent does one or the other, any period-t experiment with x in
its support is strictly dominated for the principal by some other experiment. Then what the agent does at
qt=x is inconsequential, as qt=x never occurs on the equilibrium path. In this case, we assume that the
agent waits at qt=x.
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We henceforth refer to the threshold b at which the agent is indifferent between accepting

and rejecting as the static threshold of acceptance. Note that b is independent of the signal-

generating process. At t=T , the agent accepts if qT ≥ b and rejects otherwise. At t<T

however, information which the agent expects to obtain in periods ahead (from the experiments

and from the signals) determines an interval of beliefs at which the agent chooses to wait.

Lemma 1. Each period, cutoffs 0<at≤ bt<1 exist such that, in equilibrium the agent rejects

if qt<at, waits if qt∈ [at, bt), and accepts if qt≥ bt.

We henceforth refer to the cutoff bt as the agent’s period-t threshold of acceptance. As

information which the agent expects to obtain can only increase his incentive to wait, bt≥ b
regardless of the period t. One shows more generally that the agent’s threshold of acceptance

decreases with t.

Lemma 2. The agent’s period-t threshold of acceptance bt decreases with t.

We turn next to the principal. Each period the principal can either try to persuade the

agent immediately or aim to keep uncertainty high (i.e. aim for qt∈ [at, bt)) so as to try

persuading the agent in a future period. The optimal choice of the principal is illustrated

in Figure 2. In both panels the gray solid curve represents the principal’s equilibrium con-

tinuation payoffs given the end-of-period-t belief qt.
8 The black dashed curve depicts the

concavification of the former curve (Aumann, Maschler and Stearns, 1995), and represents

the principal’s equilibrium continuation payoffs given the beginning-of-period-t belief pt. The

case in which the principal optimally tries to persuade the agent in period t is depicted in

Panel I. In this case,

Mt=

{
{0, bt} if pt∈ (0, bt);

{pt} otherwise,

and we say that the principal is aggressive in period t. The case in which the principal

optimally keeps uncertainty high so as to try persuading the agent in a future period is

depicted in Panel II. In this case at<bt and

Mt=


{0, at} if pt∈ (0, at);

{at, bt} if pt∈ (at, bt);

{pt} otherwise.

8If qt≥ bt (respectively qt<at) the agent accepts (resp. rejects), yielding payoff 1 (resp. 0) to the principal;
if qt∈ [at, bt) the agent waits, yielding a payoff in (0, 1) determined by the continuation strategies.
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0 1

1

btat

(I) Aggresive

0 1

1

btat

(II) Conservative

Figure 2: Principal’s Persuasion Strategy

We then say that the principal is conservative in period t. The experiments described in the

previous paragraph are the only experiments ever designed by the principal in equilibrium.

Lemma 3. Each period, in equilibrium, either the principal is aggressive, or the principal is

conservative.

The following theorem is the central result of our analysis.

Theorem 1. In equilibrium, with perfect good news the principal is aggressive at t= 1. How-

ever, with perfect bad news the principal is aggressive at t= 1 if and only if T is strictly greater

than some threshold T̃ (γ, δ). The set of parameters γ and δ such that, for T sufficiently small,

the principal is conservative at t= 1 (i.e. such that T̃ (γ, δ)≥2) is given by

• δ>δ, where δ∈ (0, 1),

• and γ∈
(
γ(δ), γ(δ)

)
, where 0<γ(δ)<γ(δ)<1.

The perfect bad news case is illustrated in Figure 3.9 For example, each parameter pair

(δ, γ) that belongs to the vertically dashed region of the figure is such that in equilibrium the

principal is conservative at t= 1 if either T = 2 or T = 3, whereas the principal is aggressive

whenever T ≥4. The rest of this section is organized as follows. We discuss below the key

9The figure is drawn for VG= 2, VR= 1 and VB = 0. The code is available on the authors’ website.
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0

1

A

B

C

δ

γ

T̃ (γ, δ) = 2

T̃ (γ, δ) = 3

T̃ (γ, δ)≥4

Figure 3: The Perfect Bad News Case

tension at the heart of our model and how this tension explains Theorem 1. In Subsection 3.2,

we link Theorem 1 to the welfare properties of the equilibrium. We also examine the impact

of information supplied by the principal’s experiments, by contrasting our model and results

with the benchmark setting in which exogenous outside information is the agent’s only source

of information. A sketch of the Proof of Theorem 1 is provided in the final subsection.

Information which the agent expects to obtain determines each period the agent’s threshold

of acceptance bt. The lower bt, the more mistakes the principal can induce the agent to make.

Thus, if b1>bT , the principal is incentivized to maintain enough uncertainty in the first periods

in order to try persuading the agent at t=T . We refer to this as the deadline effect. The caveat

is the following: to persuade the agent in period T , the principal must let the agent observe

T −1 exogenous signals. However, if g signal realizations are sufficiently conclusive, letting the

agent observe T −1 exogenous signals may lead the belief to “overshoot” the agent’s period-1

threshold of acceptance, as illustrated in Figure 4.10 We refer to this as the overshooting effect.

The greater the overshooting the fewer (future) mistakes the principal can induce the agent to

make. For the principal, the overshooting effect thus creates countervailing incentives relative

to the deadline effect.

10In Panel I, to prevent the overshooting, the principal must generate information inducing the agent to
accept in the first period with positive probability. In Panel II, the principal has more freedom, but to avert
overshooting the principal must generate information inducing the agent to accept with positive probability
before t=T .
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Which effect dominates the other pins down the principal’s choice of experiment at t= 1.11

Roughly, with perfect good news the overshooting effect dominates the deadline effect because

s1 =g then induces p2 = 1.12 By contrast, with perfect bad news, the deadline effect can

dominate the overshooting effect (provided γ and T are sufficiently small, so as to avoid the

scenarios illustrated in, respectively, panel I and panel II of Figure 4). To see that neither γ

nor δ can be too small for this mechanism to work, observe that γ≈0 and δ≈0 both imply

b1≈ b= bT , in which case the deadline effect becomes vanishingly small: for small γ, this is

because the agent does not expect to obtain much information by waiting; for small δ, this is

because the agent does not value future information much.

q1 b1

(I)

0 1 q1 b10 1

(II)

s1 =g s2 =g s3 =g

Figure 4: The overshooting effect

3.2 Discussion

Pareto efficiency. When is the equilibrium Pareto efficient, and when is it not? In our

model, Pareto efficiency obtains if and only if the agent (a) accepts with probability 1 condi-

tional on state G and (b) makes his final decision at t= 1 with probability 1.13 By Lemmata

1 and 3, condition (a) is always satisfied in equilibrium.14 The key question then is whether

in equilibrium the agent’s final decision occurs at t= 1 with probability 1. Notice that if in

equilibrium the principal is aggressive at t= 1 then M1 ={0, b1}, and so (b) holds in this case

(by Lemma 1). On the other hand, if at t= 1 the principal is conservative in equilibrium then

a1<b1 and either M1 ={0, a1} or M1 ={a1, b1}. Either way, q1 =a1 with positive probability,

11To be sure, the principal’s time discounting provides her with an additional incentive to try persuading the
agent immediately. However, the overshooting effect alone can provide sufficient incentives for the principal
to be aggressive at t= 1.

12Moreover, we show in Appendix B, Proposition B.1, that the deadline effect is weaker in the perfect good
news case than in the perfect bad news case, in the sense that the difference b1−bT is smaller in the former
case than in the latter.

13See Proposition C.1 in Appendix C.
14Lemma 1 ensures that in equilibrium the agent rejects in period t if and only if qt∈ [0, at). Lemma 3

ensures that in equilibrium qt /∈ (0, at). Thus if the agent rejects in period t, it must be the case that qt= 0.
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and so in this case (b) does not hold. We conclude from Lemma 3 and the previous remarks

that, in equilibrium, Pareto efficiency obtains if and only if the principal is aggressive at

t= 1. Theorem 1 thus pins down the conditions under which the equilibrium satisfies Pareto

efficiency.

Comparison with the single-player setting. Our main theorem also offers interesting

contrasts with the corresponding single-player setting in which exogenous signals are the

agent’s only source of information (as in Wald (1947)). First, in the single-player setting, if

the agent waits given a certain amount of outside information then the agent also waits for all

greater amounts of outside information (greater T , greater γ, or both). In our model on the

other hand, pushing the deadline further away in time can increase the amount of information

generated by the principal, and thereby cause the agent to make his final decision earlier on.

By the same token, increasing γ may accelerate the agent’s final decision with probability 1.

For example, at point A in Figure 3, in equilibrium the agent sometimes waits if T = 2, but

never waits if T = 3; similarly, if T = 2, the agent sometimes waits at point A but never waits

at point B, albeit γB>γA (and δB = δA).

Second, whereas in the single-player setting increasing the amount of outside information

always improves the expected quality of the agent’s final decision and raises the agent’s ex-

pected payoff, in our model increasing γ may increase the probability of type II errors made

and lower the agent’s expected payoff.15 The reason is as follows. By switching from aggres-

sive to conservative, the principal causes delay in the agent’s decision to accept. Since the

principal discounts time, she must then be compensated by a higher probability of accep-

tance. But we earlier pointed out that in equilibrium the agent accepts with probability 1

conditional on state G. So the higher probability of acceptance must be coming from state B.

In consequence, any change of parameters leading the principal to switch from aggressive to

conservative can induce a higher probability of type II errors and a reduction of the agent’s

expected payoff. In Figure 3 for example, in equilibrium the expected quality of the agent’s

final decision and the agent’s expected payoff are higher at point C than at point A, though

γA>γC (and δA= δC).

15See Propositions C.2 and C.3 in Appendix C.
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3.3 Sketch of the Proof of Theorem 1

We present here the main steps of the proof of Theorem 1. Readers uninterested in the

technical details may skip this subsection.

In equilibrium the principal ensures that the agent makes no type I error. However, the

principal would like to maximize the number of type II errors. The first part of Theorem 1 is

founded upon the observation that with perfect good news, in equilibrium, making the agent

wait induces him to base his final decision on more information (in Blackwell’s sense) than if

the principal were aggressive and optimally triggered the agent’s final decision at t= 1. The

principal therefore chooses to be aggressive in the first period.

Lemma 4. With perfect good news, in equilibrium the principal is aggressive at t= 1.

Proof: Consider a period t′<T such that, in equilibrium, the principal is aggressive in period

t′+1. Notice that the latter requirement is satisfied if t′=T −1. Observe as well that given

q′t= b′t, the belief pt′+1 induced by st′ = b has to be strictly smaller than bt′+1; if this were not the

case then, by Lemma 1, at qt′ = bt′ the agent would prefer accepting to waiting, contradicting

the definition of bt′ . Straightforward algebra then establishes

bt′<
bt′+1

1−γ (1−bt′+1)
. (1)

Next, we claim that for all z∈ [at′ , bt′), in equilibrium, given pt′ = z the principal is strictly

better off designing the experiment Mt′ ={0, bt′} than the uninformative experiment. This in

turn will imply that, in equilibrium, the principal is aggressive in period t′ and, by induction,

also at t= 1.

We now prove the previous claim. Let X denote the random variable representing the

belief at which the agent makes his final decision given pt′ = z and the equilibrium strategies

in the continuation game, assuming that the principal designs the experiment Mt′ ={0, bt′}.
Let Y denote the corresponding random variable assuming that the principal designs the

uninformative experiment. One shows, using (1), that Y is a mean-preserving spread of X.16

Let φ denote the piecewise linear function with a kink at min{bt′ , bt′+1} such that φ(0) = 0

and φ
(

min{bt′ , bt′+1}
)

=φ(1) = 1. Given the equilibrium strategies in the continuation game,

the principal’s expected payoff from designing the experiment Mt′ ={0, bt′} can be written as

16Since supp(X) ={0, bt′} and supp(Y ) ={0, bt′+1, 1} we only need to show that P(X= 0)<P(Y = 0). This

inequality can be written 1− z
bt′
< [(1−z)+z(1−γ)]

[
1− 1

bt′+1
. z(1−γ)
(1−z)+z(1−γ)

]
, which is equivalent to (1).
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E[φ(X)]. On the other hand, as δ<1, her expected payoff from designing the uninformative

experiment is bounded from above by E[φ(Y )]. Since φ is concave, E[φ(Y )]≤E[φ(X)]. This

concludes the proof of the claim which, in turn, by the arguments laid out in the second

paragraph, concludes the proof of the theorem. �

Lemma 4 establishes the first part of Theorem 1. In the rest of this subsection, the

focus is on the perfect bad news case. We start by showing that information generated by

the principal is such that, at qt= bt, any benefit accruing to the agent from waiting must

come from information generated by the following period’s exogenous signal.17 Therefore, the

agent’s standard of acceptance is the same at all t<T . This, in turn, implies (by Lemma 2)

that either the agent’s threshold of acceptance equals the static threshold of acceptance in all

periods, or the agent exhibits two thresholds of acceptance: a high threshold of acceptance

prior to the deadline, which then drops to the static threshold of acceptance at t=T .

Lemma 5. With perfect bad news, either at= bt= b in every period, or for all t<T : bt=

bT−1>bT = b.

Lemma 5 shows that the agent’s threshold of acceptance is the same at all t<T . Then,

suppose that in some period t<T −1 the principal knows that she will try to persuade the

agent in period t+1 (i.e. she will be aggressive in period t+1). Since next period’s threshold

of acceptance is the same as this period’s threshold of acceptance, in equilibrium the principal

has to try persuading the agent this period. We therefore obtain the following result.

Lemma 6. Let t<T −1. With perfect bad news, in equilibrium if the principal is aggressive

in period t+1, then the principal is also aggressive in period t.

We infer from Lemma 6 that if in a game of given length, in equilibrium the principal is

aggressive in period 1, then the same must be true in all longer games. Building on Lemma

5 enables us to show in addition that, for sufficiently long games, the principal has to be

aggressive in period 1. We thus obtain the following result.

Lemma 7. There exists T̃ (γ, δ)<∞ such that, in equilibrium, the principal is aggressive in

period 1 if and only if T >T̃ (γ, δ).

We next record the conditions under which, in equilibrium, the principal is aggressive in

period T −1.18

17The qualification “at qt= bt” is essential here. At more pessimistic beliefs, the agent usually strictly
benefits from information generated by the principal’s experiments and signals two or more periods ahead.

18Note that, by Lemma 4, T̃ (γ, δ) = 1 in the perfect good news case.
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Lemma 8. There exist a cutoff δ∈ (0, 1) and, for δ>δ, functions 0<γ(δ)<γ(δ)<1 such

that, with perfect bad news, in equilibrium the principal is conservative in period T −1 if and

only if δ>δ and γ∈ (γ(δ), γ(δ)).

Lemmata 7 and 8 together yield the second half of Theorem 1.

4 Extensions

4.1 Frequent Signals

Our framework is founded upon the assumption that exogenous signals are observed at discrete

points in time. This assumption is not without loss of generality. In our setting, to observe

any signal the agent must incur the cost of waiting a discrete amount of time. This, in turn,

assures that the agent’s threshold of acceptance is always strictly below 1 (no matter the

signal accuracy). To take advantage of this wedge, for γ close to 1, the principal chooses to

be aggressive, thereby inducing the agent to make his final decision in the first period.

In our discrete time setting, a natural question is to inquire about the impact of the

frequency at which exogenous outside information is observed. In this subsection we recast

our model by letting ∆n= 1
2n−1 capture the period length, and refer to n∈N∗ as the signal

frequency; Tn will denote the total number of periods until the deadline. The game length (in

units of time) is thus L :=Tn∆n. The signal-generating process is such that π(b|B) = 1−e−λ∆n ,

where λ≥0, and π(g|G) = 1 (we focus on the perfect bad news case; it is easy to show that

with perfect good news the principal is aggressive at t= 1 regardless of the signal frequency).

The per-period discount factor is e−r∆n , where r>0.

Keeping n fixed, the baseline model (Section 2) is obtained by setting γn= 1−e−λ∆n , and

δn= e−r∆n . Relabelling appropriately, the analysis in Section 3 shows that, irrespective of

the signal frequency n, in equilibrium: the agent’s final decision is made in period 1 with

probability 1 if and only if one of the following conditions holds: the game is sufficiently

long (Ln>L̃n), signals are sufficiently inaccurate (λn<λn), signals are sufficiently accurate

(λn>λn), players are sufficiently impatient (rn>rn).

However, a question arises regarding the model’s behavior in the limit as n tends to infinity,

since both γn and δn then tend to 0. The first effect pushes the principal to be aggressive

at t= 1 (Theorem 1), while the second effect pushes the principal to be conservative (Lemma
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C.3).19 The question then is whether the dichotomy between aggressive and conservative

regimes that our analysis uncovered continues to exist at very high frequency: namely, if

limn→∞ L̃n= 0 (respectively, limn→∞ L̃n=∞) then at very high frequency the principal is

aggressive (respectively, conservative) at t= 1 irrespective of the game length.

We show in the next proposition (proved in Online Appendix 1) that, provided the signals

are sufficiently informative, the aforementioned dichotomy continues to exist at very high

frequency. A sufficient condition is λ>ϕ(r), where

ϕ(r) := ln

(
e−r(VG−VR)(VR−VB)

e−r[VR(2VB−VR)−VGVB]−VR(VG−VB)

)
.

This condition is equivalent to requiring sufficiently informative signals for the agent to prefer

waiting at low signal frequency (n= 1) when p1 = b.

Proposition 2. With perfect good news, the agent’s final decision is made in period 1 with

probability 1. Suppose λ>ϕ(r). Then, there exist N and 0<L̃<L†≤∞ such that, with perfect

bad news, for all n>N :

(i) the agent’s final decision is made in period 1 with probability 1 if L>L†;

(ii) the agent’s final decision is made in period 1 with probability strictly less than 1 if L<L̃.

4.2 Different Discount Factors

Here we let the discount rates of the two players differ. We denote the agent’s discount rate

δA∈ (0, 1), and the principal’s discount rate δP ∈ (0, 1). Our baseline model corresponds to

δP = δA. The findings listed in Theorem 1 hold qualitatively unchanged with different discount

factors, as recorded in the following proposition.

Proposition 3. In equilibrium, with perfect good news the principal is aggressive at t= 1.

However, with perfect bad news the principal is aggressive at t= 1 if and only if T is strictly

greater than some threshold T̃ (γ, δA, δP )≥1. In particular, the principal is conservative for

some T (that is, T̃ (γ, δA, δP )≥2) if and only if:

• signal accuracy is intermediate, that is, γ∈
(
γ(δA, δP ), γ(δA, δP )

)
,

• at least one player is sufficiently impatient, that is, δA<δA, or δP <δP (δA),

19Keeping L fixed, increasing n also increases Tn of course.
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where δA∈ (0, 1), δP (δA)∈ (0, 1] and 0<γ(δA, δP )<γ(δA, δP )<1 for δA>δA and δP >δP (δA).

The proof is in Online Appendix 2. In our baseline model, whenever players are sufficiently

impatient the principal is aggressive at t= 1. Proposition 3 shows that for this result to hold,

it is enough that one of the players be sufficiently impatient. If the principal is sufficiently

impatient then she is aggressive regardless of the period-1 threshold of acceptance b1. If

instead the agent is sufficiently impatient, then he does not wait, regardless of the information

generated by the principal’s experiment at t= 1 (a1 = b1). This, in turn, results in the principal

being aggressive at t= 1.

4.3 Costly Experiments

In this section we extend the baseline model by assuming that the principal incurs a cost

C>0 for each new experiment. With costly experiments, the principal’s payoff (expressed in

period-1 units) from acceptance in period t can be written as

δt−1−
t∑

k=1

δk−1C= δt−1

(
1+

Cδ

1−δ

)
− C

1−δ
.

Similarly, the principal’s payoff from rejection in period t becomes

δt−1

(
Cδ

1−δ

)
− C

1−δ
.

The game with costly experiments may thus be viewed as a modified version of the baseline

model in which the principal’s (undiscounted) payoff is UR := Cδ
1−δ in case of rejection and

UA := 1+UR in case of acceptance. Intuitively, costly experiments add an extra incentive for

the principal to generate information provoking the agent’s final decision early on, since the

principal now prefers early rejection over late rejection (UR>0). One shows that Theorem 1

holds unchanged, except perhaps for the exact values of the cutoffs in the statement of the

theorem.20

20The analysis follows the same steps as in the baseline model. The reader is referred to an earlier version
of our paper for the details of this analysis (Bizzotto, Rüdiger and Vigier (2018)).
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5 Concluding Remarks

We develop a model of a principal seeking to persuade an agent to accept an offer before

a deadline. Whether accepting the offer is optimal for the agent depends on an unknown

state of the world. The agent can wait in order to accumulate information. That information

might come from the principal (inside information), and/or exogenous signals over which the

principal exerts no control (outside information). The combination of this outside information

and the deadline by which the agent needs to act yields a non-stationary environment in which

the agent’s threshold of acceptance evolves over time, providing in turn incentives for the

principal to keep uncertainty high in the first periods so as to persuade the agent close to the

deadline.21 We characterize the conditions under which in equilibrium the agent makes his

final decision in the first period, those in which the agent sometimes waits until the deadline,

link these results to the welfare properties of the model, and contrast our analysis with the

setting in which exogenous outside information is the agent’s only source of information.

21Without a deadline, the principal always generates information inducing the agent to make his final
decision in the first period. The same observation applies in the absence of outside information.
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Appendix A: Proof of Proposition 1

In this appendix we prove equilibrium existence and uniqueness (Proposition 1). We start

with a very general result that will be used repeatedly in this and the next appendices.

Proposition A.1. Let t<T . If φ : [0, 1]→R is convex (respectively concave) then, irrespective

of the signal-generating process, Est [φ(pt+1)|qt] is convex (resp. concave) in qt.

Proof of Proposition A.1: Consider an arbitrary signal-generating process, with realiza-

tions in S={si}Ki=1. Let γGi :=P(st= si|ω=G), γBi :=P(st= si|ω=B), and pi(q) := qγGi

qγGi+(1−q)γBi
.

To shorten notation, in what follows we use pi to refer to pi(qt).

We have, with this notation,

Est [φ(pt+1)|qt] =
K∑
i=1

P(st= si|qt)φ(pi).

Thus
dEst [φ(pt+1)|qt]

dqt
=

K∑
i=1

(
dP(st= si|qt)

dqt
φ(pi)+P(st= si|qt)

dφ(pi)

dpi
dpi

dqt

)
,

while

d2Est [φ(pt+1)|qt]
dq2

t

=
K∑
i=1

(
d2P(st= si|qt)

dq2
t

φ(pi)+

(
2
dP(st= si|qt)

dqt

dpi

dqt
+P(st= si|qt)

d2pi

dq2
t

)
dφ(pi)

dpi
+

+P(st= si|qt)
d2φ(pi)

d(pi)2

(
dpi

dqt

)2
)
. (2)

Notice that: (i) P(st= si|qt) = qtγGi+(1−qt)γBi, thus d2P(st=si|qt)
dq2t

= 0; moreover, (ii) dpi

dqt
=

γGiγBi

(P(st=si|qt))2 and d2pi

dq2t
=−2 γGiγBi

(P(st=si|qt))3
dP(st=si|qt)

dqt
, implying 2dP(st=si|qt)

dqt

dpi

dqt
+P(st= si|qt)d

2pi

dq2t
= 0.

In light of (i) and (ii), (2) reduces to

d2Est [φ(pt+1)|qt]
dq2

t

=
K∑
i=1

(
P(st= si|qt)

d2φ(pi)

d(pi)2

(
dpi

dqt

)2
)
.

As P(st= si|qt)
(
dpit
dqt

)2

≥0, if φ is convex (respectively concave) then Est [φ(pt+1)|qt] is convex

(resp. concave) as well. �
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The continuation game starting in period T with beginning-of-period-T belief pT is identi-

cal to the static Bayesian persuasion game of Kamenica and Gentzkow (2011). We summarize

some of their main results in the following lemma.

Lemma A.1. In equilibrium, at t=T , the agent accepts if qT ≥ b and rejects otherwise. The

principal designs the experiment

MT =

{
{0, b} if pT ∈ (0, b);

{pT} otherwise.

The agent does not benefit from the period-T experiment, hence his equilibrium continuation

payoff is convex in pT .22

Lemma A.2. Let t<T . Suppose that functions ĝt+1(pt+1) and f̂t+1(pt+1) uniquely determine

the agent’s (resp. the principal’s) equilibrium continuation payoffs in period t+1. If ĝt+1 is

convex, then:

1. in equilibrium, the principal’s period-t experiment and the agent’s period-t decision are

both uniquely determined; the former is a function of pt only and the latter is a function

of qt only;

2. functions ĝt(pt) and f̂t(pt) uniquely determine the equilibrium continuation payoffs in

period t, and ĝt is convex.

Proof: Define

g̃t(qt) :=Est [ĝt+1(pt+1)|qt] , (3)

and

f̃t(qt) :=Est [f̂t+1(pt+1) | qt]. (4)

Then the agent’s equilibrium continuation payoff given qt can be written as

gt(qt) = max
{
VR, δg̃t(qt), VB +qt(VG−VB)

}
. (5)

22The equilibrium period-T experiment generates information that has no value for the agent, since rejecting
is an optimal choice for qT = 0 as well as for qT = b. The agent’s equilibrium continuation payoffs at the
beginning of period T are thus given by the convex function ĝT (pT ) = max{VR, VB+pT (VG−VB)}.
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As ĝt+1 is convex by assumption, Proposition A.1 shows that g̃t is convex as well. Moreover,{
δg̃t(0) = δVR<VR;

δg̃t(1) = δVG<VG.
(6)

Then (5), (6) and convexity of g̃t give unique at and bt, with at≤ b≤ bt, such that
gt(qt) =VR>max

{
δg̃t(qt), VB +qt(VG−VB)

}
if qt<at;

gt(qt) = δg̃t(qt)>max
{
VR, VB +qt(VG−VB)

}
if qt∈ (at, bt);

gt(qt) =VB +qt(VG−VB)>max
{
VR, δg̃t(qt)

}
if qt>bt.

Hence, in equilibrium, the agent rejects if qt<at, waits if qt∈ (at, bt), and accepts if qt>bt.

Moreover, since in equilibrium whenever indifferent the agent makes the decision preferred by

the principal, the agent waits if qt=at<bt and accepts if qt= bt. Hence:

ft(qt) =


0 if qt<at;

δf̃t(qt) if qt∈ [at, bt);

1 if qt≥ bt.

(7)

Standard arguments yield

f̂t= cavft. (8)

Furthermore, since in equilibrium whenever indifferent the principal picks the least informative

experiment, the principal’s experiment in period t is uniquely determined by the belief pt at

the beginning of period t. Lastly, letting τt(pt) denote the principal’s equilibrium experiment

given pt yields ĝt(pt) =Eτt(pt)[gt(qt)|pt].
Finally, since g̃t is convex, (5) shows that gt is as well which, in turn, implies

ĝt(pt) =Eτt(pt)[gt(qt)|pt]. (9)

The properties of τt(·) implied by (8) finish to establish that ĝt is convex, since ĝt is given by

(9) and gt is convex. �

Proof of Proposition 1: The proposition follows from Lemmata A.1 and A.2. �
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Appendix B: Proof of Theorem 1

In this appendix we prove the steps leading to Theorem 1, including all lemmas of Section

3 except for Lemma 4, whose proof was kept in the text. The order in which we prove the

results is as follows: Lemma 1, 5, 6, 7, 2, 3 and 8.

Proof of Lemma 1: For t=T , the result follows from Lemma A.1. For t<T , the result was

shown within the proof of Lemma A.2. �

Lemma B.1. At all t≤T −1, the threshold of acceptance is at least as large as the threshold

of acceptance at t=T −1, which itself is at least as large as the static threshold of acceptance:

bt≥ bT−1≥ bT = b.

Proof: The result follows from the arguments in the text above the statement of Lemma 2.

�

Lemma B.2. Each period, in equilibrium Mt={pt} for all pt∈{0}∪ [bt, 1]. Moreover:

(i) either Mt={0, bt} for all pt∈ (0, bt),

(ii) or at<bt and: Mt={0, at} for pt∈ (0, at) and there exists ct∈ [at, bt) such that Mt={pt}
for pt∈ [at, ct], while Mt={ct, bt} for pt∈ (ct, bt).

Proof: Recall (8). If at= bt (so that the set of beliefs for which in equilibrium the agent waits

in period t is empty) then in equilibrium Mt={0, bt} for all pt∈ (0, bt). So assume at<bt.

Observe that:

(A) f̃t(·) (defined by (4)) is concave,

(B) ft(qt) = δf̃t(qt) for all qt∈{0}∪ [at, bt).

(A) follows from Proposition A.1 while (B) is obtained from (7). In view of (A)-(B), either

(i) in the statement of the lemma holds, or (ii) does. �

21

Electronic copy available at: https://ssrn.com/abstract=3154313



Proof of Lemma 5: If aT−1 = bT−1 = bT , the claim of the lemma is straightforward.23 As-

sume now bT−1>bT . At qT−1 = bT−1, in equilibrium the agent is indifferent between waiting

and accepting. The agent’s expected payoff from accepting is bT−1VG+(1−bT−1)VB. On the

other hand, using Lemmata 1 and B.1, the agent’s expected payoff from waiting can be written

as δ[bT−1VG+(1−bT−1)(γVR+(1−γ)VB)]. So bT−1 is the unique solution of

xVG+(1−x)VB = δ[xVG+(1−x)(γVR+(1−γ)VB)]. (10)

Next, consider t<T −1 such that bt+1 = bT−1. Suppose qt= bt, so that, by definition, in

equilibrium the agent is indifferent between waiting and accepting. The agent’s expected

payoff from accepting is btVG+(1−bt)VB. On the other hand, using Lemma B.1, qt= bt≥
bT−1 = bt+1. Hence, conditional on st=g, the agent optimally accepts in the next period. It

ensues that bt solves (10) and, therefore, that bt= bT−1. A recursive argument then yields

bt= bT−1 for all t<T . �

Proof of Lemma 6: Suppose that in equilibrium the principal is aggressive in period 1<t+

1<T . If at= bt the statement of the lemma is straightforward. Assume therefore that at<bt.

By virtue of Lemma B.2, in order to establish that the principal is also aggressive in period t it

is enough to show that, at pt=at, the principal strictly prefers the experiment Mt={0, bt} over

the uninformative experiment. On one hand, the principal’s expected payoff from designing

Mt={0, bt} is at
bt

. On the other hand, her expected payoff from designing the uninformative

experiment is given by δEst [f̂t+1(pt+1) | qt=at]. The next sequence of inequalities therefore

concludes the proof:

δEst [f̂t+1(pt+1) | qt=at]≤ δf̂t+1(at) = δ
at
bt+1

<
at
bt
.

The first inequality follows from noting that f̂t+1 is concave; the equality follows from the

assumption that the principal is aggressive in period t+1, and the second inequality is due to

Lemma 5. �

23aT−1 = bT−1 = bT = b implies at−1 = bt−1 = bt whenever at= bt= b. Hence, a recursive argument yields the
result in this case.
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Proof of Lemma 7: Note that, in view of Lemma 6, it is enough to show that in equilibrium

the principal is aggressive at t= 1 when T is sufficiently large. Next, Lemma 5 shows that any

benefit to the principal from being conservative at t= 1 must come from persuading the agent

to accept at t=T when ω=B. So these benefits are bounded from above by δT−1, which

tends to 0 as T→∞. On the other hand, as b1<1, the corresponding loss to the principal is

bounded away from zero since by being aggressive at t= 1 the principal obtains acceptance

with strictly positive probability conditional on ω=B. We conclude that, for T sufficiently

large, in equilibrium the principal is aggressive at t= 1. �

Proof of Lemma 2: In the perfect bad news case, the result follows from Lemma 5. In the

perfect good news case, the result is easily obtained by induction using Lemma 4. �

Lemma B.3. Consider a period t<T and let a+
t denote the beginning-of-period-t+1 belief

given qt=at and st=g. Then a+
t >at+1.

Proof: The result is trivial if at= bt, so suppose at<bt. Assume by way of contradiction

that a+
t ≤at+1. By definition of at, in equilibrium, at qt=at the agent is indifferent between

waiting and rejecting; the corresponding remark applies to period t+1. Therefore a+
t ≤at+1

implies that, by waiting at qt=at, the agent’s expected continuation payoff is as if the agent

rejected with probability 1 in period t+1. As VR>0, rejecting in period t thus yields the

agent a strictly higher expected continuation payoff than waiting. This remark contradicts

the definition of at. �

Lemma B.4. Consider a period t<T −1 such that, in equilibrium, in period t the principal is

not aggressive. Let c+
t denote the beginning-of-period-t+1 belief given qt= ct and st=g. With

perfect bad news, c+
t <bt+1.

Proof: Suppose by way of contradiction that c+
t ≥ bt+1. Then, using Lemma 5, given pt=

ct, in equilibrium the experiment Mt={0, bt} gives the principal a strictly larger expected

continuation payoff than the uninformative experiment. This cannot be, since by definition

of ct (Lemma B.2) the uninformative experiment has to be optimal at pt= ct. �
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Lemma B.5. Consider a period t<T −1 such that, in equilibrium, in period t the principal

is not aggressive. With perfect bad news, ct+1 =at+1 implies ct=at.

Proof: Assume that the conditions in the statement of the lemma hold. Recall to begin

that ct≥at, by definition. Suppose by way of contradiction that ct>at. Our goal will be

to show that, given pt= ct, in equilibrium the experiment Mt={at, bt} yields the principal

strictly larger expected continuation payoff than the uninformative experiment, contradicting

the definition of ct.

As a preliminary step, notice that, since in equilibrium the principal is not aggressive in

period t+1 (Lemma 6), at pt+1 =at+1 the principal must weakly prefer the uninformative

experiment over Mt+1 ={0, bt+1} (Lemma B.2), that is,

ft+1(at+1)≥ at+1

bt+1

ft+1(bt+1)+
(

1− at+1

bt+1

)
ft+1(0). (11)

Next, Lemmata B.3 and B.4 together imply c+
t ∈ (at+1, bt+1). Thus, using Lemma B.2,

at pt= ct, in equilibrium the principal’s expected continuation payoff from the uninformative

experiment can be expressed as δE[ft+1(X)], where X is a random variable with mean ct and

support {0, at+1, bt+1}, and P(X= 0) = (1−ct)γ. Call this remark A.

Now, at pt= ct, reasoning similarly as above and using bt+1 = bt (Lemma 5) establishes that

the principal’s expected continuation payoff from designing the experiment Mt={at, bt} can

be bounded from below (strictly) by δE[ft+1(Y )], where Y is a random variable with mean ct

and support {0, at+1, bt+1}, and P(Y = 0) = bt−ct
bt−at (1−at)γ. Call this remark B.

The last step of the proof is as follows. First, straightforward algebra shows 1−ct>
bt−ct
bt−at (1−at). Hence, P(X= 0)>P(Y = 0). As X and Y have the same mean and are both

supported on {0, at+1, bt+1}, we conclude that X is a mean-preserving spread of Y . Inequality

(11) then implies δE[ft+1(X)]≤ δE[ft+1(Y )]. Hence, combining remarks A and B, given pt=

ct, in equilibrium the experiment Mt={at, bt} yields the principal strictly larger expected

continuation payoff than the uninformative experiment, contradicting the definition of ct. �

Lemma B.6. With perfect bad news, in any period such that in equilibrium the principal is

not aggressive, ct=at.
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Proof: Consider t such that, in equilibrium, the principal is not aggressive in period t. Then,

by Lemma 6, the principal is not aggressive in period T −1. Moreover, using Lemma B.3,

for any qT−1∈ [aT−1, bT−1), the agent waits and: (i) accepts following sT−1 =g, (ii) rejects

following sT−1 = b. Thus fT−1 is linear in qT−1 over the belief interval [aT−1, bT−1). It ensues

that cT−1 =aT−1. Reasoning by induction using Lemma B.5 then establishes ct=at. �

Proof of Lemma 3: By the definitions of aggressive and conservative, Lemma 3 follows

from Lemma B.2 if we can show that, in equilibrium, each period either (a) the principal is

aggressive or (b) ct=at. Lemma 4 shows that (a) always holds in the perfect good news case.

In the perfect bad news case, by Lemma B.6, either (a) holds or (b) does. �

Lemma B.7. In equilibrium, conditional on ω=G the agent accepts with probability 1.

Proof: Lemma 1 ensures that in equilibrium the agent rejects in period t if and only if

qt∈ [0, at). Lemma 3 ensures that in equilibrium qt /∈ (0, at). Thus if the agent rejects in

period t, it must be the case that qt= 0. �

Lemma B.8. Let γ̃(δ) :=
(

1−δ
δ

) VR(VG−VB)
(VG−VR)(VR−VB)

. With perfect bad news, γ > γ̃(δ) if and only if

bT−1>b; in this case,

bT−1 =
δ(γVR+(1−γ)VB)−VB

(VG−VB)(1−δ)+δγ(VR−VB)
. (12)

Proof: The arguments in the proof of Lemma A.2 show that bT−1>b if and only if given

qT−1 = b the agent strictly prefers waiting over rejecting, that is, if and only if

δ [bVG+(1−b) (γVR+(1−γ)VB)]>VR,

which, upon rearrangement, yields γ > γ̃(δ). Solving (10) gives (12). �

Proof of Lemma 8: By Lemmata 5 and B.8, if γ≤ γ̃(δ) then in equilibrium at= bt= b in

every period, and so the principal is aggressive in period T −1. Since γ̃(δ)>1 for δ sufficiently
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small, we conclude that, in equilibrium, for δ small enough the principal is aggressive in period

T −1 regardless of γ.

Suppose next that γ > γ̃(δ). Then at qT−1 =aT−1, in equilibrium the agent is indifferent

between rejecting and waiting. Hence, VR = δ[aT−1VG+(1−aT−1)(γVR+(1−γ)VB)], giving

aT−1 =
VR−δ(γVR+(1−γ)VB)

δ(VG−γVR−(1−γ)VB)
(13)

after rearrangement. Now, using Lemma B.2, the necessary and sufficient condition for the

principal to not be aggressive in period T −1 in equilibrium is fT−1(aT−1)≥ aT−1

bT−1
. Noting that

fT−1(aT−1) = δ [aT−1 +(1−γ)(1−aT−1)] and substituting for aT−1 and bT−1 using (12) and

(13), the former inequality becomes

VBδ(γ−1)+δVG(1−γ)+VRγ(1−δ) (14)

≥ [VBδ(γ−1)+VR(1−δγ)] [δγ(VB−VR)+(VB−VG)(1−δ)]
δ [(VB−VR)δγ+VB(1−δ)]

.

One checks that for δ= 1 the quadratic equation in γ obtained from (14) has roots γ= 0 and

γ= 1. On the other hand, for δ<1, (14) is violated when either γ= 1 or γ= γ̃(δ). So (14)

holds for all values of γ in between the roots of the corresponding quadratic equation. Letting

γ(δ) and γ(δ) denote the real roots, the previous remarks yield γ̃(δ)<γ(δ)≤γ(δ)<1 and show

that these roots only exist for δ>δ, where δ>0 is defined implicitly by γ(δ) =γ(δ). Noting

that, by Lemma 3, whenever the principal is not aggressive she is conservative concludes the

proof. �

Proposition B.1. Let bGt (respectively bBt ) denote the period-t threshold of acceptance under

perfect good news (resp. perfect bad news). Then bGt ≤ bBt for all t, with bGT = bBT = b.

Proof: First, notice that, under perfect bad news, bBT−1 satisfies the following fixed-point prop-

erty: at qT−1 = bBT−1 the agent is indifferent between (a) accepting and (b) making his final de-

cision next period given that next period the principal designs MT ={0, bBT−1} if pT ∈ (0, bBT−1)

and MT ={bBT−1, 1} if pT ∈ (bBT−1, 1). Next, let X denote the random variable representing the

belief at which, under perfect bad news, the agent makes his final decision following scenario

(b). Then supp(X) ={0, bBT−1, 1}, E[X] = bBT−1 and P(X= 0) = (1−bBT−1)γ. Straightforward

algebra therefore yields P(X= 1) = bBT−1γ and P(X= bBT−1) = 1−γ.
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We claim that, under perfect good news, bGT−1 satisfies the same fixed-point property as

above. To see this, consider qT−1 = bGT−1 and let Y denote the random variable representing the

belief at which, under perfect good news, the agent makes his final decision following scenario

(b). Then supp(Y ) ={0, bGT−1, 1}, E[Y ] = bGT−1 and P(Y = 1) = bGT−1γ. Straightforward algebra

yields Y ∼X. The claim ensues.

We now show by induction that bGt ≤ bBt for all t<T (the case t=T is obvious). For

t=T −1 the result immediately follows from the claim above. Next, suppose bGt ≤ bBt for

1<t<T . By Lemma 5: bBt = bBT−1. Hence bGt ≤ bBT−1. But then the claim above implies that,

under perfect good news, at qt−1 = bBT−1 in equilibrium the agent must weakly prefer accepting

over waiting. So bGt−1≤ bBT−1 = bBt−1. �
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Appendix C: Technical Appendix for Subsection 3.2

Pareto Efficiency

Define an outcome Z by two probability distributions over {accept, reject}×{1, . . . , T}, spec-

ifying, respectively, the probability Z(x, t |G) that the agent makes the final decision x in

period t when ω=G, and the corresponding probability Z(x, t |B) when ω=B.

Proposition C.1. An outcome Z is Pareto efficient if and only if (i) Z(accept, 1 |G) = 1, and

(ii) Z(accept, 1 |B)+Z(reject, 1 |B) = 1.

Proof: Let Z∗ denote the set of Pareto efficient outcomes and Z† the set of outcomes satis-

fying conditions (i) and (ii) in the statement of the lemma.

We start by showing that Z∗⊆Z†. First, as (a) VR>0 and (b) the principal gets 0 from

rejection:

Z ∈Z∗⇒Z(reject, t|ω) = 0, ∀t>1. (15)

Second, as (a) the principal prefers acceptance over rejection and (b) VG>VR:

Z ∈Z∗⇒Z(reject, t|G) = 0, ∀t. (16)

Third, since (a) VG>0 and (b) δ<1:

Z ∈Z∗⇒Z(accept, 1|G) = 1. (17)

Fourth, we claim that

Z ∈Z∗⇒Z(accept, t|B) = 0, ∀t>1. (18)

Suppose for a contradiction that this is not the case and that we can find Z ∈Z∗ and t̂>1

such that Z(accept, t̂|B)>0. Define Z̃ as follows:

(i) Z̃(·, ·|G) =Z(·, ·|G),

(ii) Z̃(·, t|B) =Z(·, t|B), ∀t /∈{1, t̂},

(iii) Z̃(accept, t̂|B) = 0,

(iv) Z̃(accept, 1|B) =Z(accept, 1|B)+δt̂−1Z(accept, t̂|B),

(v) Z̃(reject, 1|B) =Z(reject, 1|B)+(1−δt̂−1)Z(accept, t̂|B).
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Applying (15)-(17), the principal’s expected payoff under Z̃ can be written as

p1Z̃(accept, 1|G)+(1−p1)
T∑
t=1

δt−1Z̃(accept, t|B)

=p1Z(accept, 1|G)+(1−p1)
∑
t/∈{1,t̂}

δt−1Z(accept, t|B)

+(1−p1)
[
Z(accept, 1|B)+δt̂−1Z(accept, t̂|B)

]
=p1 +(1−p1)

T∑
t=1

δt−1Z(accept, t|B).

Thus Z̃ and Z give the same expected payoff to the principal. On the other hand, the agent’s

expected payoff under Z̃ can be written as

p1VGZ̃(accept, 1|G)+(1−p1)

[
VRZ̃(reject, 1|B)+VB

T∑
t=1

δt−1Z̃(accept, t|B)

]

=p1VGZ(accept, 1|G)+(1−p1)VB
∑
t/∈{1,t̂}

δt−1Z(accept, t|B)

+(1−p1)
[
VR

(
Z(reject, 1|B)+(1−δt̂−1)Z(accept, t̂|B)

)
+VB

(
Z(accept, 1|B)+δt̂−1Z(accept, t̂|B)

)]
=p1VG+(1−p1)

[
VRZ(reject, 1|B)+VB

T∑
t=1

δt−1Z(accept, t|B)

]

+(1−p1)VR(1−δt̂−1)Z(accept, t̂|B),

where the first two terms in the final sum represent the agent’s expected payoff under Z.

As (1−p1)VR(1−δt̂−1)Z(accept, t̂|B)>0, we find that the agent’s expected payoff under Z̃ is

greater than it is under Z. Thus, Z̃ and Z give the same expected payoff to the principal,

but the agent’s expected payoff is strictly greater under Z̃ than it is under Z, contradicting

the initial assumption that Z ∈Z∗. We conclude that (18) holds. Combining (15)-(18) shows

that Z∗⊆Z†.
We next show that Z†⊆Z∗. Let Z ∈Z†. If Z /∈Z∗, we can find Z ′ which Pareto dominates

Z. Either Z ′∈Z† or, by the first part of the proof, we can find Z ′′∈Z† which Pareto dominates

Z ′, in which case Z ′′ Pareto dominates Z, by transitivity. Hence, assume without loss of

generality that Z ′∈Z†. Since both Z and Z ′ belong to Z† we have Z ′(x, t|ω) =Z(x, t |ω)
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unless t= 1 and ω=B. But then either Z ′(accept, 1|B)<Z(accept, 1|B) and then the principal

strictly prefers Z over Z ′, or Z ′(accept, 1|B)>Z(accept, 1|B) and then the agent strictly

prefers Z over Z ′. Therefore, Z ′ does not Pareto dominate Z, contradicting the definition of

Z ′. This shows that Z ∈Z∗. �

Comparison with the Single-Player Setting

We show here that increasing γ may increase the probability of type II errors made and lower

the agent’s expected payoff. We start with the following useful lemma.

Lemma C.1. Either at= bt= b in all periods or the interval of beliefs at which the agent

waits is constant for the first x≤T −1 periods, and then strictly decreasing over the remaining

periods.

Proof: In the perfect good news case, the result follows from Lemma 4. Below, we focus on

the perfect bad news case. If in equilibrium the principal is aggressive at t=T −1 then the

result is a consequence of Lemmata 5, 6 and A.1. Therefore, suppose henceforth that the

principal is conservative at t=T −1.

Notice to begin with that by Lemma 5 all we need to show is that the sequence at increases

with t. Reasoning as in Lemma B.4 establishes that a+
T−1∈ (aT−1, bT−1). Since ĝT−1>ĝT over

the belief interval (aT−1, bT−1), we obtain, using definition (3),

g̃T−2(aT−1) =P(sT−2 = b|qT−2 =aT−1)VR+P(sT−2 =g|qT−2 =aT−1)ĝT−1(a+
T−1)

>P(sT−1 = b|qT−1 =aT−1)VR+P(sT−1 =g|qT−1 =aT−1)ĝT (a+
T−1)

= g̃T−1(aT−1).

We conclude from the arguments in the proof of Lemma A.2 that aT−2<aT−1.

Now, if the principal is aggressive in period T −2 then Lemmata 5 and 6, immediately give

a1 = · · ·=aT−3<aT−2<aT−1. So suppose that the principal is conservative in period T −2.

Since aT−2<aT−1 and bT−2 = bT−1, Lemmata B.2 and B.6 establish that ĝT−2>ĝT−1 over the

30

Electronic copy available at: https://ssrn.com/abstract=3154313



belief interval (aT−2, bT−2). Moreover, a+
T−2∈ (aT−2, bT−2). Hence:

g̃T−3(aT−2) =P(sT−3 = b|qT−3 =aT−2)VR+P(sT−3 =g|qT−3 =aT−2)ĝT−2(a+
T−2)

>P(sT−2 = b|qT−2 =aT−2)VR+P(sT−2 =g|qT−2 =aT−2)ĝT−1(a+
T−2)

= g̃T−2(aT−2).

We conclude from the arguments in the proof of Lemma A.2 that aT−3<aT−2. Pursuing the

recursion completes the proof. �

Section 3 revealed the existence of two possible equilibrium regimes. In one regime, the

principal is aggressive at t= 1, and triggers the agent’s final decision in the first period. In the

other regime, the principal is conservative, and seeks to sustain uncertainty until t=T . We

next establish that, as long as no regime switch occurs, increasing the amount of exogenous

outside information weakly increases the welfare of the agent.

Lemma C.2. Let (T ′′, γ′′)≥ (T ′, γ′). Assume that, in equilibrium, at t= 1, either the prin-

cipal is aggressive given (T, γ) = (T ′, γ′) as well as given (T, γ) = (T ′′, γ′′), or the principal

is conservative in both cases. Then the agent’s equilibrium expected payoff is greater given

(T, γ) = (T ′′, γ′′) than given (T, γ) = (T ′, γ′).

Proof: We show the proof for the perfect bad news case (the proof for the perfect good

news case is similar but easier). Throughout the proof primes will be used for all objects

corresponding to the situation in which (T, γ) = (T ′, γ′). Similarly, double primes will be used

for all objects corresponding to the situation in which (T, γ) = (T ′′, γ′′).

In the case in which at t= 1 the principal is aggressive given (T, γ) = (T ′, γ′) as well as given

(T, γ) = (T ′′, γ′′), the result immediately follows from Lemma 5 and noting that b′′T ′′−1≥ b′T ′−1

(which, in turn, follows from Lemma B.8). Below we deal with the other case.

Since γ′′≥γ′ notice first that, by Lemma A.1, a′′T ′′−1≤a′T ′−1 and b′′T ′′−1≥ b′T ′−1. Moreover,

since at t= 1 the principal is conservative, the same must be true at all t<T (Lemma 6).

Hence, ĝ′′T ′′−1(·) is piecewise linear with kinks at a′′T ′′−1 and b′′T ′′−1, ĝ′′T ′′−1(a′′T ′′−1) =VR and

ĝ′′T ′′−1(b′′T ′′−1) =VB +b′′T ′′−1(VG−VB). A similar remark applies to ĝ′T ′−1(·). We conclude that
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ĝ′′T ′′−1(·)≥ ĝ′T ′−1(·). If T ′= 2 then Lemma C.1 finishes the proof. Otherwise,

g̃′′T ′′−2(a′T ′−2) =Es′′
T ′′−2

[ĝ′′T ′′−1(pT ′′−1)|qT ′′−2 =a′T ′−2]

≥Es′
T ′′−2

[ĝ′′T ′′−1(pT ′′−1)|qT ′′−2 =a′T ′−2]

≥Es′
T ′′−2

[ĝ′T ′′−1(pT ′′−1)|qT ′′−2 =a′T ′−2]

= g̃′T ′′−2(a′T ′−2).

The first inequality follows from convexity of ĝ′′T ′′−1(·) and the fact that, since γ′′≥γ′, s′′T ′′−2

is Blackwell-more-informative than s′T ′′−2. The second inequality follows from the previously

established inequality ĝ′′T ′′−1(·)≥ ĝ′T ′−1(·). Hence, δg̃′′T ′′−2(a′T ′−2)≥ δg̃′T ′′−2(a′T ′−2) =VR which, in

turn, implies a′′T ′′−2≤a′T ′−2 and, reasoning as above, ĝ′′T ′′−2(·)≥ ĝ′T ′−2(·). If T ′= 3 then Lemma

C.1 finishes the proof. Otherwise, we can repeat the last step. �

Lemma C.3. Fix γ∈ (0, 1). There exists δ(γ, T )<1 such that, in equilibrium, whenever

δ>δ(γ, T ), at t= 1 the principal is conservative.

Proof: Fix γ∈ (0, 1). First, notice that

lim
δ→1

bt= 1 (19)

for all t<T . Next, let each element of the sequence {xt}T−1
t=1 be defined implicitly as follows:

P(ω=G|pt=xt, st=g, . . . , sT−1 =g) = b.

Thus, x1<x2< · · ·<xT−1<b. Moreover notice that, for all t<T :

lim sup
δ→1

at≤xt. (20)

Otherwise, we could find a δ sufficiently close to 1 such that given qt=at the agent would

strictly prefer waiting until the deadline over rejection (contradicting the definition of at). Let

1−x1>ε>0. Applying (20), we can find δ<1 such that δ>δ implies

f̂1(x1 +ε)≥ δT−1
[
1−
(
1−(x1 +ε)

)(
1−(1−γ)T−1

)]
. (21)
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Noting that

1−
(
1−(x1 +ε)

)(
1−(1−γ)T−1

)
= (1−γ)T−1 +(x1 +ε)

(
1−(1−γ)T−1

)
>x1 +ε,

combining (19)-(21) yields, for δ sufficiently large:

f̂1(x1 +ε)>
x1 +ε

b1

.

If in equilibrium the principal were aggressive in period 1 we would have f̂1(x1 +ε) = x1+ε
b1

. �

Proposition C.2. With perfect good news, the agent’s equilibrium expected payoff is mono-

tonically increasing in T and γ. With perfect bad news, the agent’s equilibrium expected payoff

is monotonically increasing in T and, if players are sufficiently impatient, also monotonically

increasing in γ; however, if players are patient enough, the agent’s equilibrium expected payoff

is non-monotonic in γ.

Proof: For the perfect good news case, the result follows from Lemma C.2. We show the

proof of the result for the perfect bad news case. We start with three observations:

• Observation 1: if in equilibrium at t= 1 the principal is aggressive then ĝ1 is piecewise

linear with a kink at b1, ĝ1(0) =VR, ĝ1(b1) =VB +b1(VG−VB) and ĝ1(1) =VG.

• Observation 2: if in equilibrium at t= 1 the principal is conservative then ĝ1 is piecewise

linear with kinks at a1 and b1, ĝ1(0) = ĝ1(a1) =VR, ĝ1(b1) =VB +b1(VG−VB) and ĝ1(1) =

VG.

• Observation 3: b1 is both non-decreasing, and continuous in γ.

Observations 1 and 2 immediately follow from the definitions of a1, b1, and the experiments

designed by the principal when she is aggressive and conservative. Observation 3 follows from

Lemmata 5 and B.8.

Now, let T ′′>T ′. We want to show that the agent’s equilibrium expected payoff is at least

as large in the game of length T =T ′′ as in the game of length T =T ′. If in equilibrium the

principal is aggressive at t= 1 given T =T ′′ and given T =T ′, the result then follows from

Lemma C.2, and similarly if in equilibrium the principal is conservative at t= 1 given both

game lengths. Hence, by Lemma 6, the only case left to consider is when in equilibrium the
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principal is aggressive at t= 1 given T =T ′′, but conservative at t= 1 given T =T ′. In the

latter case, the result follows from Observations 1-2 combined with Lemma 5.

Next, let γ′′>γ′. We first want to show that, if players are sufficiently impatient, then the

agent’s equilibrium expected payoff is at least as large under γ=γ′′ than under γ=γ′. We

know from Lemmata 6 and 8 that, for δ<δ, in equilibrium the principal is aggressive at t= 1

regardless of γ. So the result follows from Observations 1 and 3.

Finally, we want to show that, if players are patient enough, then the agent’s equilibrium

expected payoff is non-monotone in γ. This result follows from Lemmata B.8 and C.3, com-

bined with Observations 1-2 showing that an equilibrium switch from aggressive at t= 1 to

conservative at t= 1 triggers a drop of the agent’s equilibrium expected payoff. �

The rest of this appendix considers a hypothetical planner with payoffs WaG from accep-

tance in state G, WrG<WaG from rejection in state G, WrB from rejection in state B, and

WaB<WrB from acceptance in state B. We are interested in this planner’s equilibrium ex-

pected payoff, Q. For concreteness, we henceforth refer to Q as the (equilibrium) quality of

the agent’s final decision.24

The planner’s welfare differs from the agent’s in two ways: first, while the planner cares

about errors made by the agent, the planner is indifferent about the timing of said errors;

second the planner and the agent may weigh type I and type II errors differently. Notwith-

standing these differences, the effect of exogenous outside information on Q mirrors its effect

on the welfare of the agent (Proposition C.2).

Proposition C.3. With perfect good news, the quality of the agent’s final decision is mono-

tonically increasing in T and γ. With perfect bad news, Q is monotonically increasing in

T and, if players are sufficiently impatient, also monotonically increasing in γ. However, if

players are patient enough, then Q is non-monotonic in γ.

Proof: We focus as usual on the perfect bad news case (the perfect good news case being

similar and easier). Let X denote the random variable representing the belief at which in

equilibrium the agent makes his final decision. Let φ : [0, 1]→R denote the piecewise linear

function with a kink at b such that φ(0) =WrB, φ(b) =WaB +b(WaG−WaB) and φ(1) =WaG.

Then:

24If WaG=WrB = 1 and WrG=WaB = 0, then 1−Q represents the equilibrium probability that the agent
makes a type I or type II error.
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(a) φ(·) is convex

(b) E[X] =p1;

(c) if in equilibrium the principal is aggressive at t= 1 then supp(X)⊆{0, b1};

(d) if in equilibrium the principal is conservative at t= 1 then supp(X) ={0, a+
T−1, b1}, where

a+
T−1>b denotes the beginning of period-T belief given qT−1 =aT−1 and sT−1 =g;

(e) Q=E[φ(X)].

We are now ready to prove the various parts of the proposition. First, we know from

Lemmata 6 and 8 that, for δ<δ, in equilibrium the principal is aggressive at t= 1 regardless

of γ. Hence, suppose δ<δ. Let γ′′>γ′. Then, by Lemmata 5 and B.8, b′′1≥ b′1. That Q′′≥Q′

now follows from remarks (a), (b), (c) and (e) above.

Next, if players are patient enough, Lemmata B.8 and C.3 establish that, starting from

γ= 0 and increasing γ, in equilibrium, at t= 1 the principal is aggressive at first but then

switches to being conservative. Since b1 is continuous in γ, remarks (a)-(e) establish that this

equilibrium switch induces a drop in Q.

Lastly, let T ′′>T ′. If in equilibrium the principal is aggressive at t= 1 given T =T ′′ and

given T =T ′ then, by Lemma 5, Q′′=Q′. If in equilibrium the principal is aggressive at

t= 1 given T =T ′′ but conservative at t= 1 given T =T ′ then, by Lemma 5 and remarks (a)-

(e), Q′′>Q′. By Lemma 6, the last case remaining is when in equilibrium the principal is

conservative at t= 1 given T =T ′′ and given T =T ′. A simple recursive argument based on

Proposition A.1 then establishes Q′′>Q′. �
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Online Appendix 1: Frequent signals

Proof of Proposition 2 of the main text: We will prove part (ii) of the proposition (the

proof of part (i) uses arguments similar to those used in the proof of Lemma 7 of the main

text and is therefore omitted). Let bTn−1,n denote the agent’s period-(Tn−1) standard of

approval given signal frequency n. We now show that bTn−1,n is monotonically increasing in

n. Fix n. By Lemma A.1 of Appendix A, in equilibrium the agent does not benefit from the

period-Tn experiment. So bTn−1,n is independent of information generated by the principal.

However, with signal frequency n+1 the amount of exogenous outside information that the

agent obtains by waiting two periods is the same as what he obtains with signal frequency n

by waiting one period. These remarks imply

bTn+1−2,n+1≥ bTn−1,n.

By Lemma 5,

bTn+1−2,n+1 = bTn+1−1,n+1.

Hence,

bTn+1−1,n+1≥ bTn−1,n.

In what follows, let b := limn→∞ bTn−1,n. The condition λ>ϕ(r) is equivalent to b1>b. So

whenever this condition holds, b>b. But then, for L sufficiently small, for all sufficiently large

n being aggressive in the first period cannot be optimal for the principal: keeping uncertainty

high until the last period enables the principal to benefit (at a very small cost) from a strictly

lower standard of approval. �
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Online Appendix 2: Different Discount Factors

In this appendix we prove Proposition 3 of the main text. All the results in this appendix

refer to the setting in which the players’ discount rates are δP and δA.

Lemma OA.1. In equilibrium, at t=T , the agent accepts if qT ≥ b and rejects otherwise. The

principal designs the experiment

MT =

{
{0, b} if pT ∈ (0, b);

{pT} otherwise.

The agent does not benefit from the period-T experiment, hence his equilibrium continuation

payoff is convex in pT .

Proof: See the proof of Lemma A.1 in Appendix A. �

Lemma OA.2. Let t<T . Suppose that functions ĝt+1(pt+1) and f̂t+1(pt+1) uniquely determine

the agent’s (resp. the principal’s) equilibrium continuation payoffs in period t+1. If ĝt+1 is

convex, then:

1. in equilibrium, the principal’s period-t experiment and the agent’s period-t decision are

both uniquely determined; the former is a function of pt only and the latter is a function

of qt only;

2. functions ĝt(pt) and f̂t(pt) uniquely determine the equilibrium continuation payoffs in

period t, and ĝt is convex.

Proof: Let g̃t(qt) and f̃t(qt) be defined as in equations (3) and (4) of the main text, respec-

tively. Then the agent’s equilibrium continuation payoff given qt can be written as

gt(qt) = max
{
VR, δAg̃t(qt), VB +qt(VG−VB)

}
. (OA.1)

As ĝt+1 is convex by assumption, Proposition A.1 shows that g̃t is convex as well. Moreover,{
δAg̃t(0) = δAVR<VR;

δAg̃t(1) = δAVG<VG.
(OA.2)
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Then (OA.1), (OA.2) and convexity of g̃t give unique at and bt, with at≤ b≤ bt, such that
gt(qt) =VR>max

{
δAg̃t(qt), VB +qt(VG−VB)

}
if qt<at;

gt(qt) = δAg̃t(qt)>max
{
VR, VB +qt(VG−VB)

}
if qt∈ (at, bt);

gt(qt) =VB +qt(VG−VB)>max
{
VR, δAg̃t(qt)

}
if qt>bt.

Hence, in equilibrium, the agent rejects if qt<at, waits if qt∈ (at, bt), and accepts if qt>bt.

Moreover, since in equilibrium whenever indifferent the agent makes the decision preferred by

the principal, it ensues that the agent waits if qt=at<bt and accepts if qt= bt. This gives

ft(qt) =


0 if qt<at;

δP f̃t(qt) if qt∈ [at, bt);

1 if qt≥ bt.

(OA.3)

Standard arguments yield f̂t= cavft. Since in equilibrium whenever indifferent the principal

picks the least informative experiment, the principal’s experiment in period t is uniquely

determined by the belief pt at the beginning of period t. Lastly, letting τt(pt) denote the

principal’s equilibrium experiment given pt yields ĝt(pt) =Eτt(pt)[gt(qt)|pt].
Finally, since g̃t is convex, (OA.1) shows that gt is as well. Since ĝt(pt) =Eτt(pt)[gt(qt)|pt],

convexity of gt together with the properties of τt(·) establish that ĝt is convex. �

Proposition OA.1. There exists a unique equilibrium.

Proof: The proposition follows from Lemmata OA.1 and OA.2. �

Lemma OA.3. Each period, cutoffs 0<at≤ bt<1 exist such that, in equilibrium the agent

rejects if qt<at, waits if qt∈ [at, bt), and accepts if qt≥ bt.

Proof: For t=T , the result follows from Lemma OA.1. For t<T , the result was shown within

the proof of Lemma OA.2. �
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Lemma OA.4. At all t≤T −1, the threshold of acceptance is at least as large as the threshold

of acceptance at t=T −1, which itself is at least as large as the static threshold of acceptance:

bt≥ bT−1≥ bT = b.

Proof: See the proof of Lemma B.1 in Appendix B. �

Lemma OA.5. Each period, in equilibrium Mt={pt} for all pt∈{0}∪ [bt, 1]. Moreover:

(i) either Mt={0, bt} for all pt∈ (0, bt),

(ii) or at<bt and: Mt={0, at} for pt∈ (0, at) and there exists ct∈ [at, bt) such that Mt={pt}
for pt∈ [at, ct], while Mt={ct, bt} for pt∈ (ct, bt).

Proof: Recall f̂t= cavft. If at= bt (so that the set of beliefs for which in equilibrium the

agent waits in period t is empty) then in equilibrium Mt={0, bt} for all pt∈ (0, bt). So assume

at<bt. Observe that:

(A) f̃t(·) (defined by equation (4) in Appendix A) is concave,

(B) ft(qt) = δP f̃t(qt) for all qt∈{0}∪ [at, bt).

(A) follows from Proposition A.1 while (B) is obtained from (OA.3). In view of (A)-(B), either

(i) in the statement of the lemma holds, or (ii) does. �

Lemma OA.6. With perfect good news, in equilibrium the principal is aggressive at t= 1.

Proof: The proof follows the same steps of the proof of Lemma 4 of the main text. �

Lemma OA.7. With perfect bad news, either at= bt= b in all periods, or for all t<T : bt=

bT−1>bT = b.

Proof: If aT−1 = bT−1 = bT , the claim of the lemma is straightforward. Assume now bT−1>bT .

At qT−1 = bT−1, the agent is indifferent between waiting and accepting. The agent’s expected

payoff from accepting is bT−1VG+(1−bT−1)VB. On the other hand, using Lemmata OA.3 and

OA.4 (and noting that in equilibrium, in period T , the agent accepts for pT ≥ bT ), the agent’s
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expected payoff from waiting can be written as δA[bT−1VG+(1−bT−1)(γVR+(1−γ)VB)]. So

bT−1 is the unique solution of

xVG+(1−x)VB = δA[xVG+(1−x)(γVR+(1−γ)VB)]. (OA.4)

Next, consider t<T −1 such that bt+1 = bT−1, and qt= bt, so that, by definition, the agent

is indifferent between waiting and accepting. The agent’s expected payoff from accepting

is btVG+(1−bt)VB. On the other hand, using Lemma OA.4, qt= bt≥ bT−1 = bt+1. Hence,

conditional on st=g, the agent optimally accepts in the next period. It ensues that bt solves

(OA.4) and, therefore, that bt= bT−1. A recursive argument then yields bt= bT−1 for all t<T .

�

Lemma OA.8. Let γ̃(δA) :=
(

1−δA
δA

)
VR(VG−VB)

(VG−VR)(VR−VB)
. Then γ > γ̃(δA) if and only if bT−1>b,

and either condition implies

bT−1 =
δA(γVR+(1−γ)VB)−VB

(VG−VB)(1−δA)+δAγ(VR−VB)
. (OA.5)

Proof: The arguments in the proof of Lemma OA.2 show that bT−1>b if and only if given

qT−1 = b the agent strictly prefers waiting over rejection, that is, if and only if

δA [bVG+(1−b) (γVR+(1−γ)VB)]>VR,

which, upon rearrangement, yields γ > γ̃(δ). Solving (OA.4) yields (OA.5). �

Lemma OA.9. Let t<T −1. In equilibrium, if the principal is aggressive in period t+1,

then the principal is also aggressive in period t.

Proof: Suppose that in equilibrium the principal is aggressive in period 1<t+1<T . If

at= bt the statement of the lemma is straightforward. Assume therefore that at<bt. By

virtue of Lemma OA.5, in order to establish that the principal is also aggressive in period t it is

enough to show that when pt=at the principal strictly prefers the experiment Mt={0, bt} over

the uninformative experiment. On one hand, the principal’s expected payoff from designing

Mt={0, bt} is at
bt

. On the other hand, her expected payoff from designing the uninformative
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experiment is given by δPEst [f̂t+1(pt+1) | qt=at]. The next sequence of inequalities therefore

concludes the proof:

δPEst [f̂t+1(pt+1) | qt=at]≤ δP f̂t+1(at) = δP
at
bt+1

<
at
bt
.

The first inequality follows from noting that f̂t+1 is concave (which we show formally in the

appendix); the equality follows from the assumption that the principal is aggressive in period

t+1, and the second inequality is due to Lemma OA.7. �

Lemma OA.10. There exists T̃ (γ, δA, δP )<∞ such that, in equilibrium, the principal is

aggressive in period 1 if and only if T >T̃ (γ, δA, δP ).

Proof: Note that in view of Lemma OA.9 it is enough to show that, for T sufficiently large,

in equilibrium the principal is aggressive at t= 1. Next, part (ii) of Lemma OA.7 shows that

any benefit to the principal from not being aggressive at t= 1 must come from persuading the

agent to accept at t=T when ω=B. So these benefits are bounded from above by δT−1
P , which

tends to 0 as T→∞. On the other hand, as b1<1, the corresponding loss to the principal is

bounded away from zero since by being aggressive at t= 1 the principal obtains acceptance

with strictly positive probability conditional on ω=B. We conclude that, for T sufficiently

large, in equilibrium the principal is aggressive at t= 1. �

Lemma OA.11. In equilibrium, each period either the principal is aggressive, or the principal

is conservative.

Proof: The proof follows the same steps as the proof of Lemma 3 of the main text. �

Lemma OA.12. There exist cutoffs δA∈ (0, 1) and δP (δA)∈ (0, 1] and, for δA>δA and δP >

δP (δA), functions 0<γ(δA, δP )<γ(δA, δP )<1 such that, in equilibrium, the principal is con-

servative in period T −1 if and only if δA>δA, δP >δP (δA), and γ∈ (γ(δA, δP ), γ(δA, δP )).

Proof: We saw in the proof of Lemma OA.8 that γ≤ γ̃(δA) implies that in equilibrium the

agent never waits. So whenever γ≤ γ̃(δA), in equilibrium the principal has to be aggressive in
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period T −1. In particular, since γ̃(δA)>1 for δA sufficiently small, we find that for δA small

enough the principal is aggressive in period T −1 irrespective of γ and of δP .

Suppose next that γ > γ̃(δA). Then for qT−1 =aT−1 in equilibrium the agent is indifferent

between waiting and rejection. The agent’s expected payoff from rejection is given by VR. His

expected payoff from waiting is on the other hand given by δA[aT−1VG+(1−aT−1)(γVR+(1−
γ)VB)], where we deduced from Lemma OA.1 that sT−1 =g induces pT >bT = b. We therefore

obtain VR = δA[aT−1VG+(1−aT−1)(γVR+(1−γ)VB)], giving

aT−1 =
VR−δA(γVR+(1−γ)VB)

δA(VG−γVR−(1−γ)VB)
. (OA.6)

Now, using Lemma OA.5, the necessary and sufficient condition for the principal not to

be aggressive in period T −1 in equilibrium is fT−1(aT−1)≥ aT−1

bT−1
.25 Noting that fT−1(aT−1) =

δP [aT−1 +(1−γ)(1−aT−1)] and substituting for aT−1 and bT−1 using (OA.5) and (OA.6), the

former inequality becomes

VBδA(γ−1)+δAVG(1−γ)+VRγ(1−δA) (OA.7)

≥ [VBδA(γ−1)+VR(1−δAγ)] [δAγ(VB−VR)+(VB−VG)(1−δA)]

δP [(VB−VR)δAγ+VB(1−δA)]
.

One checks that if (OA.7) holds for some δ′P , it must hold for δ′′P >δ
′
P : either the right-

hand side is positive, and therefore decreasing in δP , or it is negative, but the left-hand side

is always positive,26 so in this case the inequality is always satisfied. Moreover, for δA= 1

the quadratic equation in γ obtained from (OA.7) has roots γ= 0 and γ= 1. On the other

hand, for δA<1, (OA.7) is violated whenever either γ= 1, or γ= γ̃(δA). So (OA.7) holds

for all values of γ in between the roots of the corresponding quadratic equation. Letting

γ(δA, δP ) and γ(δA, δP ) denote the real roots, the previous remarks yield γ̃(δA, δP )<γ(δA, δP )≤
γ(δA, δP )<1 and show that these roots only exist for δA>δA and δP >δP (δA), where (i) δA

is defined implicitly by γ(δA, 1) =γ(δA, 1) and (ii) δP (δA) is defined implicitly for δA>δA by

γ(δP (δA), δA) =γ(δP (δA), δA). Noting that, by Lemma OA.11, whenever the principal is not

aggressive she is conservative concludes the proof. �

25That is, at pT−1 =aT−1 the principal must prefer the uninformative experiment over MT−1 ={0, bT−1}.
26Since VG>VG and VR>0 imply VBδA(γ−1)+δAVG(1−γ)+VRγ(1−δA)>δA(1−γ)(VG−VB)>0.
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