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SUMMARY & CONCLUSIONS 

The research reported in this paper describes a Coloured 

Petri Net (CPN) method for modelling and analysing reliability 

and efficiency of the dispensing process in English community 

pharmacies. The results of CPN simulations are used within an 

optimisation framework, based on an Ant Colony Optimisation 

(ACO) algorithm, in order to find optimal solutions for a range 

of process parameters, such as the number of dispensers and 

pharmacists to employ, prescription checking strategy or staff 

work pattern. Set-ups are evaluated using a multi-objective 

utility function with three parameters: the number of 

prescriptions completed, the number of errors, and the average 

waiting time. In-field data from 4 English pharmacies are used 

to control the firing of key transitions of the CPN. The results 

indicate that if a pharmacy has a large budget the optimal set-

up is likely to contain many staff, of which a majority will be 

dispensers. Alternatively, if the budget is small, it is likely the 

optimal team will be small and contain a majority of 

pharmacists.  

1 INTRODUCTION 

In the face of a growing and aging population, the 

healthcare industry continues to be of great importance to our 

societies. Ways to deliver reliable care and ensure patient safety 

need to be efficient, especially when healthcare funding 

resources become limited due to increased service demand. 

Patient safety within healthcare systems has been of growing 

concern within the last two decades [5]. Secondary care settings 

such as hospitals, were found to be the setting where many 

iatrogenic errors were occurring and it was understood that 

potentially similar volumes of errors could be occurring in 

primary care. In England there are 11,619 pharmacy stores 

which compete to provide primary care to patients in the form 

of over 1 billion dispensed prescriptions each year [1]. 

European community pharmacy error rates have been reported 

to be between 0.014% [2] and 3.3% [3] per item dispensed. 

Applying these error rates to English pharmacies suggests that 

up to 36 million items may contain errors each year. As well as 

safety concerns, patient satisfaction with pharmacy services is 

also linked to waiting times [4]. To encourage customers to use 

the same pharmacy repeatedly, pharmacies must meet customer 

expectations in terms of time taken to provide medication. 

This paper aims to contribute to the field of reliability and 

efficiency simulation modelling of healthcare, and more 

specifically to the modelling of community pharmacies. The 

paper offers two novel contributions: a modern heuristic is used 

to extend previous CPN modelling of the dispensing process, 

and the state space of the problem is constructed to consider 

typical pharmacy set ups which contain only a single 

pharmacist. Such set ups are typical of English community 

pharmacies, and the problem therefore matches closely the 

situation found in many stores.   

2 MODELLING THE DISPENSING PROCESS 

2.1 Key stages of the dispensing process 

Previous work of the authors has developed a Coloured 

Petri Net (CPN) simulation model of the dispensing process. 

This was built by considering how a team of practitioners work 

together to move prescriptions through pharmacies [6]. This 

section of the paper details the key features of the CPN model, 

which is later optimised to produce a set of optimal pharmacy 

configurations. The main stages of the dispensing process are 

shown in Figure 1 [7].  

 

 
Figure 1. A flowchart of the dispensing process 

 

Figure 1 describes the typical journey of a prescription 

through a community pharmacy. One person carries out each 

stage of the process. Only pharmacists or Accredited Checking 

Technicians (ACTs) are qualified to perform the final 

accuracy check (also known as a secondary task), whereas 

dispensers can carry out other stages (primary tasks).  



2.2 Resources 

Pharmacies make use of a number of human (dispensers, 

pharmacists and ACTs), and technological resources (a 

computer linked to a label printer) to dispense prescriptions. 

Larger stores may have a number of people of each staff type, 

while a single pharmacist may run a small store. 

Prescriptions are made up of a number of medicinal items, 

which have been prescribed to patients. These items must be 

collected, appropriately labelled and accuracy checked before 

being handed out to patients. In the model, a number of items 

in a prescription is assumed to follow a Geometric(0.35) 

probability distribution. The number of items influences the 

duration of the stages. 

2.3 Non-dispensing tasks 

As well as providing patients with prescriptions, there are 

a number of non-dispensing tasks, which must be completed. 

Non-dispensing tasks included in the model are: advanced 

services (a number of additional health related services offered 

in English pharmacies, such as vaccinations or medicine use 

reviews), restocking the medicine shelves, and counselling 

patients about how best to take their medication. These tasks 

were seen as an important part of pharmacies operations. The 

model includes them by taking staff resources away for a period 

to model the action being completed.  

2.4 Failures 

In the model, errors can occur during 4 stages: generating 

labels, picking medicines, applying labels and checking 

accuracy. Note that intermediate accuracy checks are also 

possible; dispensers complete them after the application of 

labels. Error rates are shown below in Table 1, they have been 

inferred using a table of human error rate probabilities found in 

[8].  

 

Table 1. Error probabilities 

Stage Error probability 

Labelling 0.06 

Filling 0.05 

Label application 0.03 

Intermediate accuracy check 0.1 

Final accuracy check 0.05 

  

2.5 Model assumptions 

 Only dispensers and pharmacists (no ACTs) are modelled. 

 The pharmacy is open between 9am and 5pm.  

 Staff prioritise walk-in prescriptions over deliveries. 

 A batch of 150 delivery prescriptions enter the pharmacy 

at 10am. 

 The duration of each task and the error rate does not depend 

on the type of staff. 

 Once a member of staff begins to print labels, they continue 

working on the same prescription until they have applied 

labels.  

 Customers arriving in the pharmacy are attended to as soon 

as a member of staff becomes available. 

 Staff work most of the day; each dispenser takes their lunch 

break sequentially, whereas pharmacists fit their lunch in 

when they are free.  

       For further information about the CPN model see [6].  

3 DATA COLLECTION 

To enhance the model outlined in Section 2, duration data 

for 6 stages of the dispensing process was collected from 4 UK 

community pharmacies, and then incorporated into the CPN 

model. There have been previous attempts to time the 

dispensing process, but the data has been unsuitable for use in 

this model because samples sizes were small [4], or the stages 

of dispensing were not timed individually [7]. Table 2 displays 

the key characteristics of the pharmacies included in the study. 

 

Table 2. Pharmacy characteristics 

Site Type No# staff Co-located 

A Large multiple 4-8 Yes 

B Large multiple 5-7 No 

C Independent 4-7 No 

D Independent 3-5 No 

 

The two pharmacies A and B were both members of the 

same large business, and pharmacies C and D were independent 

pharmacies. A was co-located with a doctor’s practice. 

For the 4 stages, from generating labels to applying labels, 

two variable observations were collected: the number of items 

in the prescription and the time taken to complete the stage.  The 

duration data was grouped into 6 segments: 1 item, 2 items, 3 

items, 4 items, 5-8 items (medium), and 9+ items (large). For 

the stages of prescription reception and handing over to 

patients, only the duration was recorded. All data was collected 

using researcher observation between 3 to 5 days in each site, 

using a stopwatch to time each stage. The results of the data 

analysis have been previously published in [9].   

4 ANT  COLONY OPTIMISATION 

4.1 Background 

Experiments have demonstrated that ant colonies have the 

ability to locate the shortest path to nearby food sources [12]. 

They do this by secreting pheromones which other ants can 

detect, where this collective path following and path marking 

behavior is the basis of Ant Colony Optimisation (ACO). ACO 

is considered one of the stronger algorithms for tackling 

discrete optimisation problems [13]. This paper uses Max Min 

Ant System (MMAS), a variant of ACO, which encourages 

exploration of the problem space by enforcing variable limits 

on the concentration of pheromone which can be placed on 

paths. 

Ants have two modes of operation in the algorithm: 

solution construction (forward mode), or pheromone update 

(backward mode). A state space is constructed to represent the 

problem space by drawing a graph of nodes connected by edges 

representing all possible choices that could be made. Initially 



ants construct solutions by moving over the state space, using 

pheromone concentration levels to guide their choices. Once all 

the ants have constructed a solution, the best performing ant 

lays pheromone onto the path it walked across the search space 

to encourage future ants to use those values. An iteration of the 

algorithm involves each ant constructing and evaluating a 

solution, then updating all the pheromones by evaporating some 

off of each path, and placing new pheromone onto the best 

performing path. The equations which govern these key 

behaviors are outlined next.  

4.2 Solution construction 

The MMAS algorithm uses a decision policy to govern 

how ants move across a graph to build potential solutions. The 

policy is dependent on the amount of pheromone on edges and 

the inherent desirability of each edge. Hence, an ant on node i, 

will use the concentration of pheromone on surrounding edges 

and prior heuristic information about surrounding nodes to 

make a choice about where to move next. Under the assumption 

that the pheromone concentration on all arcs from node i to j is 

denoted by τ𝑖𝑗, and the heuristic value for the desirability of 

node j is given by ν𝑖𝑗 , then the decision policy is shown in 

equation (1).  

𝑝𝑖𝑗(t) = {
[τ𝑖𝑗]α[ ν𝑖𝑗]

β

∑ [τ𝑖𝑙]α[ ν𝑖𝑙]β
𝑙∈𝑁𝑖

 
 if 𝑗 ∈ 𝑁𝑖

0                                if 𝑗 ∉ 𝑁𝑖

              (1)  

 In equation (1) p𝑖𝑗  is the probability of an ant choosing to 

move to node j after visiting node i. Ni is the neighbouring set 

of nodes adjacent to node i, i.e. the set of nodes which can be 

reached from node i by travelling along 1 arc. The values of α 

and β give weighted preference to either heuristic or pheromone 

information during the construction of solutions. 

4.3 Pheromone update 

The update of pheromones is performed in two stages. 

First, an amount of pheromone is removed from every path 

using equation (2): 

τ𝑖𝑗 ← τ𝑖𝑗(1 − ρ) (2) 

where ρ is a constant representing the rate of evaporation of 
pheromone. Then additional pheromone is placed onto the 
paths used by the best performing ant using equation (3): 

τ𝑖𝑗 ← τ𝑖𝑗 + ∆τ𝑖𝑗
𝑘 (3)

where ∆τ𝑖𝑗
𝑘  is the amount of additional pheromone deposited 

on the edge (i, j), and k indicates which ant provided the best 

solution. The pheromone deposit is proportional to the quality 

of solution generated, and is calculated using equation (4): 

∆τ𝑖𝑗
𝑘 = {

1

𝑂𝑘
    if (𝑖, 𝑗) ∈ 𝑃𝑘

0        if (𝑖, 𝑗) ∉ 𝑃𝑘

                           (4)  

where Pk is the set of paths that make up the kth ants path, and 

Ok is the objective value returned by the kth ant.  

4.4 Encouraging exploration 

Where MMAS differs from standard implementations of 

ACO algorithms is the incorporation of flexible upper and 

lower on pheromone concentrations. This bounding of the 

pheromone concentrations is designed to improve the 

algorithm’s performance by stopping premature convergence 

to sub-optimal solutions. The flexible bounds are implemented 

using equation (5): 

τmin(𝑡) ≤ τ𝑖𝑗(𝑡)  ≤ τ𝑚𝑎𝑥 (𝑡)    ∀ 𝑖, 𝑗 (5) 

where the upper bound, τ𝑚𝑎𝑥 (𝑡), is set using equation (6): 

τ𝑚𝑎𝑥 (𝑡)  =  
1

1−ρ

1

𝑂𝑏𝑒𝑠𝑡(𝑡)
  (6) 

and Obest is the best solution returned by the ants up to time t. 

The lower bound for pheromone concentrations is set using 

equation (7): 

τ𝑚𝑖𝑛(𝑡)  =  
τ𝑚𝑎𝑥 (𝑡)(1 − √𝑝𝑏𝑒𝑠𝑡

𝑛 )

(𝑎𝑣𝑔 − 1) √𝑝𝑏𝑒𝑠𝑡
𝑛

           (7) 

where pbest is the probability that any ant will choose to use a 

path which is marked with the maximum allowed concentration 

of pheromone and all others paths have the minimum allowed 

concentration, and avg is the average number of options 

available to the ant at each step during path construction.  

5 APPLYING MMAS TO THE COMMUNITY PHARMACY 

OPTIMISATION PROBLEM 

The problem tackled in this paper assumes that a pharmacy 

is looking to use a conventional staff set-up commonly found in 

UK pharmacies, where a single pharmacist works in a store with 

the assistance of a number of dispensers. This section describes 

how the MMAS optimisation algorithm has been applied to the 

community pharmacy model to solve this problem.  

5.1 Decision variables  

The four decision variables chosen to represent the 

problem outlined above were: 

 The number of dispensers to employ. 

 The number of labelling stations. 

 The checking strategy to use while dispensing.  

 The work pattern to use  

Using this framework a community pharmacy set-up can be 

defined using a 4 tuple of integers, P = (d, l, cstrat,wpattern), where 

d corresponds to the number of dispensers employed, l indicates 

the number of labelling stations used, cstrat is the checking 

strategy followed, and wpattern is the work pattern employed in 

the pharmacy. 

5.2 State space 

By setting out ranges of acceptable values for each of the 

four decision variables, the state space of the optimisation 

problem can be constructed and converted into an ACO 

framework.  Figure 2 shows how the state space of the problem 

can be represented. Four layers of nodes are used to represent 

the state space, where arcs exist between adjacent layers, but 

not between nodes within the same layer. To create a valid 

solution, ants must choose a single node from each of the four 



layers constructing a route from their nest to a food source. As 

an example, the path shown in Figure 2 indicates a community 

pharmacy set-up which uses 3 dispensers, 2 labelling stations, 

the second of three checking strategies, and the second of two 

work patterns. 

 

Figure 2. Example community pharmacy set-up in an 

ACO framework 

There is a legal requirement for the presence of a 

responsible pharmacist to be on site at all times for pharmacies 

to dispense prescriptions. However, no comparable legislation 

exists for dispensers, and thus the option of a set-up including 

zero dispensers is possible. The three checking strategies 

available to pharmacies in this optimisation, are as follows: 

1. A single final accuracy check performed by a pharmacist.  

2. Two checks, the first carried out as the labels are applied to 

the items in a prescription, the second is a final accuracy 

check from the pharmacist. Errors discovered during the 

first check are sent to be dispensed again.  

3. As in 2, there are two checks, the first carried out as the 

labels are applied to the items in a prescription, the second 

is a final accuracy check from the pharmacist. Errors 

discovered during the first check are attempted to be fixed 

immediately after they are found.  

The above strategies can be used to check prescriptions in 

community pharmacies, however, it is unknown which strategy 

is most common in practice. There are two work patterns 

available to pharmacies in the optimisation framework; they are 

as follows: 

1. Pharmacists are allowed to complete primary dispensing 

tasks. These include dispensing prescriptions, or receiving 

prescriptions from patients.  

2. Pharmacists focus on tasks only they are qualified to carry 

out, and do not contribute to any primary tasks.  

There are 165 possible unique community pharmacy set-

ups in the optimisation, (6 × 5 × 3 × 2) – 15  = 165. Note that 

15 set-ups are invalid when no dispensers are available and the 

pharmacist does not complete primary tasks. 

5.3 Cost of wages 

Each community pharmacy set-up is assigned a cost based 

on the median wages of dispensers and pharmacists, which 

were found to be £21,314 and £41,500 respectively [14]. The 

cost of including each label printer for each set-up was assumed 

to be £200. Hence, the cost of wages for each set-up was 

calculated using equation (8): 

𝐶𝑜𝑠𝑡 = 41,500 + 200 × 𝑙 +  21,134 × 𝑑 (8) 

where l is the number of label printers used by the 

pharmacy, and d is the number of dispensers. 

5.4 Local search 

To improve the algorithm’s search strategy, a local search 

step was included to improve upon strong solutions returned by 

the ants, by testing adjacent solutions in the search space. The 

local search was implemented by randomly choosing one of the 

four layers of nodes, and then choosing nodes adjacent to the 

one, which produced a strong solution within the selected layer. 

5.5 Utility function 

To evaluate the performance of each set-up, three 

performance variables were used. These were: the average 

waiting time for walk-in patients visiting the pharmacy, the 

number of prescriptions completed, and the number of 

dispensing errors made. These three performance indicators 

were combined to evaluate different community pharmacy set-

ups using equation (9): 

U = λ1𝑋𝑤𝑎𝑖𝑡𝑖𝑛𝑔 + λ2𝑋𝑒𝑟𝑟𝑜𝑟𝑠 −  λ3𝑋𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 + γ          (9) 

where the constants, λ1, λ2, λ3 > 0, weight the importance 

given to each of the performance indicators. The aim is to 

minimise the value of U.  

A constant of γ = 30 was included to guarantee positive 

values of U. The three performance indicators were assumed to 

be of relatively equal value, and therefore, the three weighting 

constants were chosen so that each indicator was of the same 

order when multiplied by the weighting constant. To achieve 

this the three constants were chosen as follows: λ1 = 0.1, λ2 = 60,  

λ3 = 0.1. This choice implies that reducing the number of errors 

by 0.5 each day on average, is equivalent to reducing the 

average waiting time by 5 minutes. 

5.6 Pheromone updates and stopping conditions 

Pheromones were updated using a cycle of 3. The first 2 

pheromone updates were placed using the iteration best ant, and 

the 3rd was updated using the global best ant path. After the first 

completion of this cycle, it was repeated for further iterations 

until the algorithm terminated. The stopping condition was 

either when the maximum number of iterations had been 

completed (N = 50), or if the same iteration best solution was 

returned 3 times consecutively. 

6 RESULTS 

6.1 Model implementation 

The ACO algorithm was run using 2 phases for each 

iteration. Four ‘search’ ants were sent out to test solutions 

during the first phase, and the path which returned the strongest 

solution was locally searched. The initial ‘search’ ants 



simulated the pharmacy set-up indicated by their path choice 

500 times, and the local search tested the original best path a 

further 500 times, and then simulated each of the neighbouring 

local solutions 1000 times each. An estimate for the minimum 

objective value, τ0, was obtained by running the algorithm for 

a single iteration. The MMAS algorithm was run for 50 

iterations where the ants were purely guided by their own 

pheromone trails. All the solutions were assigned a cost as in 

equation (8), and a set of non-dominated solutions was 

compiled.  

The set of parameters used to control the optimisation are 

shown in Table 3. The values of α and β were chosen so that 

heuristic values were not taken into account during the ant’s 

path construction. The rate of pheromone evaporation was 

chosen to be 0.98, a previously used value which allows for a 

slow rate of evaporation, and hence a long exploratory phase 

[15]. The number of ants was chosen using ad-hoc selection, an 

analytical approach to parameter selection can be found in [16]. 

 Table 3. ACO parameter settings 

 

Note that the number of ants in the colony was chosen to 

be only 4, since the problem space is small. Other studies have 

used a wide range of colony sizes, ranging from a single ant, up 

to 1000 ants or more.  

6.2 Model results  

The optimisation algorithm tested a total of 54 unique 

solutions to the problem. The results of all solutions tested at 

the local search stage of the optimisation are plotted in Figure 

4. Strat 1, 2 and 3 stand for the three strategies described in 5.2. 

Of all of the solutions tested by the algorithm, only 9 were 

considered to be non-dominated (i.e. no other solution was both 

cheaper and more effective). These solutions make up a Pareto 

front for the problem, and are shown in Table 4.

The optimal solution returned by the algorithm was a setup 

using 5 dispensers and 3 labelling stations, checking strategy 2, 

and a non-flexible work pattern. Every solution in the Pareto 

front made use of checking strategy 2, a strategy where an 

independent check is performed and errors are sent to be 

dispensed again. 

 
Figure 4. Objective State Space for the community 

pharmacy set-up problem 

Figure 4 shows that set-ups using more dispensers 

performed better. It also clearly illustrates that checking 

strategy 1 performs worse than the alternative checking 

strategies, 2 and 3. The number of labelling stations appears to 

have a smaller effect, and can be less clearly seen, especially if 

the number of dispensers is high. Overall, the results indicate 

that the best way to set up a pharmacy using a single 

pharmacist, is to hire as many dispensers as the budget will 

allow, and use checking strategy 2. The additional benefits of 

hiring more dispensers diminish as more are added.  

7 CONCLUSION 

This paper has addressed the problem of how best to set up 

a community pharmacy using a typical staff set-up, where only 

a single pharmacist is employed. The MMAS optimisation was 

introduced and applied to a community pharmacy set-up 

problem generated by considering varying the initial conditions 

of a Coloured Petri Net simulation model. Future work could 

include considering how a wider range of decision variables can 

impact upon the dispensing process, optimising the ACO setup 

Parameters Value 

α 1 

β 0 

ρ 0.98 

m 4 

τ0 38.2 

ν𝑖𝑗 1 

Table 4. Pareto Optimal Solutions  

Solution Setup Performance indicators 

 Dispensers Labelling 

stations 

Flexible 

or non-

flexible 

Dispensing 

errors 

Completed Waiting  

time  

(sec) 

Cost 

(£ per 

year) 

Objective 

1 5 3 0 1.7 252 166 147770 31.5 

2 5 1 1 1.6 252 175 147370 31.9 

3 4 2 0 1.8 252 167 126436 32.2 

4 3 4 0 1.7 252 171 105702 32.4 

5 3 2 0 1.8 252 171 105302 32.8 

6 2 3 0 1.8 252 221 84368 37.5 

7 2 2 0 1.9 252 221 84168 38.3 

8 1 2 1 0.2 251 304 63034 45.1 

9 0 2 1 0.1 183 617 41900 81.4 



parameters, or expanding the model to include the potential for 

evaluating pharmacy chains consisting of more than 1 store. 

Further avenues suggested by pharmacy experts include 

modelling non-dispensing tasks, such as purchase of non-

prescription goods, and analysis of error rate of individual tasks. 
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