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Background concentrations of mercury in
Australian freshwater sediments: The effect
of catchment characteristics on mercury
deposition

A. Lintern1,2,3, L. Schneider2,4, K. Beck5, M. Mariani2,6, M-S. Fletcher2,7, P. Gell8, and
S. Haberle2,4

Waterways in the Southern Hemisphere, including on the Australian continent, are facing increasing levels of
mercury contamination due to industrialization, agricultural intensification, energy production, urbanization,
and mining. Mercury contamination undermines the use of waterways as a source of potable water and also has
a deleterious effect on aquatic organisms.When developing management strategies to reduce mercury levels in
waterways, it is crucial to set appropriate targets for the mitigation of these contaminated waterways.These
mitigation targets could be (1) trigger values or default guideline values provided by water and sediment
quality guidelines or (2) background (pre-industrialization) levels of mercury in waterways or sediments. The
aims of this study were to (1) quantify the differences between existing environmental guideline values for
mercury in freshwater lakes and background mercury concentrations and (2) determine the key factors
affecting the spatial differences in background mercury concentrations in freshwater lake systems in
Australia. Mercury concentrations were measured in background sediments from 21 lakes in Australia. These
data indicate that background mercury concentrations in lake sediments can vary significantly across the
continent and are up to nine times lower than current sediment quality guidelines in Australia and New
Zealand. This indicates that if waterway managers are aiming to restore systems to ‘pre-industrialization’
mercury levels, it is highly important to quantify the site-specific background mercury concentration.
Organic matter and precipitation were the main factors correlating with background mercury concentrations
in lake sediments. We also found that the geology of the lake catchment correlates to the background mercury
concentration of lake sediments.The highest mercury background concentrations were found in lakes in igneous
mafic intrusive regions and the lowest in areas underlain by regolith. Taking into account these findings, we
provide a preliminary map of predicted background mercury sediment concentrations across Australia that
could be used by waterway managers for determining management targets.
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Introduction
Mercury is a highly toxic compound, especially in its meth-
ylated form (Ullrich et al., 2001). Anthropogenic activities
such as fossil fuel combustion (Fabris et al., 1999), indus-
trialization (Navarro et al., 1993), mining (Davies et al.,
2018), and agricultural intensification (Denton and
Breck, 1981) have led to increasing levels of mercury

contamination in aquatic environments. Mercury is cur-
rently listed as one of the top 10 chemicals or groups of
chemicals of major public health concern by the World
Health Organization (2010). Previous studies of
centennial-scale metal changes in levels in Australian
freshwater systems have shown that metal concentrations
in sediments had low variability over time prior to
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European settlement, the development of mines, and
industrialization (Lintern et al., 2015). These studies indi-
cate that it was only with European settlement and indus-
trialization that the metal concentrations in aquatic
sediments started to fluctuate significantly. These pre-
industrialization and pre-European concentrations of me-
tals in aquatic sediments are often assumed to represent
“background” levels of metals in aquatic sediments.

There are many waterways throughout the world where
the mercury concentrations in aquatic sediments are ele-
vated compared to pre-industrialization concentrations
(Balogh et al., 1999, 2009; Cooke et al., 2020). Australian
aquatic systems such as Reedy Creek (Churchill et al.,
2004), Lerderderg River (Bycroft et al., 1982), the Gipps-
land Lakes (Fabris et al., 1999), Molonglo River (Stinton
et al., 2020), the Connewarre Complex (Reeves et al.,
2016), and Newell Creek (Schneider et al., 2019), all
show elevated concentrations of mercury in post-
industrialization sediments. This is of concern due to the
toxic impacts of elevated concentrations of mercury on
humans (Castilhos et al., 2006), as well as on biodiversity
and ecosystem survival (Selin, 2009). As such, efforts are
currently being made to reduce mercury levels in water-
ways. These methods include controlling and reducing
mercury sources within catchments, increased regulations
to reduce atmospheric emissions of mercury, treatment of
wastewater, and stabilization, dredging, or capping of
mercury-contaminated sediments (Wang et al., 2004; Hy-
lander and Goodsite, 2006; Mathews et al., 2013).

When remediating a polluted aquatic environment
using these methods, target sediment and water toxicant
levels are required to calculate a pollutant’s enrichment
factor compared to its background concentrations. Target
toxicant levels are also needed to establish mitigation
measures and restoration programs. Therefore, it is of
crucial importance to identify the optimal sediment and
water quality guidelines that should be used when
restoring waterways affected by mercury contamination
in Australia.

Water and sediment quality management frameworks
in many parts of the world, including Australia, state that
pollution reduction targets should be based on the back-
ground conditions of the aquatic system (Canadian Coun-
cil of Ministers of the Environment, 2003; Water Quality
Australia, 2018). Water quality management frameworks
also often provide guideline values calculated using eco-
toxicity data (the probability of a toxic effect of a certain
concentration of the chemical on benthic organisms),
which can be used when background levels cannot be
quantified (MacDonald et al., 2000; Water Quality Austra-
lia, 2018). The current default guideline value (DGV) for
mercury in Australia and New Zealand is 150 ng/g. This
represents the value below which there is a low risk of
toxic environmental effects due to mercury. The guidelines
also provide an upper guideline value (GV-high) of 1,000
ng/g for mercury, which represents the value above which
we are likely to observe some toxic effects of mercury on
the environment (Water Quality Australia, 2018). When
the GV-high is exceeded, there is a high probability
that the level of mercury in the sediments is toxic to

benthic organisms. While GV-high threshold values pro-
vide an indication of concentrations at which toxicity-
related adverse effects are expected to be observed, the
DGV threshold value is used for guidance on the remedi-
ation of contaminated sediments. Our paper focuses on
the lower threshold value, the DGV, and aims to provide
a guideline for restoration of polluted sites.

We currently have very little understanding of the dif-
ference between background conditions of freshwater
lakes and existing guideline values (Lintern et al., 2016).
This is largely because quantitative data of background
conditions are unavailable due to a lack of water and
sediment quality monitoring until the late 20th century
(Alexander et al., 1998). Understanding the quantitative
differences between background mercury levels and
guideline values provided by sediment quality guidelines
is critical in guiding waterway managers to select the most
appropriate water quality and sediment quality targets for
remediation projects. The water or sediment quality target
selected will depend on the objectives of the project,
which could range from restoring the aquatic environ-
ment to “pre-pollution” levels, protecting key aquatic spe-
cies, to protecting human health.

The aim of this study is to determine the difference
between background mercury concentrations and existing
sediment quality guideline values in aquatic systems. We
had the additional objective of determining the spatial
variability in background mercury concentrations and pre-
dicting background mercury concentrations across Austra-
lia using our understanding of the key factors driving
background mercury concentrations. In this study, we do
not intend to assess the health risks of mercury to aquatic
environments. Rather, we use sediment cores from 21
Australian lakes as a case study to identify background
concentrations of mercury across the region (Förstner and
Salomons, 1980; Dubois et al., 2017). Lake sediment cores
have been used in previous studies to understand long-
term historical trends in metal pollution of aquatic envir-
onments (Latimer et al., 2003; Lintern et al., 2015).
Although a data set larger than 21 lakes would result in
more robust statistical findings, these data provide an
initial insight into background mercury concentrations
in lakes in Australia and the Southern Hemisphere. Little
is known about mercury in Australia, and this lack of
evidence for national levels of risk contribute to the diffi-
culties Australia has been facing in ratifying the Minamata
Convention (Sinclair and Schneider, 2019). This study is
the first step in filling our knowledge gap of background
mercury levels in Australia and the Southern Hemisphere,
which will provide evidence that may advance the call for
ratification of this international convention.

Methodology
Site selection and sediment subsampling

Sediment cores with known age-depth models from pre-
vious studies were selected for this study. This included
cores from 21 freshwater lakes, themajority of which were
located in Southeast Australia (Figure 1). The character-
istics of these sites have been summarized in Table 1.
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From the 21 cores listed in Table 1, one to four sed-
iment subsamples were obtained from sediments depos-
ited prior to industrialization and European settlement
in Australia in 1788 CE (Powell, 1994). These sediment
samples were taken from depths corresponding to
approximately 2,000; 4,000; 6,000; and 8,000 calibrated
years before present (BP). For the rest of this study, we
use ka to represent thousands of calibrated years BP. It
should be noted that not all cores had available sedi-
ments corresponding to each of these depths. A detailed
inventory of the subsampling depth of each core and the
approximate ages of the sediment subsamples are pro-
vided in the Supplementary Materials (Table S1). Seventy
one subsamples were collected in total, each having
a mass greater than 4 g wet weight.

Analysis of sediments

Sediment subsamples were taken to the Palaeoworks Lab at
the Australian National University and freeze-dried using
a FreeZone Plus 6 freeze-drier (Labconco, Kansas City, MO)
for 48 h. Samples were then homogenized and crushed
into a fine powder, and 100 mg of the sample was analyzed
for total mercury concentration using the USEPA method
7473 (US EPA, 1998) and a Milestone Direct Mercury Ana-
lyzer (DMA-80 Tricell; Milestone, Bergamo, Italy). The DMA
uses thermal decomposition, amalgamation, and atomic
absorption spectrometry to identify total mercury concen-
trations in solid materials. A pair of blanks and a pair of
certified reference materials (WQB-1 Lake Ontario sedi-
ment from the National Water Research Institute in Canada
and 2711a Montana II soil from the National Institute of
Standards and Technology in the USA) were analyzed for
every 36 samples. A duplicate sample was run for every
three samples, and results for these were within 10% of the

original sample and reported as the mean between the
duplicates. When the two duplicates had a difference in
concentration higher than 10%, a triplicate was run.

All sediment samples were also analyzed for additional
metals including aluminum (Al), arsenic (As), chromium
(Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn). These
analyses were conducted at ALS in Scoresby,Victoria, a com-
mercial laboratory accredited by the National Association
of Testing Authorities. Sediments were first ground into
a fine powder and then were digested using aqua regia
(hydrochloric and nitric acids), and the digested sediments
were analyzed using inductively coupled plasmamass spec-
trometry following USEPA SW846 (US EPA, 2007). Limits of
reporting in dry weight are 5 mg/kg. All laboratory blanks
were below the detection limit, and duplicate runs were
within 6.8% difference of each other for all metals. Recov-
ery rates were between 80.7% and 116% for all metals.

Particle size distribution of all sediment samples was
determined at the Coastal Lab (University of Melbourne,
Parkville, Victoria) using 0.25 g wet weight of the sediment
sample. The sediment samples were first digested to re-
move all organic matter by heating the samples and slowly
adding 30% hydrogen peroxide until all organic matter was
removed. One ml of tetra-sodium pyrophosphate decahy-
drate was then added to disperse each sample, and samples
were ultrasonicated for 30 minutes. The particle size distri-
bution of sediments was then analyzed in a Beckman Coul-
ter LP 13320, ensuring an obscuration of at least 7%.

Total organic carbon of the sediment samples was
determined by weight loss on ignition at the ANU Palaeo-
works Lab, following the protocols of Wang et al. (2011).
After freeze-drying samples, shells and other visible
organic materials were removed. Sediment was weighed
to approximately 1 g per sample and then heated in

Figure 1. Locations sampled for pre-industrial background sediments. Insert shows zoomed in map of the state of
Tasmania. DOI: https://doi.org/10.1525/elementa.019.f1
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a muffle furnace (LABEC, model CEMLL) at 550�C for 8 h.
After 12 h, samples were allowed to cool to room temper-
ature and then weighed again.

Data analysis

We calculated the median, minimum, and maximum con-
centrations of mercury prior to industrialization for each
lake. These distributions were then compared to sediment
quality guideline values (DGVs) in Australia (Water Quality
Australia, 2018) to quantify the differences between back-
ground mercury concentrations and the DGVs.

We attempted to explain the spatial variability in back-
ground mercury concentrations by identifying relation-
ships between background mercury concentrations,
sediment characteristics and lake catchment characteris-
tics. The sediment characteristics assessed included grain
size (% clay) and organic matter content. The lake catch-
ment characteristics assessed included elevation, current
average annual temperature, current average annual rain-
fall and evapotranspiration and lithology. These catch-
ment characteristics were obtained from national spatial
data sets (Geoscience Australia, 2011, 2012). For all cate-
gorical catchment characteristics, we used the Kruskal–
Wallis chi-squared test (a ¼ .05) to assess whether statis-
tically significant differences in background mercury con-
centrations were explained by catchment characteristics.
For numerical catchment characteristics, the Spearman
Correlation Coefficient (Spearman, 2010; a ¼ .05) was
used to assess whether there was a statistically significant
relationship between the catchment characteristic and
background mercury concentration. These analyses were
completed in RStudio Version 3.5.2 (RStudio Team, 2015).

Finally, we developed predictions of background mer-
cury concentrations in waterways across Australia. We
used the statistical distributions of background mercury

concentrations from each geological formation for which
background sedimentary mercury concentrations were
available. We log-transformed all background mercury
concentrations. We then determined the median, 2.5th
and 97.5th percentiles of the distributions of background
log-transformed mercury concentrations for each geolog-
ical formation.

Mapping

A map with the predicted background log-transformed
mercury concentrations across Australia was produced
using Arc Map 10.6.1. The Join Feature tool was used to
combine a layer of Australian lithology (Geoscience Aus-
tralia, 2012) with the 2.5th, 50th, and 97.5th percentiles
of mercury background distribution calculated for the
four lithologies related to the lakes in this study: igneous
mafic intrusive, igneous mafic volcanic, regolith, and sed-
imentary siliciclastic. Areas where lithological data were
not available were left blank.

Results and discussion
Background mercury concentrations in sediments

compared to sediment quality guidelines

Background mercury concentrations in the 21 Australian
lakes ranged from 15.6 ng/g to 249 ng/g. DGVs for mercury
derivedusing ecotoxicological data are 150ng/g in Australia
(Water Quality Australia, 2018). In some Australian lakes,
background mercury concentrations were considerably
lower than the existing DGVs. Figure 2 indicates that 19
of the 21 lakes had median background mercury concen-
trations that were less than the existing DGVs derived
from ecotoxicological data. These results indicate that ex-
isting sediment quality guidelines in Australia can overes-
timate Australian background sediment mercury
concentrations by at least nine times (Figure 2).

Figure 2. Mercury concentrations (ng/g) in pre-industrial sediments compared to the Australia New Zealand sediment
quality guidelines (Water Quality Australia, 2018). Dots represent the background medians (calculated using the
samples taken from 2 ka to 8 ka) and error bars represent the range in concentrations between 2 ka and 8 ka.
DOI: https://doi.org/10.1525/elementa.019.f2
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Two lakes (Hartz and Perry, all located in Tasmania) had
medianbackgroundmercury concentrationshigher than the
default mercury guideline values (Figure 2). This suggests
that under current guideline values, these lakes would
potentially be considered contaminated even prior to indus-
trialization. This indicates the importance of identifying the
background sediment concentrations of aquatic systems and
using these to help determine restoration targets.

Background concentrations of other metals (As, Cr, Cu,
Pb, Ni, and Zn) were mostly below the detection limit of 5
mg/kg, so no data analyses were performed with these
data (presented in Supplementary Table S1).

Variability in background sediment mercury

concentrations

As indicated in Figure 2, there is considerable spatial var-
iability in background mercury concentrations in lakes
across Australia. Background mercury concentrations ran-
ged from 12 ng/g at Tareena Billabong in New South
Wales to 206 ng/g at Hartz Lake in Tasmania.

From the 21 lakes studied, the spatial variability is
considerably greater than the temporal variability in back-
ground mercury concentrations. The spatial variability in
background mercury concentrations (represented by the
mercury concentration range divided by the median) is
433% between the 21 lakes but ranges from 5% to
114% for the temporal variability (also represented by the
mercury concentration range divided by the median) in
background concentrations. In Figure 3, black dots repre-
sent the background median values (calculated using the
samples taken from 2 ka to 8 ka). The error bars represent
the ranges (i.e., temporal variability) in background mer-
cury concentrations between 2 ka and 8 ka for each site.

This graphical representation demonstrates that, between
2 ka and 8 ka, spatial variability in background concen-
trations is greater than temporal variability. This agrees
with previous works indicating consistent background
levels of metals in lake cores prior to European settle-
ment and industrialization of Australia (Hollins et al.,
2011; Lintern et al., 2015). Note that lakes from main-
land Australia have less variability of mercury concentra-
tion than sites in Tasmania.

Relationship between background mercury

concentrations and catchment characteristics

There is a strong positive correlation between mercury
concentrations and organic matter (r ¼ 0.90, P < 0.05),
as well as a positive correlation between mercury
(r ¼ 0.56, P < 0.05), elevation and rainfall (r ¼ 0.32,
P < 0.05; Figure 4). Sediment grain size and catchment
evapotranspiration and temperature are not significantly
correlated to spatial differences between the background
mercury concentrations (Figure 4).

The high correlation of mercury with organic matter
agrees with previous studies (Bengtsson and Picado, 2008;
Chakraborty et al., 2015). As for other locations worldwide,
mercury in these 21 freshwater catchments of Australia is
highly influenced by reduction and complexation with
organic matter (Chakraborty et al., 2015). As such organic
matter content of sediments influences spatial differences
in mercury concentrations. The correlation between rain-
fall and elevation can be explained by the process of wet
deposition in which mercury aerosol and reactive gaseous
forms of Hg(II) (RGM) are efficiently scavenged by precip-
itation events. This enables the deposition of atmospheric
mercury to the earth’s surface and freshwater catchments

Figure 3. Comparison of spatial versus temporal variability in mercury concentrations of 21 freshwater lakes in
Australia. Black dots represent the background medians (calculated using the samples taken from 2 ka to 8 ka).
Blue dots represent lakes with only one background sample available, represented in the graph by the original
mercury concentration instead of the median). The error bars represent the ranges in background mercury
concentrations between 2 ka and 8 ka for each site (All measured mercury concentrations are provided in
Supplementary Figure S1). DOI: https://doi.org/10.1525/elementa.019.f3
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(Guentzel et al., 2001). Catchment elevation is likely cor-
related to mercury in this study due to its correlation
with rainfall (Figure 4). The highest lakes in this study
are located in Tasmania, one of the wettest regions in
Australia (BOM, 2019).

The Kruskal–Wallis H test showed mercury concentra-
tions were significantly different depending on the
catchment lithology of the lakes w2 (2) ¼ 24.678 P ¼
1.8�10-5 (Figure 5). Post hoc comparisons using the Bon-
ferroni test indicated that “igneous mafic intrusive” was

Figure 4. Relationship between background mercury concentration (ng/g), organic matter (%), grain size (% clay),
elevation (m), rainfall (mm), evapotranspiration (mm), and temperature (�C) in sediments prior to European
settlement. DOI: https://doi.org/10.1525/elementa.019.f4

Figure 5. Background mercury concentrations (ng/g) in 21 freshwater lake sediments in Australia, plotted by catchment
lithology DOI: https://doi.org/10.1525/elementa.019.f5
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the catchment rock type with highest mercury concen-
trations, significantly different from “sedimentary
siliciclastic”, “regolith” and “igneous mafic volcanic” rock
(P ¼ 1.4�10-2, P ¼ 5.8�10-5, and P ¼ 1.8�10-4,
respectively).

The largest mercury concentrations were measured in
igneous mafic intrusive formations and the lowest con-
centrations in the regolith. The higher mercury concentra-
tions in the igneous mafic intrusive formations is a result
of mercury being sourced from volcanic activities (Gustin
et al., 2000). The most important and efficient natural
source of mercury is volcanic activity, which liberates mer-
cury via quiescent degassing events that overwhelm the
atmospheric budget of mercury (Higueras et al., 2013).
Thus, igneous mafic intrusive formations in Australian
freshwater catchments play important roles on mercury
concentration in freshwater lakes in the country.

We suggest the use of this link between lithology and
background mercury concentrations in lake sediments as
a useful way to predict background mercury concentra-
tions in lakes where background sediment samples are
not available. In addition, this assessment of catchment
lithology and distribution of mercury may identify poten-
tial hot spots for natural mercury emissions in Australia.
Currently, there is no published material available on nat-
ural emissions of mercury from soils in the country. The
link between rock formation and mercury concentrations
provided in this study is the first step to understand the
natural mercury emissions in the country and provides
guidance to future studies on soil emission fluxes. This
is particularly the case for mercury emissions from fire,
as bushfires promote volatilization of mercury in soil
(Schneider et al., 2019).

Predicted background mercury concentrations

across Australia

Predicted background mercury concentrations (log-nor-
malized) across Australia are presented in Figure 6. Re-
gions across eastern Tasmania and northwestern
Australia are likely to present the highest levels of

background mercury concentrations in freshwater sedi-
ments (with a predicted log-normalized median of 4.8
ng/g), with the lowest background mercury concentra-
tions likely in inland areas in eastern Australia (with
a log-normalized median of 3.03 ng/g). This is a concern
for mercury management in Tasmania, considering that
several current and legacy mining sites, which mobilize
mercury from the earth’s crust to the atmosphere, are
located in this area of the country (Unger et al., 2012).

While these maps could be used as a preliminary guide
when determining background mercury concentration for
water quality and sediment quality management pur-
poses, further analysis is recommended to refine and
expand these maps and validate results with fine-scale
analyses. First, as only 21 lakes were used in this analysis,
there are several lithologies that were excluded from Fig-
ure 5, including sedimentary carbonates, organic-rich
rocks, and argillaceous detrital sediments. The inclusion
of cores from lakes with these geologies in the analysis
could expand the coverage of our predicted background
mercury concentrations across Australia. Second, some of
the distributions of background mercury concentrations
are based on as little as 12 data points (e.g., for the igne-
ous mafic intrusive and igneous mafic volcanic forma-
tions). The inclusion of a larger number of lake core
samples could further refine the statistical distributions
available for background mercury concentrations for
waterways with these geologies. Further, the risk of mer-
cury contamination to society and the environment sug-
gests a more comprehensive program of background
analyses based on pre-European sediment cores is war-
ranted. Finally, the estimates provided in these maps
should not be considered in areas in which cinnabar de-
posits have been recorded (McQueen, 2011).

Conclusions
This study aims to compare background lake sediment
concentrations of mercury in Australia to existing sedi-
ment quality guidelines. We defined “background” lake
sediments as those deposited prior to industrialization,

Figure 6. Maps showing the (a) 2.5th percentile, (b) median, and (c) 97.5th percentile of predicted log-normalized
background mercury concentrations across Australia. DOI: https://doi.org/10.1525/elementa.019.f6
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mining, and intensification of agricultural activities in
Australia in the early 19th century. Mercury concentra-
tions in background lake sediments from 21 lakes across
Australia indicate that a large proportion of lake sedi-
ments have mercury concentrations that are lower than
the Australian sediment quality guidelines. Sediment
quality guidelines for mercury were nine times larger than
background mercury sediment concentrations. This indi-
cates that, for mitigation or waterway management pro-
jects aiming to restore waterways polluted by mercury,
“background” levels should be considered in addition to
the existing Australian sediment quality guideline values.
An understanding of site-specific background mercury
concentrations is necessary for setting these restoration
targets. Furthermore, this suggests that adoption of the
existing sediment quality guidelines for mercury in Aus-
tralia should not be used as an absolute value to protect
some ecosystem services (e.g., benthic organisms or vege-
tation) native to the local region. Studies have reported
that mercury toxicity tolerance is linked to exposure his-
tory. Flora and fauna that live in high mercury concentra-
tion sites are able to tolerate higher dosages of mercury
than those that have no previous exposure (Chang, 1977;
Singh, 2005). In this context, the DGV value should be
used more carefully at sites with lower background mer-
cury concentrations.

We recognize that determining background mercury
concentrations for every waterway in Australia is not
feasible. Using our understanding of the background
mercury concentrations in 21 lake systems across Austra-
lia, we have identified that these background concentra-
tions are mainly driven by organic matter, precipitation,
and underlying geology of the region. We have produced
maps that predict background mercury concentrations,
based on geology, across Australia. These maps offer an
initial baseline against which current sediment mercury
concentrations can be compared. Further studies using
a greater number of sites, particularly from northern and
western parts of the continent, would provide more
robust predictions of background mercury concentra-
tions in waterway sediments. We recommend that future
researchers and the Australian government work
together to develop a coordinated program of analyzing
pre-European sediments to improve the robustness of
this map. Regardless, this study provides the first inven-
tory of mercury concentrations in sediments in Australia,
which could be used as restoration targets in remediating
Australian waterways with elevated mercury levels. Fur-
thermore, the results of this study provide baseline guid-
ance for future mercury studies in the freshwater lake
systems in Australia.
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