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Abstract 

 
Background: Hierarchical clustering, a common “unsupervised” machine-learning algorithm, 

is advantageous for exploring potential underlying aetiology in particularly heterogeneous 

diseases. We investigated potential embolic sources in ESUS using a data-driven, machine- 

learning method, and explored variation in stroke recurrence between clusters. 

Methods: We used hierarchical k-means clustering algorithm on patients’ baseline data, 

which assigned each individual into a unique clustering group, using a minimum-variance 

method to calculate the similarity between ESUS patients based on all baseline features. 

Potential embolic sources were categorised into atrial cardiopathy, atrial fibrillation, arterial 

disease, left ventricular disease, cardiac valvulopathy, patent foramen ovale (PFO) and cancer. 

Results: Among 800 consecutive ESUS patients (43.3% women, median age 67years), the 

optimal number of clusters was 4. Left ventricular disease was most prevalent in cluster 1 

(present in all patients) and perfectly associated with cluster 1. PFO was most prevalent in 

cluster 2 (38.9% of patients) and associated significantly with increased likelihood of cluster 2 

(adjusted odds-ratio:2.69, 95%CI:1.64-4.41). Arterial disease was most prevalent in cluster 3 

(57.7%) and associated with increased likelihood of cluster 3 (adjusted odds-ratio:2.21, 

95%CI:1.43-3.13). Atrial cardiopathy was most prevalent in cluster 4 (100%) and perfectly 

associated with cluster 4. Cluster 3 was the largest cluster involving 53.7% of patients. Atrial 

fibrillation was not significantly associated with any cluster. 

Conclusions: This data-driven machine-learning analysis identified 4 clusters of ESUS which 

were strongly associated with arterial disease, atrial cardiopathy, PFO and left ventricular 

disease respectively. More than half of patients were assigned to the cluster associated with 

arterial disease. 
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Introduction 

 
Approximately 17% of all ischemic stroke patients have an embolic stroke of undetermined 

source (ESUS), i.e. a stroke without an apparent cause despite recommended diagnostic work-

up[1]. Numerous underlying pathologies may serve as embolic sources in patients with ESUS 

like atherosclerotic plaques in the carotids and the aortic arch, covert atrial fibrillation (AF), 

patent foramen ovale (PFO), left ventricular disease, atrial cardiopathy, cancer and cardiac 

valvular disease[1]. Recently, we showed that there is significant overlap of potential embolic 

sources (PES) in patients with ESUS: in a cohort of consecutive ESUS patients, 65.5% had ≥2 

PES and 31.1% had ≥3 PES, whereas on average each patient had 2 PES[2]. In this context, it 

is frequently difficult to identify the actual source of embolism in an ESUS patient, when 

several PES co-exist[3]. 

Clustering algorithms, a common “unsupervised” machine-learning, can be used to identify 

groups (clusters) of similar individuals based on the sum of the combined values of their 

measured characteristics[4]. In hierarchical clustering, the results are easily reproducible and 

this process is fixed once clusters are assigned, so participants cannot be reclassified into a 

different cluster. This contrasts with standard regression methods, which is used to identify 

associations between response and explanatory variables. This belongs to “supervised” 

learning which can be used for multiple testing to determine significant differences between 

groups, which need to be specified a priori. Each test is independent of the other tests, which 

results in groups, which are only relevant to the particular variable tested. Clustering takes 

into account all variables, providing a way to holistically represent the entirety of the data 

collected. [5] This process, therefore, is extremely advantageous for exploring the potential 

underlying aetiology in particularly heterogeneous diseases, like ESUS. 

In this context, we investigated the potential sources of embolism in ESUS patients using a 

data-driven, machine-learning analytical method, and explored variation in rates of stroke 

recurrence between clusters. 



 

Methods 
 

Data availability statement 

 
The data that support the findings of this study are available from the corresponding author 

upon reasonable request. 

 

Patient population 

 
We analysed complete data from consecutive patients with ESUS recruited in three 

prospective stroke registries: ASTRAL (Acute Stroke Registry and Analysis of Lausanne), 

Athens Stroke Registry, and Larissa Stroke Registry[6-8]. A standard pro-forma template was 

used to collect all clinical, demographic, biometric, biomarkers and outcome data. The use of 

the registry data for research was approved by local Institutional Review Boards and the study 

is registered at Clinicaltrials.gov (NCT02766205). Full description study procedures  and 

methods were previously published [2]. 

The definition of ESUS was based on the Cryptogenic Stroke/ESUS International Working 

Group criteria: non-lacunar brain infarct in the absence of a) extracranial atherosclerosis 

causing ≥50% luminal stenosis in arteries supplying the area of ischemia or b) major-risk 

cardioembolic source or c) any other specific cause of stroke (e.g. arteritis, dissection, 

migraine/vasospasm, or drug misuse)[1]. 

 
 

Patient features included in the analysis and methodology of cluster generation 

 
The clustering methods utilised all baseline features detailed in the supplemental table, which 

included demographics, lifestyle factors, clinical symptoms/signs during the qualifying ESUS, 

comorbidities, biometrics, biomarkers, vascular imaging, brain imaging, electrocardiogram 

and echocardiography. 

In order to identify groups of patients with similar characteristics (i.e. clusters), we used a 

combined k-means and hierarchical agglomerative approach to generate clusters – called 

hierarchical k-means clustering [9]. This process allows for the k-means based approach to 



 

accelerate or speed up a traditional k-means algorithm in both training and query phases, 

which allows for a much larger number of centroids to be used, which in turn leads to much 

better learning [9]. In this process, we pick some k to be the branching factor, which defines 

the number of clusters at each level of the clustering hierarchy. We then cluster the set of 

points into k clusters using a standard k-means algorithm. Finally, we recursively clustered 

each sub-cluster until we determine a small fixed number of points. Using all the baseline data 

provided from ESUS patients, the algorithm therefore could assign each individual into a 

unique cluster. 

To determine the optimum number of clusters, we used a combined approach using 30 

different clustering indices, which includes common methods including “elbow”, “average 

silhouette”, or “gap statistics”. The optimal number of clusters were determined from the 

highest frequency of selection from all 30 indices [10]. To visualize the clustering process, we 

generated a dendrogram (a tree diagram) to illustrate the arrangement of the clusters 

produced [11]. Each branching creates a unique participant cluster, with the size of the 

clusters determined by the height of the branches. Separately, we also conducted a principle 

components analysis (PCA) by plotting the first two principle components on a coordinate to 

observe the clusters between each ESUS patient by his/her respective assigned cluster group. 

These principal components were derived using the orthogonal transformation (eigenvectors 

and eigenvalues) to reduce down the dimensionality of the original data, from all the clinical 

features collected on ESUS patients. Clustering analyses and data visualisation tools were 

conducted using statistical software R using packages cluster, NbClust, factoextra, dendxtend 

and ggplot2. 

 
 

Description of clusters: summary characteristics and prevalence of potential embolic sources 

Descriptive characteristics of each cluster were provided, reporting number (%) and median 

(interquartile range [IQR]) for categorical and continuous variables, respectively. We further 

profiled each cluster by determining the prevalence of each PES within each cluster.  Patients 

were also categorised by the number of PES: 0-1 PES, 2 PES, or ≥3 PES. 

 

Potential embolic sources were categorised as follows: atrial cardiopathy, AF, arterial disease, 

left ventricular disease, cardiac valvular disease, PFO, and cancer, as previously 



 

described in detail[2]. In particular, based on previously published associations with the risk 

of stroke, atrial cardiopathy was diagnosed if the echocardiogram reported left atrial 

dilatation or increased left atrial diameter (>38 mm for women and >40 mm for men)[12, 13], 

or if supraventricular extrasystoles were present at the 12-lead electrocardiograms 

performed during hospitalization[14, 15]. We diagnosed arterial disease in case of presence 

of any ipsilateral atherosclerotic carotid plaque causing luminal stenosis of <50%[16-18] or 

aortic arch atherosclerosis[19-22] based on the imaging reports. We did not review the 

images. We did not include contralateral carotid atherosclerosis in this PES. Left ventricular 

disease was diagnosed if low LV ejection fraction (<35%) or LV hypertrophy or left-sided heart 

failure were reported at the echocardiogram, or if LV hypertrophy was identified at the 

electrocardiogram (Sokolow index ≥35mm)[23]. We diagnosed cardiac valvular disease if 

moderate-to-severe stenosis or regurgitation of the mitral or aortic valve was reported at the 

echocardiogram. Atrial fibrillation was assessed during on-site patient visits at the outpatient 

clinic and/or by contact with the patient and/or the next of kin or the patient’s primary 

physician; it was considered present if confirmed by an electrocardiogram (ECG) performed 

for any reason including palpitations, irregular pulse on clinical examination, in- hospital 

surveillance or portable outpatient monitoring. 

 

Clinical endpoints during follow-up 

We evaluated the risk of stroke recurrence over the 10 years follow-up by cluster. Stroke 

during follow-up was ascertained by on-site patient visits at outpatient’s clinics, contact  with 

the patient’s next of kin, or the patients’ primary physician. Where possible, the outcome had 

been adjudicated by reviewing patient’s medical notes and imaging outcomes. 

 

Statistical analysis 

Comparisons across clusters were conducted using the non-parametric Kruskal-Wallis test for 

continuous variables and χ2 tests for categorical variables [24, 25]. Prior to the clustering 

analysis, data which were missing-at-random were imputed using multiple imputation using 

chained equations[26]. 

To quantify the contribution of each PES to each cluster, we applied logistic regression to 

determine the association between each PES with the derived cluster. In this analysis, the PES 

was the exposure variable and the cluster grouping was the outcome variable (coded as 1 – 

belonging to the cluster, or coded as 0 – belonging to other clusters). All models were adjusted 



 

for sex, age, dyslipidaemias, diabetes mellitus, smoking, coronary artery disease, and National 

Institute of Health Stroke Scale (NIHSS) score at admission. The PES in each cluster were then 

ranked by significance and by the effect size, with 95% confidence intervals provided. In this 

way, we were able to “profile” each cluster and associate them to specific PES. 

Subsequently, we evaluated the 10-year follow-up of stroke recurrence by cluster. Incidence 

rates (per 1000 person-years) and 95% CIs were provided. To obtain estimates for the 

association between cluster groups and stroke recurrence, we performed Cox proportional 

hazards regression analysis, with informative censoring of the survival time when patients 

were lost to follow-up or died. The cluster with the lowest event rate for stroke recurrence 

was used as the reference group. 

Further, we quantified the dose-response relationship of having multiple PES compared to a 

single or no PES using Cox proportional hazards. Similar to the logistic regression analyses, all 

hazard ratios were adjusted for sex, age, hypertension, dyslipidaemia, diabetes mellitus, 

smoking, coronary artery disease, and NIHSS at admission. All hazard models were assessed 

for proportional hazards using Schoenfeld residuals. P-values < 0.05 were considered 

statistically significant. 



 

Results 

 
A total of 800 ESUS patients (43.3% women) were included in the analysis. The median age of 

patients was 67 years (IQR 54-77). 

 

Visualization of the hierarchical clustering analysis 

From 30 clustering indices, it was found that the optimal number of clusters is 4 

(supplemental Figure 1). The arrangement of the 4 clusters during the clustering process is 

illustrated at the dendrogram (supplemental Figure 2). 

The principal components analysis identified that 82% of all principal components were 

needed to explain 100% variation of the original ESUS data (supplemental Figure 3a), which 

suggests that there is substantial heterogeneity between ESUS patients in clinical features, as 

a high number of principal components are needed to explain significant variation of the 

original data. By plotting the first two principal components which only explains up to 16% of 

the variation in the original data, visual separation can be seen between clusters from the 

hierarchical clustering process (supplemental Figure 3b). Cluster sizes were as follows: 44 

patients (5.5%) in cluster 1, 149 patients (18.6%) in cluster 2, 430 patients (53.8%) in cluster 

3, and 177 patients (22.1%) in cluster 4. There was overlap between cluster 1 and cluster 2. 

However, clusters 2, 3, and 4 all remained quite distinct, with a large degree of separation 

and very little overlap. 

 

Characteristics of the cluster groups 

The baseline characteristics of the patients in the four clusters are summarized in Table 1. 

There were significant differences between clusters in terms of gender, baseline age, NIHSS 

at admission, hypertension, diabetes mellitus, coronary artery disease, previous stroke and 

antithrombotic treatment at discharge. 

The prevalence of each PES stratified by cluster is summarised in Table 2. There were 

significant differences between clusters in the prevalence of atrial fibrillation, atrial 

cardiopathy, arterial disease, left ventricular disease, PFO and cancer. Left ventricular 



 

disease was most prevalent in cluster 1 (100%). PFO was most prevalent in cluster 2 (38.9%). 

Arterial disease was most prevalent in cluster 3 (57.7%). Atrial cardiopathy were most 

prevalent in cluster 4 (100%). 

 

Association between cluster grouping and PES 

Using multivariable logistic regression models, we determined the association between each 

PES and cluster membership. The adjusted odds ratios and 95% CIs for each cluster are 

presented in Table 3. Left ventricular disease was perfectly associated with cluster 1 

membership. PFO was significantly associated with increased likelihood of cluster 2 

membership (adjusted odds-ratio 2.69, 95% CI 1.64-4.41). Arterial disease was significantly 

associated with increased likelihood of cluster 3 membership (adjusted odds-ratio 2.21, 95% 

CI 1.43-3.13). Atrial cardiopathy was perfectly associated with cluster 4 membership. 

 

Risk of stroke recurrence across clusters 

The mean and median follow-up duration was 3.7 years (SD 3.7) and 2.1 years (IQR 0.8 – 5.8). 

Over 2,922 person-years, there were 101 recurrent strokes, corresponding to an overall rate 

of 34.6 per 1000 person-years (95% CI 28.4–42.0). The risk of stroke recurrence was not 

different across clusters in adjusted models (Table 4 and Figure 1). 

 

 

 

Discussion 

 
This data-driven machine-learning analysis of consecutive ESUS patients identified 4 clusters 

of patients based on their baseline characteristics: the largest cluster which included more 

than half of the overall population, was associated with the presence of arterial disease; two 

clusters of medium size including approximately 15-20% of the overall population, were 

associated with atrial cardiopathy and PFO respectively; and a small cluster which included 

only 5% of the overall population and was associated with left ventricular disease. Atrial 

fibrillation was not associated with any cluster. The risk of stroke recurrence was similar 

across clusters. 

During the recent years, there has been emerging evidence supporting an important 

etiological association between ESUS and atherosclerotic plaques. A recent analysis of the 

NAVIGATE-ESUS trial [27] as well as several other studies [28-40] showed that the 



 

prevalence of carotid plaques is higher ipsilateral to the infarct than contralateral in patients 

with ESUS. In addition, the AF-ESUS study showed that new incident AF is less frequently 

detected in patients with ESUS and carotid plaques compared to those without[18]. Similar, 

in young adults with cryptogenic stroke, carotid plaques were associated with the absence of 

PFO[41]. Both latter studies show that carotid plaques act as a competing stroke etiology to 

other established stroke etiologies, and hence, support their role as an underlying cause of 

ESUS. Moreover, a recent analysis of consecutive emboli retrieved during mechanical 

thrombectomy showed that the emboli from patients with large artery atherosclerotic and 

cryptogenic strokes had similar proportion of platelet-rich clots, which was significantly higher 

compared with thrombi from patients with cardioembolic stroke[42]. The results of the 

present study provide further arguments in support of an important association between 

ESUS and atherosclerotic plaques. 

 

The concept of atrial cardiopathy has emerged during the recent years as an important source 

of embolism in patients with ESUS[43]. There is growing body of evidence indicating that 

thrombi may be formed in the diseased left atrium, even in the absence of atrial fibrillation. 

Atrial cardiopathy has been assessed in various ways using several indices including 

biomarkers[44-46], cardiac MRI[47] and electrocardiographic indices[48-50]. The present 

analysis adds to the evidence which supports an important causative role of atrial cardiopathy 

in ESUS and indicate that atrial cardiopathy could be the cause of stroke in 15- 20% of the 

overall ESUS population. The ongoing ARCADIA trial (AtRial Cardiopathy and Antithrombotic 

Drugs In Prevention After Cryptogenic Stroke) currently investigates whether patients with 

ESUS and atrial cardiopathy respond better to apixaban compared to aspirin for secondary 

stroke prevention[51]. 

Although older randomized trials were neutral[52], several recent randomized trials showed 

that percutaneous PFO closure is associated with a large reduction of recurrent stroke rates 

in patients with ESUS[53], supporting an important etiological association between PFO and 

ESUS. The results of our analysis are in line with this, as we identified a cluster of patients 

(18% of the overall cohort) who is associated with PFO. 

Several observational studies and randomized trials showed that AF can be detected in 30% 

of ESUS patients during follow-up, suggesting a strong causal association between AF and 

ESUS[54-58]. However, there has been emerging evidence questioning the strength of this 

association, especially for short-lasting episodes detected remotely after ESUS[59]. The rate 



 

of AF detection in ESUS patients was similar with other non-ESUS stroke patients[56], as well 

as with older patients without previous stroke[60]. In addition, ESUS patients are 

phenotypically different compared with stroke patients with AF, with the former being 

younger with milder strokes[57, 58, 61, 62]. Moreover, the majority of ischemic strokes do 

not occur proximal to recent episodes of atrial tachycardia or atrial fibrillation, as shown in 

patients with implantable cardiac monitoring devices in the ASSERT[63] and TRENDS[64] 

studies. Finally, if the association between AF and ESUS was indeed strong, direct oral 

anticoagulants would have probably reduced stroke recurrence rates compared with aspirin, 

in line with the 55% reduction in stroke risk conferred by apixaban vs. aspirin reported in  the 

AVERROES trial[65]; however, this was not the case in the NAVIGATE-ESUS and RE- SPECT 

ESUS trials in which patients assigned to direct oral anticoagulants and aspirin had similar 

recurrence rates [61, 62]. The present analysis adds to the aforementioned evidence which 

support the argument that AF is not so strongly associated with ESUS as it was initially 

believed. 

The main strength of this study is its design: the data-driven hierarchical-clustering analysis 

allowed the categorization of patients into distinct clusters based on their all their baseline 

characteristics, without pre-specification of variables, and then coupling of these clusters with 

PES. This is a particularly advantageous method in cases of datasets with large degree of 

heterogeneity between individuals. The categorization of patients into clusters rather than 

PES is advantageous and more informative, as there is large overlap of PES in patients with 

ESUS. For example, a previous analysis in the same cohort showed that left ventricular disease 

was present in 54.4% of the overall cohort[2]; however, the present analysis showed that the 

cluster which was associated with left ventricular disease included only 5% of the overall 

cohort. This suggests that for the majority of patients with left ventricular disease, this would 

represent an innocent by-stander rather than the actual embolic source. On the other hand, 

our study is limited by the risk of registration bias within and between the participating 

registries and differences in the workup of patients during the in-hospital phase. Finally, the 

clustering algorithms are empirical methods, which also may be limited by the sample size of 

the data and number of clinical features collection to determine cluster associations, as the 

analysis was not specifically powered to determine potential associations with future 

outcomes. Future research should explore whether these findings are consistent in a much 

larger sample of ESUS patients. 

In conclusion, this data-driven machine-learning hierarchical-clustering analysis identified 4 



 

clusters of ESUS patients which were associated with arterial disease, atrial cardiopathy, PFO 

and left ventricular disease respectively. Atrial fibrillation was not associated with any cluster. 

The risk of stroke recurrence was not different across clusters. 
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Table 1. Baseline characteristics and outcomes of patients, stratified by cluster. IQR – Interquartile range; NIHSS – National Institute of Health 

Stroke Scale; n – number; % - percentage. * (per 1000 patient years). 

 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 p-value 

(n=44) (n=149) (n=430) (n=177)  

Age, years Median (IQR) 67 (62–75) 62.9 (46.7–74.6) 66 (51.7–76.8) 71 (64–79) <0.001 

Female sex n (%) 14 (32.8) 51 (34.2) 205 (47.7) 75 (42.4) 0.013 

NIHSS score Median (IQR) 9 (3–21) 3 (2–6) 7 (3–14) 6 (3–13) <0.001 

Hypertension n (%) 30 (68.2) 80 (53.7) 250 (58.1) 136 (76.8) <0.001 

Dyslipidaemia n (%) 26 (59.1) 92 (61.7) 294 (68.4) 113 (63.8) 0.319 

Diabetes mellitus n (%) 19 (43.2) 21 (14.1) 66 (15.4) 42 (23.7) <0.001 

Smoking n (%) 16 (36.4) 53 (35.6) 183 (42.6) 57 (32.2) 0.087 

Coronary artery disease n (%) 13 (29.6) 17 (11.4) 41 (9.53) 47 (26.6) <0.001 

Previous stroke n (%) 3 (6.8) 21 (14.1) 83 (19.3) 21 (11.9) 0.039 

Antiplatelet at discharge n (%) 32 (72.7) 137 (92.0) 402 (93.5) 161 (91.0) <0.001 

Anticoagulant at discharge n (%) 8 (18.2) 10 (6.7) 31 (7.2) 14 (7.9) <0.001 

Death at follow-up n (%) 22 (50.0) 15 (10.1) 56 (13.0) 51 (28.8) <0.001 

Stroke recurrence n (%) 3 (6.8) 14 (9.4) 45 (10.5) 39 (22.0) <0.001 



 

 
 

Stroke recurrence (Event rate) * 21.7 (7.0– 67.3) 29.3 (17.3–49.5) 29.5 (22.0–39.5) 50.1 (36.6–68.6) 
 



 

 

Table 2. Prevalence of potential embolic sources and degree of their overlap stratified by cluster. PES – potential embolic sources; IQR – 

interquartile range, PFO – patent foramen ovale; n – number; % - percentage 

 

PES sources 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 p-value 

  (n=44) (n=149) (n=430) (n=177)  

Number of PES sources Median (IQR) 2 (2–3) 2(1–3) 2(1–3) 2(2–3) <0.001 

Number with 2 PES sources n (%) 20 (45.5) 42 (28.2) 134 (31.2) 81 (45.8) <0.001 

Number with ≥3 PES sources n (%) 17 (38.6) 43 (28.7) 119 (27.7) 69 (39.0) <0.001 

Atrial fibrillation n (%) 8 (18.2) 13 (8.7) 10 (9.3) 59 (33.3) <0.001 

Atrial cardiopathy n (%) 32 (72.7) 48 (32.2) 103 (24.0) 177 (100) <0.001 

Arterial disease n (%) 9 (20.5) 68 (45.6) 248 (57.7) 63 (35.6) <0.001 

Left ventricular disease n (%) 44 (100) 77 (51.7) 223 (51.9) 91 (51.4) <0.001 

Cardiac valvular disease n (%) 6 (13.6) 13 (8.7) 41 (9.5) 9 (5.1) 0.198 

PFO n (%) 1 (2.3) 58 (38.9) 101 (23.5) 10 (5.7) <0.001 

Cancer n (%) 2 (4.6) 13 (8.7) 50 (11.6) 9 (5.1) 0.051 



 

Table 3. Multivariable logistic regression to determine association and effect size for each 

potential embolic source and cluster membership. The adjusted odds ratios and 95% CIs for 

each cluster are ranked by significance and effect size. The regression model has been 

adjusted for sex, age, hypertension, dyslipidaemia, diabetes mellitus, smoking, coronary 

artery disease, and National Institute of Health Stroke Scale score at admission. PES - potential 

embolic source; CI – confidence interval; * 100% of individuals within the cluster had the 

condition. 

 

Odds ratio 95% CI Association 
 

Cluster 1 
 

Left ventricular disease Perfectly associated with cluster* Positive association 
 

Arterial disease 0.22 0.09 – 0.53 Negative association 

Atrial cardiopathy 1.82 0.81 – 4.05 No association 

Cardiac valvular disease 1.35 0.48 – 3.79 No association 

Atrial fibrillation 0.85 0.33 – 2.18 No association 

Cancer 0.53 0.11 – 2.48 No association 

PFO 0.24 0.03 – 1.95 No association 

Cluster 2    

PFO 2.69 1.64 – 4.41 Positive association 

Atrial fibrillation 0.65 0.34 – 1.28 No association 

Cardiac valvular disease 1.49 0.76 – 2.94 No association 

Left ventricular disease 1.17 0.76 – 1.81 No association 

Arterial disease 1.16 0.72 – 1.84 No association 

Cancer 1.14 0.59 – 2.23 No association 

Atrial cardiopathy 0.67 0.43 – 1.03 No association 

Cluster 3    

Arterial disease 2.12 1.43 – 3.13 Positive association 

Atrial cardiomyopathy 0.14 0.10 – 0.20 Negative association 

Cancer 1.63 0.90 – 2.96 No association 

Cardiac valvular disease 1.62 0.91 – 2.90 No association 

Atrial fibrillation 0.88 0.53 – 1.46 No association 



 

Left ventricular disease 0.84 0.58 – 1.21 No association 

PFO 0.69 0.44 – 1.11 No association 

Cluster 4 
 

 

Atrial cardiopathy Perfectly associated with cluster* Positive association 

Left ventricular disease 0.38 0.23 – 0.63 Negative association 

Cardiac valvular disease 0.32 0.14 – 0.72 Negative association 

Atrial fibrillation 1.46 0.83 – 2.55 No association 

Arterial disease 0.63 0.37 – 1.08 No association 

Cancer 0.47 0.20 – 1.11 No association 

PFO 0.47 0.20 – 1.13 No association 
 



 

Table 4. Multivariable regression analysis of the association between the phenotype clusters 

and stroke recurrence. The association has been adjusted for sex, age, hypertension, 

dyslipidaemia, diabetes mellitus, smoking, coronary artery disease, and National Institute of 

Health Stroke Scale score at admission. PES - potential embolic source; CI – confidence interval 

Hazard ratio 95% CI 
 

Cluster 1 Reference Reference 
 

Cluster 2 1.57 0.43 – 5.72 
 

Cluster 3 1.41 0.42 – 4.72 
 

Cluster 4 2.14 0.65 – 7.07 



 

 

Figure 1. Ten-year survival estimates of stroke recurrence in patients with embolic 

stroke of undetermined source, according to the assigned phenotype clusters 

 
 
 

 


