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ABSTRACT

Integrating nanomaterials with biological entities has led to the development of diagnostic tools 

and biotechnology-derived therapeutic products. However, to optimise the design of these 

hybrid bionanomaterials, it is essential to understand how controlling the biological 

interactions will influence desired outcomes. Ultimately, this knowledge will allow more rapid 

translation from the bench to the clinic. In this paper, we developed a micellar system that was 

assembled using modular antibody-polymer amphiphilic materials. The amphiphilic nature was 

established using either polyethylene glycol (PEG) or a single-chain variable fragment (scFv) 

from an antibody as the hydrophile, and a thermoresponsive polymer (poly(oligoethylene 

glycol) methyl ether methacrylate) as the hydrophobe. By varying the ratios of these 

components, a series of nanoparticles with different antibody content was self-assembled, 

where the surface presentation of targeting ligand was carefully controlled. In vitro and in vivo 

analysis of these systems identified a mismatch between the optimal targeting ligand density 

to achieve maximum cell association in vitro compared to tumour accumulation in vivo. For 

this system, we determined an optimum antibody density for both longer circulation and 

enhanced targeting to tumours that balanced stealthiness of the particle (to evade immune 

recognition as determined in both mouse models and in whole human blood) with enhanced 

accumulation achieved through receptor binding on tumour cells in solid tumours. This 

approach provides fundamental insights into how different antibody densities affect the 

interaction of designed nanoparticles with both target cells and immune cells, thereby offering 

a method to probe the intricate interplay between increased targeting efficiency versus the 

subsequent immune response to nanoparticles.
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Nanomedicines are now evolving as precisely engineered nanomaterials that offer significant 

potential to overcome many limitations of conventional anti-cancer drugs.1 The therapeutic 

efficacies of current drugs are limited due to unfavourable physicochemical properties such as 

low solubility, instability, toxicity issues due to lack of selectivity, and poor pharmacokinetics. 

In contrast, the properties of new nanomaterials can be designed to enhance biocompatibility, 

reduce toxicity, control drug release, and increase circulation time in the body, enabled much 

improved therapeutic delivery.2 Furthermore, nanomaterials offering theranostic features can 

enable real-time monitoring of site-specific drug delivery to the cancer target.3 Although 

nanomaterials have been intensively investigated for delivering drugs to the solid tumours, 

there are studies showing discrepancies with the number of nanoparticles reaching tumour sites 

versus the administered nanoparticle dose. In a meta-analysis of a wide range of nanomedicines 

administered to mice, it was suggested that on average only 0.7% of the injected dose is retained 

in the solid tumours, indicating the exceptional challenge for translation of nanomedicines.4 

In order to enhance delivery efficiency, it is vital to understand the factors that influence the 

pharmacokinetic profile and behaviour of nanomaterials. Upon intravenous administration, 

nanoparticles initially interact with blood components before distributing throughout the 

various tissues, including the target tumour site. Longer blood circulation times are a critical 

factor in achieving successful tumour accumulation, which ultimately depends on how well 

nanoparticles overcome the biological barriers and clearance systems designed to exclude and 

remove exogenous materials. For nanomaterials, a major problem is rapid coating by opsonin 

proteins and subsequent clearance by the mononuclear phagocytic system (MPS).5,6 The blood 
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residence times of nanoparticles can be influenced by their physicochemical properties such as 

shape, surface charge, size, and ligand densities.7 Nonetheless, an in-depth analysis of the 

relationships between physicochemical properties, body clearance and the overall targeting 

efficacies of nanoparticles has yet to be conducted and correlated fully across a coherent set of 

particles.

Research to date has established some rules for consideration when designing nanomaterials 

for drug delivery. For example, it is well reported that nanoparticle sizes in the range of 20 – 

30 nm results in higher receptor-mediated uptake, while nanoparticles in the 20 – 100 nm range 

can be used for enhanced liver accumulation.8 However, there is by no means a consensus in 

the literature as to what is the most ideal size of particle for optimal therapeutic efficiency and 

most nanoparticle strategies develop materials that span particle sizes between 20-200 nm. It 

is also well established (but not precisely quantified) that “targeted” nanomaterials show 

greater uptake and accumulation in cells, mostly under in vitro conditions. Often when these 

studies are translated to animals, however, incorporating a higher density of targeting protein 

functionality to enhance recognition at an intended disease site increases immune recognition 

and expedites clearance of nanomaterials; in some cases, such modulation with targeting 

ligands can actually decrease the tumour accumulation compared to the untargeted 

nanomedicine.9 Despite the wealth of data on new and sophisticated drug delivery vehicles, 

there are significant exceptions to these generalised rules, and there is no clear methodology 

for optimising targeting approaches for these materials.10 Furthermore, these generalised rules 

that often are used to design new materials seldom transfer between the bench, the cell in a 

dish, and the body, leading to a disconnect between materials design and observed properties.9 

One point of significant interest is the influence of targeting ligand density on nanomaterial 

interactions with cell surface receptors.11 A few studies have investigated how the number and 
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density of ligands influence the internalisation and subsequent cellular processing of 

bionanomaterials, but there is limited information on how the surface density of ligands affects 

the physiological behaviour of nanomaterials in circulation, and how this ultimately translates 

to tumour accumulation.12,13 Nonetheless, the limited data available suggests that there is a 

threshold at which clustering of ligands saturates surface receptors, often leading to modified 

internalisation pathways and variable efficacy of delivered therapeutics.14,15 The challenge is 

to develop strategies to design next-generation nanomaterials, accounting for the competing 

requirements of enhanced cellular uptake through higher ligand density, with embedded 

“stealthiness” to avoid rapid immune recognition and clearance. This epitomises the general 

observation that what is evidenced in vitro, is difficult to transition to in vivo, due to the absence 

of the competing requirement for stealthiness in the majority of in vitro assays.

To date, the majority of studies looking at receptor clustering effects have focused on the effect 

of small molecule ligands, such as the folate receptor.16 One reason for this is the intrinsic 

complexity associated with biomolecule assemblies, complicating the development of well-

defined systems where this effect can be monitored universally. This project progresses our 

understanding of targeting in a complex biological environment, through the development of 

micellar systems specifically designed to control the targeting ligand density of more 

biologically relevant protein-based ligands through the self-assembly process. This is achieved 

using thermoresponsive polymers, which can interact with the proteins in aqueous conditions 

without denaturing them. 

In this study, we synthesised an amphiphilic antibody-polymer conjugate that was self-

assembled to form micelles in which the surface constitutes a defined mixture of stealthy 

polymers and an antibody fragment (single-chain variable fragment – scFv) that shows high 

affinity for receptors upregulated on cancer cells. The advantage of this approach is that the 
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relatively small size of scFvs avoids steric effects associated with whole monoclonal 

antibodies, affording greater control over packing density, while the polymeric materials offer 

well-understood physicochemical tuneability that is required to develop such complex, yet 

ordered systems. By modulating the incorporation of antibody-polymer hybrid amphiphiles 

through co-assembly with purely synthetic polymer amphiphiles, the density of antibody 

fragments on the micelle can be manipulated across a significant range. Hence, the effect of 

ligand density on how the micelles bind to cell surface receptors and how it dictates the cellular 

uptake pathways of particular nanomaterials can be investigated. This can then be compared to 

the ultimate biological fate of the micelles upon injection into tumour-bearing mice, where the 

nanoparticles are exposed to a greater complement of biological barriers that limit tumour 

accumulation. This offers a robust approach to develop an in-depth understanding of how these 

fundamental properties can be utilised to enhance cellular uptake and influence biodistribution. 

Figure 1 schematically represents the hypothesis of this study, that increased antibody will lead 

to maximum binding efficiency in vitro, but also leads to greater immune recognition that often 

manifests in reduced tumour accumulation.
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Figure 1. Schematic diagram postulating the influence of ligand density on nanoparticle uptake 

in vitro and in vivo. An optimum ratio of antibody to PEG components on micelles may lead 

to an improvement in the therapeutic efficacy due to enhanced targeting and lower immune 

response.

RESULTS AND DISCUSSION

We set out to design a nanomaterial system where precise control over the ratio of antibody 

and PEG components could be achieved, allowing us to synthesise a range of micelles 

incorporating various antibody densities so we could understand their biological fate. The 

design elements of this study required a number of important conceptual and materials 
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crosslinking the final micellar assemblies. 4-cyano-4-
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(ethylsulfanylthiocarbonylsulfanyl)pentanoic acid (CEPA) was employed as the reversible 

addition-fragmentation chain transfer (RAFT) agent to provide control over the radical 

copolymerisation of these two monomers as well as impart acid chain-end functionality that 

could then be modified with a dibenzocyclooctyne (DBCO) amine linker for downstream 

coupling of the solvent-sensitive antibody fragments through strain promoted alkyne azide 

cycloaddition (SPAAC).18 The generalised scheme and selective characterisation of each 

8

advances. First, a synthetic component was required that could be coupled with proteins under 

aqueous conditions (i.e. water-soluble), but which would also act as the hydrophobe for 

assembly into micelles. It was also necessary to have a mechanism to crosslink the hydrophobic 

core for enhanced stability of the assemblies. Second, a suitable mechanism for coupling the 

antibody fragment to the hydrophobe was needed, as well as a defined way of tracking 

successful incorporation of the different components into the assemblies. 

Thermoresponsive, crosslinkable polymer chain as the hydrophobic component. A key 

challenge in the development of amphiphilic polymer-protein conjugates is the stringent 

reaction conditions required for antibody modifications. For example, such reactions cannot be 

undertaken in organic solvents (as this leads to loss of tertiary structure); however in water 

hydrophobic polymers are not soluble, and heterogeneous conjugation is poor yielding and 

uncontrolled.17 Thus, we sought to develop a thermoresponsive “hydrophobic” component for 

the amphiphilic system using di(ethylene glycol) methyl ether methacrylate (DEGMA) and 

pentafluorophenyl methacrylate (MAPFP) in which coupling to the antibody can be undertaken 

in water at low temperature, but upon an increase in temperature above the lower critical 

solution temperature (LCST) the polymer becomes insoluble. To this end, we sought to develop 

end-functional responsive polymers that also contained a mid-chain reactive group for 
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Si No. Sample M
n 

a

(kDa)
Đ

M

b
Yield
(%)

LCSTc

(°C)

1 p(DEGMA-co-MAPFP) 6.0 1.30 92 10

2 p(DEGMA-co-MACYS) 5.5 1.50 85 16

3 DBCO-p(DEGMA-co-MACYS) 6.5 1.60 82 16

Page 9 of 48

a Molecular weight obtained by SEC analysis in THF using PS standards. b Dispersity (ĐM) 
obtained by SEC analysis in THF using PS standards. c Onset temperature of the 
thermoresponsive transition.

A key element of our design was to ensure the stability of these micelles, both during in vitro 

and in vivo evaluation. To this end, we incorporated sulfhydryl units within the polymer chains 

to allow for disulfide-mediated crosslinking between polymer chains within the final micellar 

assemblies. The pentafluorophenyl (PFP) group within the copolymer was subsequently 

modified to present thiol groups through post-polymerisation modification with cysteamine 

(CYS).19 Near quantitative substitution of the pentafluorophenyl groups with CYS to form 

p(DEGMA-co-MACYS) was achieved using the polar aprotic solvent N,N-dimethylformamide 

9

component is presented in Figure 2A. Using CEPA, statistical copolymers of p(DEGMA-co-

MAPFP) were synthesised with defined molecular weights and dispersities (Table 1). The 

molecular weights of p(DEGMA-co-MAPFP) were calculated using 1H NMR by integrating 

the DEGMA side-chain protons at 4.01 − 4.24 ppm (for DEGMA contribution), the p(MAPFP) 

and p(DEGMA) methyl protons at 0.8 − 1.28 ppm and subtracting the contribution from 

DEGMA (to calculate the MAPFP contribution), and calibrating to the methylene protons 

adjacent to the terminal trithiocarbonate (3.22 ppm). 1H and 19F NMR spectra of the 

p(DEGMA-co-MAPFP) copolymer can be seen in Figure 2B and 2C, respectively, and SEC 

results are shown in Table 1.

Table 1. Summary of physicochemical characteristics of the hydrophobic component after 

each modification.
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(DMF), which is well-known to promote SN2 substitution reactions.20 This process was 

monitored through the disappearance of the fluorine peaks (-151.7, -152.7 (ortho), -158.2 

(para), and -163.3 (meta) ppm) in the 19F NMR spectrum of the polymer (Figure 2C) following 

amidation. Successful coupling of CYS to the polymer was also observed indirectly, with a 

significant change in the polymer LCST following modification (Table 1). The LCST onset 

temperature shifted from 10 °C to 16 °C upon CYS modification (Figure S2), presumably due 

to modulation of the overall copolymer hydrophobicity through replacement of the PFP group 

with the more hydrophilic thiol. Moreover, these thiol groups present potential crosslinking 

sites initiated through disulfide formation that would exhibit redox responsiveness for 

downstream application of these nanomaterials in drug delivery.21

The final step in the preparation of the responsive hydrophobic component of the amphiphile 

was chain-end modification to facilitate rapid conjugation of either the biological entity or PEG 

hydrophile, followed by incorporation of a fluorescent dye (Cy5 maleimide) for tracking 

purposes. The DBCO-p(DEGMA-co-MACYS) copolymer were conveniently prepared 

through amidation with a heterobifunctional linker (Figure 2).22 Successful modification was 

monitored by UV-Vis spectroscopy with the appearance of the characteristic absorbance peak 

of DBCO at 309 nm (Figure 2D) and 1H NMR which showed the presence of aromatic peaks 

between 7.3 – 7.65 ppm assigned to DBCO (Figure S1). 
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Figure 2. (A) Reaction scheme showing the synthesis of the thermoresponsive, crosslinkable 

polymer chain for the hydrophobic component of the amphiphiles (B) 1H NMR (500 MHz, 

CDCl3) spectrum of p(DEGMA-co-MAPFP) with (a) methylene protons adjacent to the 

trithiocarbonate, (b) (DEGMA) side-chain protons, and (c) p(MAPFP) and p(DEGMA) methyl 

protons. (C) 19F NMR (470 MHz, CDCl3) spectra of p(DEGMA-co-MAPFP) copolymer 

exhibiting the ortho-, meta-, and para- signals associated with the PFP repeat units (black), and 

after reaction of the polymer with CYS resulting in p(DEGMA-co-MACYS) copolymer (blue) 

indicating almost complete success of the amidation reaction. (D) UV-Vis spectra in methanol 

of DBCO amine (purple), p(DEGMA-co-MACYS) (blue) and DBCO-p(DEGMA-co-

MACYS) (red) showing the incorporation of DBCO and Cy5 peaks at 309 and 647 nm 

respectively.
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This was followed by conjugation of Cy5 maleimide dye onto a small portion of the thiol 

groups in the polymer to provide a diagnostic handle for the hydrophobic block, and the 

subsequent product was characterised using UV-Vis spectroscopy, which showed the 

characteristic absorbance peak of Cy5 at 647 nm. The LCST of the resulting polymer system 

was evaluated and shown to be 16 °C, suggesting that successful protein conjugation could 

occur at temperatures below this point when the polymer was soluble in water, but subsequent 

heating above this point would lead to self-assembly of the polymer chains (Figure S2). Table 

1 summarises the physicochemical properties of the hydrophobic component after subsequent 

modifications.

Development of amphiphilic conjugates. The thermoresponsive “hydrophobic” polymer 

described above was then coupled with either scFv-N3 or PEG-N3 hydrophiles through SPAAC 

reaction, a fast catalyst-free click chemistry method, as a convenient route to creating 

amphiphilic block copolymers.18 As a model antibody system, an scFv (25 kDa) of the 

established Prostate-Specific Membrane Antigen (PSMA) targeting antibody, J591, was 

engineered and produced in bacteria.23 Moreover, an unnatural amino acid containing azide 

functionality was engineered into the N-terminus of the scFv to allow convenient azide-alkyne 

click reactions to occur.24 The scFv was subsequently conjugated to DBCO-p(DEGMA-co-

MACYS) by incubation in PBS at 4 °C for 24 h resulting in the formation of hybrid conjugates 

(scFv-p(DEGMA-co-MACYS)). After conjugation, these amphiphiles were kept at 30 °C for 

10 min, leading to insolubility of the thermoresponsive chain. Subsequent centrifugation 

(14,100 rcf for 10 min) led to precipitation and formation of a hybrid conjugate pellet, while 

unbound scFvs remained in the supernatant and could be removed. The pellet was then 

redispersed into PBS and centrifuged with Amicon® Spin filters (MWCO: 30 kDa) to remove 

any unbound polymer from the hybrid conjugate. The resulting hybrid conjugates were 
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Figure 3. (A) Schematic representation of the structures of both the mPEG and scFv hybrid 

conjugates. (B) SEC chromatogram of the mPEG-polymer conjugate (red) along with starting 

materials, mPEG-N3 (orange) and DBCO-p(DEGMA-co-MACYS) polymer (black). (C) 

HPLC chromatogram of the hybrid conjugate (dark green) along with controls, J591 scFv-N3 

(light green) and DBCO-p(DEGMA-co-MACYS) polymer (black).

A similar procedure was used to develop the polymer conjugate (mPEG-p(DEGMA-co-

MACYS)), in which DBCO-p(DEGMA-co-MACYS) was incubated with commercially-

13

     

     

evaluated using HPLC analysis (Figure 3C), and the obtained result is consistent with 

successful antibody conjugation to the synthetic hydrophobe.25 Successful conjugation was 

further validated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) analysis (Figure S3), where the archetypical smearing of the conjugate (lane 4), rather 

than single sharp band as observed for the scFv alone (lane 2), was indicative of scFv coupling 

to the synthetic copolymer. The elongated and “smeared” peak was present in SDS PAGE for 

both Coomassie blue and Cy5 channels (labelling of both the protein and the polymer 

hydrophobe), further corroborating successful coupling.26,27 
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available methoxy-PEG (mPEG) azide in water at 4 °C for 24 h. mPEG has been widely used 

to improve the therapeutic index of clinical drugs,28 and formulations such as mPEG modified 

liposomal doxorubicin (Doxil / Caelyx) are accepted by the Food and Drug Administration 

(FDA) for the treatment of breast cancer.29 In order to prevent recognition by the mononuclear 

phagocytic system (MPS) and thereby impart stealth properties to the micelles, mPEG 

displaying a radius of hydration (RH) of 4 nm similar to the scFv (Figure S4), was used to form 

mPEG conjugates, with successful coupling demonstrated by size exclusion chromatography 

(Figure 3B).

The cellular association of the monomeric conjugates with prostate cancer cells that had high 

(PC3-PIP cells: PSMA+) and low (PC3 cells: PSMA-) levels of PSMA expressions were 

assessed to demonstrate targeting ability of the conjugates.30 Flow cytometry analysis of the 

conjugates following incubation at 4 °C (when the chains would be in their soluble form) 

showed significantly higher association for the hybrid conjugates in PSMA+ cells compared to 

the polymer conjugate (Figure S5). Likewise, in the cells that showed low expression of PSMA 

(PSMA-), much lower association was observed for both conjugates, indicating that the 

mechanism of association was likely via receptor-mediated interactions. Importantly, this 

preliminary in vitro study suggested that the coupling approach still facilitated successful 

presentation of the scFv for binding to the receptor.

Synthesis of micellar assemblies. Micelles were synthesised with varying antibody densities 

by mixing the amphiphilic hybrid conjugates with the polymer conjugates in PBS at 

temperatures below the LCST (16 °C), then increasing the temperature above the LCST, 

whereupon the thermoresponsive behaviour of the hydrophobic component led to self-

assembly of the conjugates.31 This process is reversible, and as an example for purely polymer 

conjugates or hybrid conjugates, Figure 4 shows the size by dynamic light scattering (DLS) of 
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unimers (at 5 °C), their assembly into micelles at 25 °C, then subsequent destabilisation and 

existence of unimers when cooled back down to 5 °C. Importantly, this process was observed 

to occur for both the polymer and hybrid conjugates, with the size of the micelles being 

approximately 70 nm at 25 °C, irrespective of the hydrophile that was used, allowing for a 

decoupling of micelle size and composition; this was an important pre-requisite for future 

comparisons (Figure S6). In addition, the zeta potential of the micelles was found to be less 

affected by an increase in antibody density, with the overall charge remaining neutral 

independent of antibody density (Figure S7). 
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Figure 4. DLS size distribution of the micelles from polymer conjugate and hybrid conjugates. 

(A) non-crosslinked polymer micelles, (B) crosslinked polymer micelles by oxygen purging,

(C) non-crosslinked hybrid micelles, and (D) crosslinked hybrid micelles at 25 °C (red) and 5 

°C (green). The insert in 4B and 4D shows the TEM images of crosslinked micelles from 

polymer and hybrid conjugates respectively, indicating an average size of 70 nm. Oxygen 

purging results in crosslinking due to the formation of disulfide bonds between the thiol groups 

of the CYS side-chains.

The micelles were synthesised by mixing the PEG and hybrid conjugates in varying ratios. In 

order to characterise the amount of antibody components in micelles, a secondary system was 

developed, in which the hybrid conjugates were labelled with Cy5 and the polymer conjugates 

were labelled with RhodamineB (Figure S8).  The average PEG-antibody ratios for each system 

were calculated based on the relative fluorescence intensity of Cy5 (for antibody amphiphile) 

to RhodamineB (for polymer amphiphile) (Figure S9). The “theoretical” correction factor was 

calculated based on the feed ratio of antibody:polymer in the hybrids and was compared to the 

actual fluorescence that we determined using the fluorimeter (for the 4 formulations that had 

the highest fluorescence content, e.g. A100, A75, A50, A25) with < 5% difference between 

these two values. This implies that there were little or no quenching arising from intermolecular 

interactions in any of these micelle systems. In order to ensure that the micelles were stable 

under both in vitro and in vivo conditions, the assemblies were transiently crosslinked using 

disulfide chemistry.32 Crosslinking not only acts to lock in the structure of the low glass 

transition temperature hydrophobe (DEGMA) to prevent dynamic exchange of the individual 

micellar components but also ensures stability following intravenous (I.V.) injection, where 

this has been shown to significantly affect in vivo accumulation and biodistribution of 

nanomedicines.33,34 Here, the thiol-functional group in CYS acts as the crosslinking point by 
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forming disulfide bonds by oxidation through oxygen purging.35,36 Evaluation of the size of the 

micelles following oxidation showed crosslinked micelles retained their size even after 

reducing the temperature to below the LCST, suggesting that the micelles were locked in 

conformation (Figure 4B and 4D). TEM micrographs of both micelles are also shown in Figure 

4 (inset), confirming the size of the assemblies formed. The stability of purely synthetic 

micelles was further analysed in cell culture media containing foetal bovine serum (FBS) as 

pseudo-serum conditions, and the structures maintained integrity and size over 24 h (Figure 

S10). However, longer incubation of these micelles in 50% serum-containing media resulted 

in an increase in micelle size, most likely due to higher serum protein interactions (Figure S11). 

Importantly, there was no evidence of degradation of the micelles through observation of small 

fragments in the DLS.  Moreover, fluorescence stability of A0 micelles showed < 15% Cy5 

loss in 50% FBS media for an incubation of 48 h (Figure S12). The crosslinking of the micelles 

offers greater control over the material used for in vivo experiments and provides confidence 

that the interactions observed are due to micellar interactions, rather than interactions by 

fragments of the micelles.

Effect of ligand density on cellular association and internalisation. Micelles of varying 

scFv densities (0, 5, 10, 15, 25, 50, 75, 100% chain ratio relative to the PEG-hydrophile) were 

assembled to investigate the relationship between antibody density and cellular association and 

were labelled as A0, A5, A10, A15, A25, A50, A75, and A100, respectively (Figure 1). These 

micelles were incubated with prostate cancer cell lines that either had high expression of PSMA 

(PSMA+) or low expression (PSMA-) for 1 h prior to evaluation of cell binding by flow 

cytometry.30 Cellular association studies using flow cytometry demonstrated that even with a 

small increase in antibody density, micelles typically showed an increased association with 

PSMA+ cells. For these cells that upregulated PSMA, the cellular association was seen to rise 
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with increasing antibody content until reaching a plateau at 25-50% incorporation of antibody, 

before decreasing modestly at higher incorporation (Figure 5A). This may be due to the 

potential for receptor saturation, resulting from the interaction between higher amounts of 

scFvs with the PSMA receptors on the particular cell line. In addition to receptor saturation, 

the decrease in nanoparticle association might also be due to the competitive binding between 

micelles onto the receptors.37,38 Compared to 50% antibody micelles, 100% micelles have 

higher antibody content resulting in higher competition for interacting with the active site of 

the receptors, thereby hindering the cellular association.39-41 The association with PSMA- cells 

was low, indicating that specific interaction was negligible with receptors on this cell line. This 

has been further validated using a competition assay, where the PSMA+ cells exhibited 

significantly reduced cellular association with the targeted micelles when pre-incubated with 

free scFv (10 µg mL-1), compared to when treated with targeted micelles alone (Figure S13). 

To better understand the observed trend in receptor binding on PSMA+ cells, a binding assay 

was conducted to explore the effect of different concentrations of antibody containing micelles 

(A25 and A100) (Figure S14) on cellular association. Under these conditions, the number of 

micelles at each concentration were approximately the same for A25 and A100. A100 was 

found to bind to maximum number of cells (% cell association) at a lower concentration than 

A25 (25 µg/mL compared to 100 µg/mL, respectively), potentially due to the avidity effect of 

these nanoparticles (more antibodies to bind with receptors). And when both A25 and A100 

showed association with 100% of cells (100 µg/mL), the MFI was higher for A25 than A100. 

This suggests that at high concentrations, more of the nanoparticles with lower antibody density 

can bind to the cells than those with higher antibody density. Therefore, these changes in 

cellular association might be due to combination of multiple factors including receptor 

clustering,42 receptor crowding by high antibody density nanoparticles43 or steric crowding of 
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Figure 5. (A) Flow cytometry analysis of PSMA+ and PSMA- cells association of Cy5 labelled 

micelles with varying antibody densities (0, 5, 10, 15, 25, 50, 75, and 100%). (B) Confocal 

microscopy images of PSMA+ cells incubated with micelles of varying antibody densities (0, 

25 and 100%), along with magnified confocal images showing the distribution of micelles 

across the PSMA+ cells. 

Biodistribution and tumour accumulation of micelles with varying antibody densities in 

tumour-bearing mice. The influence of ligand density on in vivo biodistribution and tumour 

accumulation was evaluated to understand the balance between increased cell targeting (with 

increasing ligand density) and tumour accumulation. BALB/c nude mice bearing both 
19

     

     

the antibody on the nanoparticles44 which ultimately leads to difference in the association levels 

in vitro.45,46  

Interaction of a subset of the micelles (A0, A25, and A100) with both PSMA+ and PSMA- 

cells was evaluated by confocal microscopy in order to assess the effect of antibody on the 

degree of cell internalisation. The microscopy showed a similar trend to that observed in the 

flow cytometry, whereby higher uptake is observed for the A25 micelle than either the A0 or 

A100 micelle, again pointing at a receptor-mediated interaction that is modulated by ligand 

density (Figure 5B). 
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(PSMA+) and (PSMA-) prostate cancer xenografts in their opposite flanks were administered 

micelles with varying antibody densities through I.V. injection. Mice were sacrificed and organ 

distribution of the Cy5-labelled micelles monitored by fluorescence imaging (24 and 48 h). In 

order to compare the micelles between tumour bearing mice, the fluorescence intensities were 

normalised with respect to the 100% antibody containing micelles, which has been accounted 

for in Table S1. At 24 h post-injection, the PSMA+ tumours demonstrated an antibody-

dependent micelle accumulation, showing an almost 19-fold increase in micelle accumulation 

with the increase of antibody density from 0% to 25%, owing to enhanced retention in the 

tumour (Figure 6A). However, increasing the antibody content further resulted in a decreasing 

level of tumour accumulation compared to A25, with A50, A75 and A100 micelles only 

achieving a doubling of micelle accumulation compared to A0. This decrease in accumulation 

above A25 was most likely caused by a decreased concentration of circulating micelles due to 

immune recognition of the more proteinaceous nanomaterials. Such an effect ultimately leads 

to the clearance by the mononuclear phagocytic organs such as liver and spleen. This scenario 

was confirmed by the increase in fluorescence in these organs with increasing antibody content 

(Figure 6B), thereby resulting in a decrease in overall circulating micelle content in the blood 

and consequently decreased accumulation in the tumour at longer time points. At 24 h post-

injection, the PSMA- tumour showed significantly less micelle accumulation in the tumour at 

all antibody compositions and similar to that observed for A0 (in both tumours), suggesting 

that the presence of antibody (even in the A100 sample) contributes to improvement in tumour 

tissue accumulation above that observed by the enhanced permeability and retention (EPR) 

effect alone.47 
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Figure 6. (A) Bar chart showing the average radiant efficiency of Cy5 signals from PSMA+ 

and PSMA- tumour, 24 h post-I.V. injection of micelles with varying ligand densities of 0, 5, 

10, 15, 25, 50, 75, 100% antibody content. (B) Bar chart showing the average radiant efficiency 

of Cy5 signals from other major organs, 24 h post-I.V. injection of micelles with varying ligand 

densities of 0, 5,10, 15, 25, 50, 75, 100% antibody content. (C) Bar chart showing the cellular 

association of micelles with immune cells such as leukocytes (CD45+), monocytes (CD11b+) 
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and macrophages (F4/80+) in the liver after 24 h post-I.V. injection of micelles with varying 

ligand densities of 0, 25, 50, and 100% antibody content. (n = 3 per group), (∗∗ = p < 0.01, ∗∗∗ 

= p < 0.001, ∗∗∗∗ = p < 0.0001).

A similar trend in accumulation is observed at 48 h, where the effect of passive targeting (to 

PSMA-) was slightly more prominent than the 24 h time point (Figure S15). 

Micelle association with murine immune cell populations. The ratio of PEG to antibody 

component on the surface of the micelles has a significant impact on its accumulation and 

distribution across tumour and other organs. It is crucial to understand the influence of antibody 

density on the interactions between micelles and immune cells, predominantly present in the 

liver and spleen for nanoparticles. These immune cells constitute the MPS, and upon 

stimulation results in rapid clearance of micelles from animals. We established a flow 

cytometric assay to furnish important insights into micelle distribution between different 

immune cell types in liver and spleen following injection of the micelles into 

immunocompetent mice (Figure 6C, S16 and S17). The use of a CD45 marker (to identify 

immune populations from other cell types in the organ), as well as a live/dead exclusion dye, 

provided a useful means to investigate immune-trafficking of the micellar particles. In terms 

of gating strategy, after identifying the immune cells (CD45+) from the whole cell population, 

additional markers such as CD11b and F4/80 were used to distinguish monocytes and 

macrophage subpopulations, respectively. The flow cytometry suggested a 3-fold higher 

proportion of A100 micelles in whole immune cell (CD45+) populations compared to the A0 

micelles (Figure 6C). The CD11b+ cell population includes monocytes, a subset of white blood 

cells that play a key role in homeostasis and inflammation, and can be readily transported to 

the site of inflammation.48 In the CD11b+ cell population in liver and spleen, the association 

was three- to eight-fold higher for hybrid micelles compared to polymer micelles, with 
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increasing association with greater antibody content. We also observed higher cellular 

association for F4/80+ macrophages in the case of A100 micelles. Generally, Kupffer cells and 

splenic red pulp macrophages show high levels of expression for F4/80 glycoprotein and have 

critical roles in immune surveillance, with Kupffer cells being the major route of nanoparticle 

removal from circulation.49,50 The increased immune response for A100 micelles with an 

increase in antibody content clearly indicates an active role of the immune system in 

recognising, and clearing these micelles from circulation. After I.V. injection of micelles, 

serum proteins in the blood binds to these micelles resulting in a protein corona.51-54 This 

binding depends on the surface properties of the micelles; for instance, PEGylation blocks the 

serum protein interaction resulting in lower MPS recognition. However, the presence of 

antibodies on the micelle surface triggers the serum protein interaction and thereby results in 

enhanced liver and spleen clearance. To exemplify this point, interactions between micelles 

and serum proteins were studied by incubating them in FBS containing cell culture media. In 

this experiment, the serum protein interaction was significant only for an antibody content of 

50% or higher (Figure S18) in the micelles. Furthermore, an evaluation of the micelle 

distribution in various immune cells in mice blood ex vivo was also carried out. In general, the 

higher the antibody content in the micelle, the greater the interaction with all elements of the 

immune cell populations that we investigated. Moreover, more specific association with blood 

immune cell populations, including neutrophils and monocytes, was observed at higher 

antibody concentrations (Figure S19).

Micelle accumulation in human white blood cells. A key issue in the translation of 

nanomedicines to clinical acceptance is the mismatch between observations in mouse and 

human studies. With this in mind, we next investigated the micellar association with the 

immune population of cells in whole human blood, as these will be the first host cells that 
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interact with micelles following I.V. administration.55 Human blood immune cells such as 

granulocytes (mainly neutrophils), monocytes, lymphocytes (B-cell and T cell) and dendritic 

cells were analysed after incubation with the micelles with fresh whole human blood for 1 h at 

37 °C using established methodologies previously reported by Kent et al..56 Overall, there was 

a clear modulation in immune-cell interaction as a result of increasing antibody content in the 

micelles. Association was highest for A100 and A75 micelles with granulocytes, with 

approximately 80-90% cells showing some interaction with the micelles (Figure 7A). While 

A50 micelles showed 40% association, further lowering of antibody content showed minimal 

association. This observation clearly shows immune recognition resulting from the interaction 

of antibody component with neutrophils and its phagocytic nature.55 Within the monocyte 

population, A0 micelles showed less than 1% cellular association indicating its stealth nature, 

a direct consequence of the purely PEG surface nature of this particular micelle. However, 10% 

or higher antibody content showed an increase in cellular association with >10% of cells 

showing a measurable association when the antibody component of the micelles was 50% 

(Figure 7B). Similar trends were observed for both lymphocyte populations and dendritic cells 

(gating strategy used for differentiating cell populations are shown in Figure S20). These 

results showed a direct link between the level of antibody density and immune-cell interaction, 

with an enhanced immune clearance of the micelles with ≥ 50% antibody content. These human 

ex vivo blood studies are precisely comparable to our in vivo mouse studies above, suggesting 

that the findings are likely to be transferable (at least in the broadest sense) to clinical 

assessment of nanomedicines. More importantly, these in-depth immune studies offer some 

important insight into why greater antibody density often leads to a mismatch between in vitro 

cancer cell association studies (undertaken extensively in vitro in nanomedicine research) and 

tumour accumulation and/or efficacy studies of nanotherapeutics.9 It is clear that each 
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nanomedicine needs to be assessed on a case-by-case basis, where the merit of targeting 

specific receptors present on cells is weighed against the need for stealthiness.

It is also important to consider the effects of multiple copies of a targeting agent on the cell 

surface and intracellular processing pathways more generally. Pattern recognition by the 

immune system is an important mechanism in the body’s defence against pathogens, 

particularly viruses which display multiple ligands in order to take advantage of multivalent 

interactions. Accordingly, the use of repeating patterns of protein recognition domains on a 

synthetic nanoparticle might be expected to result in increased detection by immune 

surveillance mechanisms. In addition, it has been shown that engagement of multiple receptors 

at some cancer cell surfaces can lead to clustering and changes in intracellular trafficking 

pathways leading to lysosomal accumulation.12,14 This might be detrimental for delivery of 

biotherapeutics but advantageous for lysosomally-activated pro-drugs. Therefore, it may be the 

case that an optimal targeting ligand density exists and that this will depend on the route of 

administration, the immune status of the patient, and the specific disease site and therapeutic 

agent. The results in this study provide important design criteria which might allow future 

optimisation and ultimately personalisation of nanomedicines.
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Figure 7. Effect of antibody density on the interaction of micelles with human innate immune 

cells. Histograms show the percentage cellular association of micelles with (A) Granulocytes, 

(B) Monocytes, (C) B-cells, (D) T-cells, (E) Dendritic cells at 37 °C.

CONCLUSION

We report an approach to generate a micellar nanomaterial platform with control over antibody 

fragment surface density, allowing us to study in-depth the true influence of surface 

functionalisation on both cell binding, immune recognition and tumour accumulation of 

nanomedicines. The micellar assemblies showed antibody-density dependent association and 

internalisation in cells that upregulate a receptor that binds to the antibody (PSMA receptor), 

with maximum association observed between 25 – 50% antibody surface density. The decrease 

in association at higher densities was attributed to receptor saturation or potentially clustering 

effects of the receptor on the cell surface. Moreover, when administered intravenously into 

tumour-bearing mice, significantly enhanced tumour association was observed for the micelle 

with 25% antibody density compared to all other densities. The decrease in accumulation at a 
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higher density above 25% was shown to be proportional to the increase in immune recognition 

of these species and subsequent clearance through the MPS organs. The micelles clearly 

become less “stealthy” in mice with greater antibody content, which was also confirmed by our 

ex vivo human whole blood analyses. Additionally, our studies on human white blood cells 

demonstrated that the higher antibody densities had an influence on immune cell interactions. 

These results provide an understanding of how these fundamental properties of designed 

nanoparticles can be utilised to enhance cellular uptake, and influence biodistribution in 

animals, and later into clinical settings. Moreover, it is clear that there is at least a broad level 

of agreement between mouse immune studies and the human case, suggesting translatability of 

these observations when designing nanomedicines for human use. In the cancer nanomedicine 

field, it is becoming increasingly clear that just delivering the payload to the target is not 

enough but now requires an in-depth understanding of the collateral damage these 

nanomaterials could have to healthy immune cells. Ultimately, accessing the “sweet spot” in 

terms of increasing cell-association/internalisation through increased antibody density (often a 

necessity for delivery of specific drugs, such as biologics), and minimising immune recognition 

by maintaining stealthiness, are now key attributes for developing next-generation targeted 

nanomedicines that could offer improved clinical outcomes.

EXPERIMENTAL 

Materials

Dibenzocyclooctyne-amine (DBCO, Sigma-Aldrich, ≥ 94.5%), triethylamine (Et3N, Sigma-

Aldrich, ≥ 99%), 2,2’-azobis(isobutyronitrile) (AIBN, Sigma-Aldrich, 98%), 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC, Fluorochem, 99%), N-

hydroxysuccinimide (NHS, Sigma-Aldrich, 98%), cysteamine hydrochloride (CYS, Sigma-
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the residual solvent resonances (CDCl3 1H: δ = 7.26 ppm; DMSO-d6 1H: δ = 2.50 ppm).
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Aldrich, ≥ 98%), methoxy-PEG-azide (Mn=20 kDa) (mPEG, Biochempeg, ≥ 95%), Cyanine5 

maleimide (Cy5, Lumiprobe, > 95%), phosphate-buffered saline (PBS, Astral scientific) were 

all used as received. Solvents including N,N-dimethyl-formamide (DMF), 1,4-dioxane, 

methanol, tetrahydrofuran (THF), n-hexane, and dichloromethane (CH2Cl2) were used dry 

where applicable and of reagent grade quality. Diethylene glycol methacrylate (DEGMA, 

Sigma-Aldrich, 98%) were passed through basic alumina to remove inhibitor before use. Milli-

Q water (18.2 mΩ.cm-1 at 25 °C) was used throughout. Pentafluorophenyl methacrylate 

(MAPFP) was synthesised according to Fuchs et al..57 RAFT agent 4-Cyano-4-

(ethylsulfanylthiocarbonyl) sulfanylpentanoic acid (CEPA) was synthesised according to 

Convertine et al..58 Dimethyl sulfoxide-d₆ (DMSO-d6), deuterated chloroform (CDCl3) were 

purchased from Cambridge Isotope Laboratories, Inc. Cell culture medium Roswell Park 

Memorial Institute (RPMI) 1640, foetal bovine serum (FBS), were purchased from Life 

Technologies, Mulgrave, Vic, Australia and Moregate, Brisbane, Australia respectively. 

Penicillin/streptomycin mix, trypsin, trypan blue solution and Hoescht 33342 were obtained 

from Sigma-Aldrich. Prostate cancer cells (PC3-PIP (PSMA+) and PC3 (PSMA-) cells were 

received from Dr Warren Heston.59 Tissue culture treated imaging μ-dishes with 1.5 NA 

coverslips were ordered from ibidi™.

Methods

All nanomaterials were characterised using standardised reporting methods recommended by Faria 

et al., where applicable.60 1H nuclear magnetic resonance (NMR), 19F NMR spectra were 

measured on Bruker AC 400 or 500 MHz spectrometers in CDCl3 or DMSO-d6 at 25 °C. 

δChemical shifts are reported as  in parts per million (ppm) and referenced to the chemical shift of 
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index detector (Waters). THF was used as the mobile phase at a flow rate of 1 mL min−1 and 

polystyrene (PS) as the standards. Empower 2 (Waters) software was used for data collection 

and processing. All samples were freshly prepared before analysis and filtered through a 0.45 

μm filter to eliminate large particulates. The hydrodynamic diameters and zeta potentials of 

micelles were explored on a Nanoseries Zetasizer (Malvern 90, UK). The samples were 

analysed at a scattering angle of 90° and two different temperatures 278 and 298 K, 

respectively. Samples were filtered through 0.45 μm PTFE filters prior to measurement. UV-

Vis measurements were performed on a Nanodrop 2000C spectrophotometer (Thermo Scientific) 

using a low volume (700 μL) quartz cuvette with a 10 mm path length. Absorbance maxima were 

recorded at 309 and 647 nm for DBCO and Cy5 absorbance respectively. For transmission electron 
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microscope (TEM) imaging, particles were dissolved in water, dropped onto copper grids, and 

air-dried before imaging. Polyacrylamide gel electrophoresis (PAGE) was performed on 

Bolt™ 4-12% Bis-Tris Plus Gels (Invitrogen, Paisley, UK) equipped with a PowerPac Basic 

power supply at 200 V for 30 min in 1X NuPAGE® MES SDS Running Buffer . The 

visualisation of the Coomassie blue-stained gels was carried out on a ChemiDoc Imaging 

system, Bio-Rad. High-performance liquid chromatography (HPLC) was performed on Dionex 

HPLC-Thermo TSQ Quantum Ultra QqQ MS couple equipped with UV-visible detector and a 

reverse-phase C18 column (75 × 4.6 mm). Gradient elution from 95% Milli-Q water containing 

0.2% formic acid to 100% MeCN:H2O (8:2) with 0.2% formic acid over a time period of 30 

min with a 200 µL min-1 flow rate was used throughout. The wavelengths of 280 nm and 647 

nm were used for the detection of antibody and conjugates respectively for the analysis. 
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Size exclusion chromatography (SEC) for analysis of polymer molecular weight and dispersity 

was performed on a system consisting of a 1515 Isocratic pump (Waters), a 717 autosampler 

(Waters), Styragel HT 6E and Styragel HT 3 columns (Waters), a 2414 differential refractive 
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Cell culture. Two human prostate cancer cell lines (PC3-PIP (PSMA+) and PC3 (PSMA-) 

were maintained in RPMI medium supplemented with 10% (v/v) FBS (heat-inactivated, 

Bovogen), 100 U mL-1 penicillin, 100 µg mL-1 Streptomycin and 2 mM L-glutamine and 

incubated at 37 °C in a humidified atmosphere of 5% CO2 in air.

Synthesis of p(DEGMA-co-MAPFP) copolymer using CEPA. DEGMA (0.3 g, 1.59 mmol), 

MAPFP (45 mg, 0.18 mmol), AIBN (1.1 mg, 6.89 × 10−3 mmol), CEPA (9.1 mg, 3.44 × 10−2 

mmol) and 660 μL dry 1,4-dioxane were placed in a Schlenk tube equipped with a magnetic 

stirrer bar. The vial was sealed with a rubber septum, and the reaction mixture was sparged 

with nitrogen for 15 min. The Schlenk tube was then placed in an oil bath and stirred at 65 °C 

for 18 h. At the completion of the reaction, the polymer was precipitated dropwise into an 

excess of n-hexane three times. Once the polymer had fully settled on the bottom of the beaker, 

the solvent was decanted from the top, and the oily residue was dried in the vacuum oven. The 

purified p(DEGMA-co-MAPFP) was characterised using 1H NMR (500 MHz, CDCl3) and 

SEC.

Modification of p(DEGMA-co-MAPFP) copolymer with CYS. The pentafluorophenyl 

esters were replaced by adding 20 eq. of CYS (46 mg, 0.454 µM) and 20 eq. of Et3N (35 mg, 

0.45 µM) to p(DEGMA-co-MAPFP) copolymer (150 mg, 0.022 µM) dissolved in DMF. The 

solution was stirred at 50 °C for 24 h. The reaction was cooled to room temperature, and DMF 

was removed in vacuo. The concentrated sample was redissolved in THF and purified by 

precipitating the polymer dropwise into an excess of n-hexane. The purified p(DEGMA-co-

MACYS) was dried under vacuum for 24 h. These polymers were characterised using 19F NMR 

(500 MHz, CDCl3) and SEC. The LCST behaviour of polymer samples after CYS modification 

were determined using a UV–vis spectrophotometer set at 500 nm. The polymeric samples 

were maintained at a concentration of 1 mg mL-1 in water and the solutions were heated from 
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low temperatures to high temperatures at a heating rate of 1 °C min-1. The temperature at which 

90% of the transmittance of the solution was observed was defined as the LCST. 

Modification p(DEGMA-co-MACYS) copolymer with DBCO-amine. p(DEGMA-co-

MACYS) copolymer (150 mg, 27.5 µM) was activated by NHS (3.5 mg, 30 µM) and EDC 

(10.5 mg, 55 µM) (molar ratio of Polymer: EDC: NHS=1:2:1.1) in CH2Cl2 at room temperature 

overnight. DBCO-amine (7.6 mg, 27.5 µM) with Et3N (3 mg, 30.3µM) was added and stirred 

for 12 h. DCM was removed by rotary evaporation at room temperature, and the product 

DBCO-p(DEGMA-co-MACYS) was redissolved in THF and precipitated into n-hexane. The 

purified DBCO-p(DEGMA-co-MACYS) was dried under vacuum for 24 h and characterised 

using 1H NMR (500 MHz, DMSO-d6), SEC and UV analysis

Conjugation of DBCO-p(DEGMA-co-MACYS) with Cy5 maleimide. DBCO-p(DEGMA-

co-MACYS) copolymer (150 mg, 21.7 µM) was reacted with Cy5 maleimide (1.4 mg, 2.17 

µM ) in CH2Cl2 at room temperature for 12 h. DCM was removed by rotary evaporation at 

room temperature, and the product was redissolved in THF and precipitated into n-hexane. The 

purified DBCO-p(DEGMA-co-MACYS) with Cy5 maleimide was dried under vacuum for 24 

h and characterised using UV analysis.

Conjugation of DBCO-p(DEGMA-co-MACYS) with scFv azide. Before the conjugation 

reaction, DBCO-p(DEGMA-co-MACYS) copolymer was dissolved in PBS and kept for 

stirring at 4 °C for 1 h. Then, the azide-functional scFv was added to the DBCO-p(DEGMA-

co-MACYS) copolymer solution, and the mixture was allowed to react at 4 °C for 24 h. For a 

typical preparation, 5 mg of DBCO-p(DEGMA-co-MACYS) copolymer (0.72 µmol) and 0.89 

µg of scFv (3.5 × 10−2 µmol) were used (Polymer to scFv azide ratio of ~ 20:1). After 

conjugation, samples were heated to temperature above LCST, 30 °C for 10 min, which made 

the polymer insoluble. Upon centrifugation (14,100 rcf for 10 min) the hybrid conjugate formed 
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a pellet, and unreacted scFv remained in the supernatant. This pellet was redissolved in PBS at 

4 °C and centrifuged at 9,800 rcf for 10 min using Amicon® Ultra 0.5 mL Centrifugal Filters 

(MWCO: 30 kDa) to remove any unbound polymer from the hybrid conjugate. The final 

concentrate was freeze-dried and re-dissolved for further characterisation using PAGE and 

HPLC analysis.

Conjugation of DBCO-p(DEGMA-co-MACYS) with mPEG azide. For the synthesis of 

polymer conjugate, the DBCO-p(DEGMA-co-MACYS) copolymer was dissolved in PBS and 

kept stirring at 4 °C for 1 h. Then, mPEG-azide was added to the DBCO-p(DEGMA-co-

MACYS) copolymer solution, and the mixture was allowed to react at 4 °C for 24 h. For a 

typical preparation, 4.1 mg of DBCO-p(DEGMA-co-MACYS) copolymer (0.6 × 10−6 mol), 

and 6 mg of mPEG-azide (0.3 × 10−6 mol) were used (Polymer to mPEG azide ~ 2:1). After 

conjugation, samples were heated to temperature above LCST, 30 °C for 10 min, which made 

the polymer insoluble. Upon centrifugation (14,100 rcf for 10 min), the polymer conjugate 

formed a pellet, and unreacted PEG remained in the supernatant, which could be removed. This 

pellet was redissolved in PBS at 4 °C and centrifuged at 9,800 rcf for 10 min using Amicon® 

Ultra 0.5 mL Centrifugal Filters (MWCO: 30 kDa) to remove any unbound polymer from the 

polymer conjugate. The final concentrate was freeze-dried and re-dissolved for further 

characterisation using SEC analysis.

Flow cytometry-based cellular association analysis of conjugates using a mono cell 

culture. PSMA+ cells were removed from tissue culture flasks by adding trypsin and 

resuspended in Dulbecco’s PBS (DPBS) at pH 7.4 followed by centrifugation at 131 rcf for 5 

min. The cell pellet was resuspended in 10% FCS-PBS to give 2 x 106 cells/mL. 100 μL of the 

cell suspension was aliquoted into 1.5 mL tubes and stored on ice. 10 µg mL-1 of hybrid 

conjugate and PEG conjugate were added to the 100 μL cell suspension and incubated for 60 
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min on ice. Following incubation, the cells were centrifuged gently at 131 rcf for 5 min, the 

supernatant was pipetted off and 200 μL of 10% FCS-PBS added. This wash step was repeated 

two more times. After the third and final wash, the supernatant was removed from the cells, 

and the pellet was resuspended in 100 μL of 10% FCS-PBS. For each sample, data were 

acquired for 10,000 events using a flow cytometer (BD Accuri™ C6, BD Biosciences, 

Australia) by measuring Cy5 fluorescence intensity along with the forward and side scatter. A 

similar protocol was used for the analysis of PSMA- cells.  

Synthesis of polymeric micelles by crosslinking and its characterisation. The hybrid and 

PEG conjugates were dissolved in different ratios in PBS and kept for stirring at 4 °C for 2 h. 

The solution temperature was then increased slowly to 30 °C under constant stirring. Oxygen 

was sparged into the solution for 12 h to facilitate disulfide crosslinking. Micelle confirmation 

and size were then determined by DLS and TEM. The zeta potential distribution of the micelles 

were determined using Zetasizer. Micelles of different antibody densities (0, 5, 10, 15, 25, 50, 

75 and 100%) were synthesised by a similar protocol.

Interaction of micelles with serum proteins. For serum protein-micelle interaction studies, 

100 μL of 1 mg mL-1 micelles were incubated with 400 μL of cell culture media (containing 

10% FBS) for 1 h incubation at 37 °C. Samples were then centrifuged at 14,100 rcf for 4 min, 

to pellet the protein-bound micelles. The amount of unbound serum protein remaining in the 

supernatant was then measured by the method of Bradford assay. Briefly, 100 μL of supernatant 

was taken in triplicate aliquots, and 100 μL of Bradford reagent was added. Samples were 

mixed and incubated at 37 °C for 30 min, followed by measurement of absorbance at 595 nm. 

The absorbance values were normalised against the control sample.

Stability analysis of micelles with 50% serum proteins. For the stability analysis of micelles,   

500 μL of 1 mg mL-1 micelles were incubated with 1500 μL of cell culture media (containing 
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620Ex/670Em was used to analyze Cy5 fluorescence by micelles. Furthermore, A25 and A100 
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micelles were incubated in 50% serum containing media for 48 h, followed by centrifugation 

at 9,800 rcf for 10 min using Amicon® Ultra 0.5 mL Centrifugal Filters (MWCO: 3 kDa). The 

amount of Cy5 dye content in the sample was analysed at 647 nm using UV analysis.  

Flow cytometry-based cellular association analysis of micelles using a mono cell culture. 

PSMA+ cells were seeded in a 12-well plate at a concentration of 5 × 104 cells mL-1 and then 

incubated in 1 mL of RPMI media for 24 h to allow cells to adhere. Cellular association of the 

micelles into cells was then measured using flow cytometry after 1 h of exposure to 10 µg mL-1 

of micelles of varying antibody densities (0, 5, 10, 15, 25, 50, 75 and 100%). Cells were 

removed from culture dishes by addition of trypsin and resuspended in Dulbecco’s PBS 

(DPBS) at pH 7.4 followed by centrifugation at 131 r.c.f. for 5 min. The supernatant was then 

removed, and cells were resuspended in 1 mL of DPBS. For each sample, data were acquired 

for 10,000 events using a flow cytometer (BD Accuri™ C6, BD Biosciences, Australia) by 

measuring Cy5 fluorescence intensity along with the forward and side scatter. A similar 

protocol was used for the analysis of PSMA- cells. Furthermore, for competition assay, 

PSMA+ cells were pretreated with 10 µg mL-1 of J591 scFv for 30 min, following similar 

protocol as mentioned above. Cellular association of the A25 and A100 micelles into PSMA+ 

cells were also carried out using flow cytometry after 1 h of exposure to varying concentrations 

of micelles (1 − 100 µg mL-1).
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Evaluation of intracellular distribution and localisation of micelles using confocal 

microscopy. Prior to imaging, PSMA+ cells were plated into Ibidi™ µ-dishes and incubated 

with 2 mL of RPMI media overnight. Cells were then exposed to 10 µg mL-1 of A0, A25 and 

A100 micelles, incubated for 1 h followed by PBS wash to remove unbound micelles. Samples 

were imaged with an inverted Confocal Laser Scanning Microscope (Leica LASX TCS SP8) 

housed at the Australian Nanofabrication Facility (ANFF). In order to identify the distribution 

of the micelles inside the cells, the nucleus was stained using Hoechst 33342 dye (excitation 

405 nm, emission 416 - 487 nm). The 633 nm laser was used for excitation of the Cy5-labelled 

polymer micelles, and the emission was collected between 645 - 680 nm.

Animal studies and tumour model. All animal experiments were approved by the University 

of Queensland’s Animal Ethics Committee and conformed to the guidelines of the Australian 

Code of Practice for the Care and Use of Animals for Scientific Purposes. For all animal 

models, eight-week-old Balb/c nude mice were acquired from the Animal Resource Centre and 

were allowed access to food and water ad libitum throughout the course of the experiment. 

In vivo biodistribution of micelles with varying antibody densities in tumour bearing mice 

using optical imaging. A total of 50 Balb/c nude mice were used in this study. To establish 

subcutaneous tumours for in vivo targeting experiments, mice were anaesthetised using 2% 

isoflurane and injected subcutaneously with 2 × 106 PSMA+ cells (left flank) and 2 × 106 

PSMA- cells (right flank), each in 100 μL serum-free media using a 27 G needle. Tumours 

were allowed to grow for 15 days before imaging experiments, at which time all mice had 

palpable tumours 5 – 10 mm in diameter. Micelles of varying antibody densities (0, 5, 10, 15, 

25, 50, 75, and 100%) were diluted in PBS to 2.5 mg mL-1, 100 µL of samples were 

administered I.V. injections via the tail vein. To investigate the accumulation of micelles into 

the tumour, mice were sacrificed after 24 and 48 h; PC3-PIP, PC3 tumour and the major organs 
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fluorescence by micelles. The fluorescence intensities were normalised with respect to the 
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100% antibody-containing micelles, which has been accounted for in Table S1.

Immune cell activation analysis with mice immune cells. Flow cytometry analysis were 

carried out according to the protocol by Brown et al.61 Single-cell suspensions from adult 

spleen or a single lobe of liver were prepared by mechanical dissociation and straining cells 

through a 70 μm nylon strainer, using a sterile syringe plunger, into tubes containing tonicity-

phosphate-buffered saline/2% fetal calf serum (PBS). Single-cell suspensions of spleen or liver 

containing immune cells of interest were pre-incubated with FVS (live-dead stain, BD 

Horizon™) for 20 min at room temperature in the dark, followed by blocking with Fc block 

(1% TruStain fcX™ (anti-mouse CD16/32; BioLegend) in PBS containing 5% rat serum) for 

10 min to block Fc receptor binding prior to surface staining with antibodies to mouse CD45, 

F4/80 and CD11b (BioLegend) for 1 h on ice in the dark. Cells were analyzed on a Fortessa 

X20 flow cytometer (BD Biosciences, Franklin Lakes, NJ) followed by data analysis with 

FlowJo software (Tree Star, 156 Inc., Ashland, OR). Furthermore, the immune cell analysis of 

mice blood cells ex vivo were also analysed. Micelles with varying antibody densities were 

added to mice blood samples and the samples were incubated for 1 h at 37 °C. Red blood cells 

were lysed and cells were phenotyped on ice for 30 min using titrated concentrations of 

antibodies against CD11b, Ly6G, CD3 and CD19 (BioLegend). Cells were analyzed on a 

Fortessa X20 flow cytometer (BD Biosciences, Franklin Lakes, NJ) followed by data analysis 

with FlowJo software (Tree Star, 156 Inc., Ashland, OR).
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Immune cell activation analysis with Human White Blood Cells. Fresh blood was collected 

from a healthy human volunteer (47 year old Female) into sodium heparin vacuettes (Greiner 

Bio-One) after obtaining informed consent in accordance with the University of Melbourne 

Human ethics approval 1647326.1 and the Australian National Health and Medical Research 

Council Statement on Ethical Conduct in Human Research. Micelles with varying antibody 

densities were added to human blood samples, such that their concentration in blood was 2 µg 

mL-1, and the samples were incubated for 1 h at 37 °C. Red blood cells were lysed by adding 

Pharm Lyse buffer (BD) and incubated for 15-30 min in ice and washed twice with PBS (500 

g, 7 min). Cells were phenotyped on ice for 30 min using titrated concentrations of antibodies 

against CD66b BV421 (G10F5, BD), CD14 APC-H7 (MΦP9, BD), CD19 BV650 (HIB19, 

Biolegend), CD3 AF700 (SP34-2, BD), CD56 PE (B159, BD), HLA-DR PerCP-Cy5.5 (G46-

6, BD), lineage-1 cocktail FITC (BD). Unbound antibodies were removed by washing and 

centrifugation (500 g, 7 min) with a cold (4 °C) PBS buffer containing 0.5% w/v BSA and 2 

mM EDTA. Cells were fixed in 1% w/v formaldehyde in PBS. The samples were directly used 

for cell association analysis by flow cytometry. The data were processed using FlowJo 

software.

Statistical analysis

Data for each measurement represent mean ± standard deviation, n = 3. Statistical analysis was 

performed using Graphpad Prism 8.1 software. The statistical comparisons were conducted 

using One-way ANOVA or Two-way ANOVA, followed by the Tukey multicomparison test. 

P values < 0.05 were considered statistically significant (∗ = p < 0.05, ∗∗ = p < 0.01, ∗∗∗ = p < 

0.001, ∗∗∗∗ = p < 0.0001). 
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Supporting Information is available free of charge at http://pubs.acs.org/doi/10.1021/xxxxx

1H NMR of polymer precursors, turbidity scans showing LCST behaviour of polymers, SDS-

PAGE conjugate analysis, DLS size data of mPEG and scFv, cell association assays for 

conjugates, DLS size data of conjugates in serum, DLS size, zeta and stability analysis of 

micelles, competition assay of the micelles, fluorescence images of organs following injection 

of various constructs, micelle interaction with serum proteins in serum, interaction of micelles 

with immune cells in mice blood
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