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Abstract. 
Computer forensics faces a range of challenges due to the widespread use of 

computing technologies. Examples include the increasing volume of data and 
devices that need to be analysed in any single case, differing platforms, use of 
encryption and new technology paradigms (such as cloud computing and the 
Internet of Things). Automation within forensic tools exists, but only to 
perform very simple tasks, such as data carving and file signature analysis. 
Investigators are responsible for undertaking the cognitively challenging and 
time-consuming process of identifying relevant artefacts. Due to the volume of 
cyber-dependent (e.g., malware and hacking) and cyber-enabled (e.g., fraud and 
online harassment) crimes, this results in a large backlog of cases. With the aim 
of speeding up the analysis process, this paper investigates the role that 
unsupervised pattern recognition can have in identifying notable artefacts. A 
study utilising the Self-Organising Map (SOM) to automatically cluster notable 
artefacts was devised using a series of four cases. Several SOMs were created – 
a file list SOM containing the metadata of files based upon the file system, and 
a series of application level SOMs based upon metadata extracted from files 
themselves (e.g., EXIF data extracted from JPEGs and email metadata extracted 
from email files). A total of 275 sets of experiments were conducted to 
determine the viability of clustering across a range of network configurations. 
The results reveal that more than 93.5% of notable artefacts were grouped 
within the rank-five clusters in all four cases. The best performance was 
achieved by using a 10x10 SOM where all notables were clustered in a single 
cell with only 1.6% of the non-notable artefacts (noise) being present, 
highlighting that SOM-based analysis does have the potential to cluster notable 
versus noise files to a degree that would significantly reduce the investigation 
time. Whilst clustering has proven to be successful, operationalizing it is still a 
challenge (for example, how to identify the cluster containing the largest 
proportion of notables within the case). The paper continues to propose a 
process that capitalises upon SOM and other parameters such as the timeline to 
identify notable artefacts whilst minimising noise files. Overall, based solely 
upon unsupervised learning, the approach is able to achieve a recall rate of up 
to 93%.  
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1 Introduction 

Over the last 15 years, computing technologies have experienced significant change 
in terms of variety of devices (e.g., computers, smartphones and tablets), data capacity 
(e.g., storing up to and beyond 2 Terabytes (TB) of data), functionality (e.g., office, 
web browsing and mobile apps), and the number of users. Indeed, the use of 
computing devices has integrated into every aspect of daily life such as email, 
banking, entertainment, shopping, and micro-payments. Unfortunately, in parallel 
with this, the types and sophistication of computer assisted cybercrimes have also 
grown significantly, from the traditional child pornography, fraud, and money 
laundering to carefully planned cyberattacks (e.g., government espionage, cyber 
warfare, and identity theft). Inevitably, the consequence of these cybercrimes can be 
severe. For UK businesses alone, cyberattacks are claimed to have cost £34 billion in 
lost revenue in 2014 (Veracode, 2015).  

Digital Forensics has become an invaluable tool in the identification of 
cybercriminal activities due to its ability to extract valuable information and evidence 
from computing devices in a legally acceptable manner (Casey, 2010). As a result, it 
has been widely used by law enforcement agencies and organisations to track and 
investigate computer-assisted and cybercriminal activities (Inforsecusa, 2011; Brainz, 
2014; RCFL, 2014). 

However, digital forensics experiences growing challenges from several aspects, 
including the growing size of data storage, the prevalence of embedded flash storage, 
the need to analyse multiple devices, the use of encryption, and the popular usage of 
cloud computing (Casey and Stellatos, 2008; Garfinkel, 2010). Statistics from the 
FBI’s Regional Computer Forensics Laboratory (RCFL) show that they had processed 
5,973 TBs of data from 7,273 examinations in 2013 – a 40% increase in comparison 
with 2011 (FBI, 2013). Despite their effort, an audit report of the Office of the 
Inspector General U.S. Department of Justice highlights that a backlog of 1,566 
outstanding cases existed, 57% of which had waited between 91 days to over 2 years 
(Office of the Inspector General, 2015). Unfortunately, the consequence of such 
backlogs could cause a number of implications, both legal and personal. 

In order to reduce the overall examination time, many forensic tools have been 
developed both commercially or under open source licence agreements, such as 
EnCase (Guidance Software, 2015), Forensics Toolkit (FTK) (AccessData, 2015), P2 
Commander (Paraben Corporation, 2015), Autopsy (Carrier, 2015), HELIX3 (e-fense, 
2014), and Free Hex Editor Neo (HHD Software, 2015). The majority provide the 
“Push-Button Forensics” facility to automate several key procedures of the forensic 
process, including preservation, collection, and presentation. Despite the assistance of 
these tools, digital evidence examiners still have to manually analyse the data (e.g., 
documents, emails, and internet history) contained on the image to find potential 
evidence; however, this process is time consuming and prone to human-error. Also, it 
is the responsibility of the investigator to cognitively analyse the data and understand 



the inter-relationships that exist between artefacts. On cases with a growing volume of 
data, this places an ever-increasing burden upon the investigator. Indeed, this has led 
many law enforcement agencies to strategically change their approach away from the 
‘gold standard’ (analysing all files to ensure nothing is overlooked) to ‘intelligence-
based’, where a subset of files are analysed dependent upon the intelligence provided 
to the investigator (Lawton et al, 2014). It is no longer about finding every piece of 
evidence but rather sufficient evidence to determine innocence or guilt. To this end, 
this paper describes a novel analysis approach that utilises the Self-Organising Map 
(SOM) technique to automatically group artefacts of interest together, enabling 
investigators to focus specifically on notable files (i.e., those that are relevant to the 
case) and hence reduce the time spent on analysing irrelevant files. The approach is 
based upon utilising the metadata from a variety of sources, such as the file system 
(e.g. pathname, file type, and Modification, Access and Creation (MAC) timestamps) 
and email (e.g. to, from, and attachment present) as an input into the SOM clustering. 
An experiment is presented to illustrate whether clustering is a viable approach to 
identifying notable artefacts.  

The remainder of the paper is structured as follows: Section 2 presents the existing 
work surrounding the use of SOM clustering with respect to digital forensics. Section 
3 describes the datasets that were utilised in the experiment, with Section 4 presenting 
the experimental results of the SOM study. Section 5 presents a novel process that 
applies SOM in practice and presents an evaluation of the approach using the 
aforementioned datasets. A comprehensive discussion on the impact of the results in 
practice is presented in Section 6, prior to the conclusion and future work. 

2 Related Work  

A SOM is a neural network that produces a mapping from the high dimensional input 
data into a regular two dimensional array of nodes based upon their similarity 
(Kohonen, 1998). Due to its competitive learning nature, SOM can automatically 
classify the input data without any supervision. Since its invention, SOM has been 
extensively used in many computer security related fields, including intrusion 
detection, biometrics, and wireless security (Feyereisl and Aickelin, 2009). The use of 
SOM within the digital forensic domain can be traced back in the early 2000s, where 
police were able to link records of serious sexual attacks together (Adderley and 
Musgrove, 2001). Since then, a number of studies were devised to investigate the 
ability of SOM for digital forensic investigations. 

Fei et al (2005) and Fei et al (2006) explored the use of SOM as a supporting 
technique to interpret and analyse data generated by computer forensic tools in a 
visualised manner. In their studies, a public dataset containing 2,640 graphical images 
was utilised; each image contained four features: the file name, extension, creation 
time, and creation date. SOM clustered the data after being manually enumerated, 
producing various two dimensional maps. These visualisations enabled digital 
evidence examiners to locate interesting information in a more efficient and accurate 



manner. However, experimental results were not presented in detail to highlight the 
efficiency and accuracy of their proposed approach. 

With the purpose of improving the result of text-based searches, Beebe and Clark 
(2007) proposed a novel method that utilised SOM to post-retrieval cluster text string 
search results within a forensic image. In order to test their hypothesis, a software tool 
(named “Grouper”) was developed. Grouper was able to perform a number of 
activities, including data preparation and SOM clustering. Experimentally, two 
datasets were utilised: one was a real-world divorce case and the other was an 
artificially created murder case; their image sizes were 40 and 10 Gigabytes (GB) 
respectively. Results demonstrated that the approach can be used to reduce the human 
analytical time by around 80% despite additional computer processing time being 
required (Beebe et al, 2011). 

Kayacik and Zincir-Heywood (2006) created a topological model of known attacks 
for forensic analysis of anomalous network traffic by employing the SOM algorithm. 
Their model was tested by using the KDD 99 intrusion detection dataset. The results 
of their empirical study show that attacks can be successfully grouped by SOM with 
an overall high accuracy (i.e., 89.8%). Also, they suggested that the model can be 
utilised for analysing new attacks or suspicious network behaviour.  

Similarly, Palomo et al (2011) focussed upon the analysis and visualisation of 
network traffic data via the use of SOM to identify abnormal behaviour or intrusions. 
For their experiment, a dataset with 150,871 packet samples was created by 
monitoring a university network via WireShark during a four-day period; each sample 
contained nine features, including the IP addresses of source and destination, port 
numbers, protocol type, date and time stamps, and packet length. The data was 
clustered using SOM with various network configurations (e.g., 3x3 and 5x5 network 
sizes). Their experimental results demonstrate that suspicious network traffic was 
identified by SOM providing vital information for network forensic examiners.  

Wang et al (2015) proposed a graphical model to analyse the relationship between 
criminals through SOM visual analytics. Their model was evaluated using a dataset 
with 16,383 features of 16 suspects. Within the model, SOM was used to reduce 
features and provide a visual aid to investigators for better understanding of suspect’s 
activities. According to their experimental results, the proposed model can offer 
assistance for a more efficient forensic analysis. Nonetheless, the degree of assistance 
to which the model was able to offer was not clearly provided.  

As illustrated above, SOM has been used in several digital forensic domains, 
including image analysis, network forensics, and text-based searching. The results 
suggest that SOM can be used successfully to assist the forensic examiners, such as in 
the visualisation of artefacts and the reduction of human analytical time. Nevertheless, 
the ability to use SOM to analyse a forensic image specifically tasked with identifying 
notable files using metadata extracted at the file system and application levels has 
never been undertaken.  



3 Datasets 

In order to investigate the ability of using SOM to cluster notable artefacts, four 
forensic cases were utilised: two public and two private. Whilst it would have been 
useful to utilise a larger number of cases, the availability of these (for obvious legal 
and privacy reasons) is very limited. It is the purpose of this paper however to analyse 
the feasibility of clustering notable artefacts rather than provide a definitive empirical 
study on how well this can be achieved more generally. In all four cases, the forensic 
images acquired are from the suspects’ systems (not the victims’). This is important 
because the proposed novel algorithm in Section 5 is based upon an underlying 
assumption that a suspect will perform a series of criminally-related activities rather 
than a single action at any point in time (e.g. looking at child abuse imagery is likely 
to involve looking at many images rather than a single image in isolation or the 
composition of a letter for blackmail will result in the letter being emailed or printed 
rather than in being produced merely for the sake of it). On a victim’s machine, this 
assumption is unlikely to hold true. The first public case (Case 1) was the “Hunter 
XP” provided by Guidance Software as a training case. This case is an artificial case 
describing a blackmail/stalking incident in which suspects demanded a ransom. The 
second public case (Case 2) was a hacking case that was artificially generated by 
National Institute of Standards and Technology (NIST) also for training purposes 
(NIST, 2013). Regarding the two private cases, they were obtained from the Sultanate 
of Oman - Public Prosecution. One was a document fraud case (Case 3) while the 
other one was an ATM skimming investigation (Case 4). A Non-Disclosure 
Agreement (NDA) was signed by the authors in order to maintain the confidentiality 
of the cases, thus preserving the privacy rights of those convicted criminals. These 
four cases were then manually analysed by an AccessData Certified Examiner (ACE) 
via FTK to provide a ground truth from which to compare and measure the 
performance of the approaches presented in this paper (i.e., which of the files were 
notable and which were noise (i.e., those are not relevant to the case)). The pre-
processing options selected for each case included expanding compound files, data 
carving (on all pre-selected file types) across the complete image (allocated and 
unallocated), entropy test for encryption, and known file search (against the NSRL). 
Case details, including the image size and the total number of artefacts, are presented 
in Table 1. 

Table 1. Case Details 

Case ID Image 
Size Total Artefacts Total notables Proportion of 

notables (%) 
1 500 MB 11,638 796 6.8 
2 4.5 GB 22,373 11,696 52.2 
3 16 GB 6,654 30 0.4 
4 585 GB 3,456,219 281 0.008 

 



During the analysis process, a list of files (referred to as the File List) was 
generated from the file system as they contain a rich source of information (e.g., 
MAC date and time stamps, file path, or whether it was encrypted). Indeed, the File 
List contains the majority of files that are retrieved within the suspect’s drive and 
their features, providing the most fundamental artefacts to digital evidence examiners. 
The File List was created after core forensic processes had already been undertaken. 
For examples, file hashing against the NSRL was performed and those that matched 
were removed (except for any alerted files). Data carving was also performed. 
However, the File List only presents the first level of metadata. It is recognised that 
many of the files themselves contain a rich source of metadata. It was deemed 
important to ensure clustering of these. Therefore, three application-level metadata 
files were also created based upon an analysis of their respective file repositories. All 
four metadata categories are presented in Table 2. Whilst this is not a definitive list of 
categories, with other application-level metadata categories possible such as Skype, 
Recycle Bin, Registry, and Office documents, these were deemed the most 
appropriate at this stage for the investigation. The features listed in Table 2 present 
the definitive features utilised in this paper. Please note, the encryption feature in the 
File List was determined by FTK based upon an entropy test being performed on each 
file and the duplicated flag based upon the result of the hash. Also the physical and 
logical sizes differ based upon the former being comprised of the logical plus any 
slack space to the end of the cluster. 

Table 2. Features of different meta-data categories  

Metadata Categories Features 

File List 
 

Creation date and time, access date and time, modification 
date and time, file path, file extension, carved, deleted, 

encrypted, duplicated 

Email 
 

Subject, file name, to, from, cc, bcc, submit date and time, 
delivery date and time, unread, unsent, has attachment, 

physical size, logical size 
EXIF Last write date, last access date, date taken, camera make 

Internet Access date and time, file name, URL, number of hits 
 
Upon the completion of the analysis process, information of the aforementioned 

four metadata categories were exported into individual Comma Separated Value 
(CSV) files for all cases. Each record within the CSV files was then marked as either 
notable or noise according to the result of the manual analysis process, providing a 
firm foundation for evaluating the performance of the proposed method. The marking 
of each entry was merely to establish how well SOM performed - this feature was 
never given to SOM or the subsequent process.  Also, features of each record (as 
demonstrated in Table 2) were enumerated, allowing them to be processed by SOM. 
Due to the inability of SOM to process records with empty entries (e.g., files without 
a creation time), only records with timestamps were selected for a File List SOM – 
this meant carved files were excluded from the File List SOM. Whilst this might 



create the chance for files not being analysed by the File List SOM, it is envisaged 
that the application-level SOM analysis would include them. For example, in a case 
with a large number of carved JPEGs (such as Case 1), whilst the File List SOM 
would not include them, the EXIF metadata would be included within an EXIF-based 
SOM. The total numbers of records that would be processed by the four separate 
SOMs are illustrated in Table 3. It is worth highlighting that due to the case nature, 
not all cases contain the four SOM categories. For instance, Case 3 only contains the 
File List information as the evidence was imaged from the suspect’s USB stick; while 
Case 4 does not contain the email category as the machine was purposely built for 
committing the ATM skimming crime. The proportions of notables from the entire 
case that were processed by the SOMs are 95%, 8.6%, 100% and 100% for Cases 1 to 
4 respectively (the figures were calculated based upon the information presented 
within Tables 1 and 3). Also, Case 2 was an interesting example of where a large 
number of notables were carved files (executable files related to hacking software), 
resulting them being excluded from the SOM analysis. The impact of this will be 
discussed in Section 6.  

Table 3. The number of records for each category of the four cases (P: Notable; O: Noise)1 

Case 
ID 

File List 
SOM 

Email 
SOM 

EXIF 
SOM 

Internet 
SOM Total 

P O P O P O P O P O 
1 456 1,215 3 52 229 0 65 2,105 753 3,372 
2 871 4,469 29 44 - - 101 665 1,001 5,178 
3 30 3,441 - - - - - - 30 3,441 
4 261 116,880 - - 20 226 0 1,303 281 118,409 

4 Experimental Methodology and Results for SOM Clustering  

The purpose of the experiment was to determine whether metadata across a range of 
types is useful in automatically identifying notable versus noise files. Therefore, the 
experiment had two objectives: 

• to investigate whether SOM can be utilised for clustering artefacts and if that 
were the case,  

• to determine the influence of the network sizes upon the accuracy. 

For each category (i.e., File List, Email, EXIF and Internet) within each of the four 
cases, the SOM neural network was configured with the following network sizes: 3x3 
(9), 5x5 (25), 7x7 (49), 9x9 (81), and 10x10 (100). The SOMs were initialised 
randomly and with the aim of assuring the stability of the SOM result, the experiment 
was repeated 5 times for each metadata category of the four cases across all 
configurations. Hence, a total of 275 (11x5x5) sets of results were obtained. For each 
configuration, all records within a particular category (e.g., File List) were presented 

                                                             
1  This also applies to Tables 4, 5, 6 and 7.  



with all available features (as demonstrated in Tables 2 and 3). Details of these 
experimental results are presented and discussed in the following sections. The 
clusters were each analysed to identify the proportion of notables and noise files they 
contain. 

The experiment was conducted within the MATLAB R2013a environment on a 
Windows 7 Enterprise 64-bit Operating System with Intel Core i7-2600 CPU (3.4 
GHz) and 16 GB memory (Matlab, 2015). MATLAB was chosen due to its ease in 
data manipulation and the availability of the SOM neural network. 

4.1 File List 

As illustrated in Table 4, in three of the four cases, clustering based upon the File 
List alone proved very successful. For cases 1, 3 and 4, all notable files were obtained 
within rank-five clusters with at least 56.4% noise files clusters in the remaining 
clusters by using the 3x3 SOM configuration. Indeed, Case 1 was able to identify 
100% of notables (within three clusters) with 59.3% of the noise being grouped in the 
other six clusters. While Case 4, identified 100% of the notables in a single cluster 
and only introduced 1.6% of the noise. In comparison, only Case 2 did not identify all 
notable files within rank-five clusters – it was able to cluster 93.5% of notables at a 
cost of including 53.5% of the noise files – still resulting in a huge reduction in the 
number of files an investigator would need to analyse if these five clusters were 
successfully identified during an investigation. Also, the worst result was given by the 
10x10 network in Case 2: only 32.4% of the notables were collected within the rank-
five clusters, with the remaining 67.6% scattered around the other 95 clusters. 

Table 4. Experimental results for the File List category of the 4 cases2 

Network Size 9 25 49 81 100 
Case 
ID 

Cluster 
ID 

P O P O P O P O P O 

1 

1 88.8 15.3 38.4 5.4 21.9 1.6 10.3 0 11 1 
2 8.6 15.4 23.2 0.2 12.7 0 9.0 0.7 8.1 0 
3 2.6 10 18.2 1.6 11.2 1 8.6 0.3 7 0.1 
4 - - 16.7 0 9.6 0 7.9 0 6.8 0 
5 - - 2.6 9.3 9.4 0 7 0.3 5.7 0.2 
* 0 59.3 0.9 83.5 35.2 97.4 57.2 98.7 61.4 98.7 

2 

1 38.7 18.9 16 5.3 13.1 2.1 9.9 0.9 9.9 0.9 
2 27.3 20.6 14.2 15 9.9 0.9 8.4 0.6 6 4.5 
3 14.8 2.9 12.4 1.9 8.5 10.9 7 0.1 5.7 0.1 
4 7.3 8.1 9.9 0.9 7.9 2.7 6.7 4.8 5.4 3 

                                                             
2  *: Remaining Clusters; the best performances obtained by SOM are indicated by the grey 

shaded cells; the clusters are rank ordered based upon the proportion of notables grouped 
within them and the first 5 ranks are chosen for the demonstration purpose. This also applies 
to Tables 5, 6 and 7; 



5 5.4 3 7.9 3.3 7.3 3.3 5.4 3 5.4 1.7 
* 6.5 46.5 39.6 73.6 53.3 80.1 62.6 90.6 67.6 89.8 

3 

1 56.7 8.7 56.7 8.8 43.3 3.3 43.3 3.3 23.3 1 
2 20 0.6 20 0.3 20 0.3 20 0.2 20 2.3 
3 10 6.6 10 6.6 10 3.8 13.3 2.2 20 0.3 
4 6.7 13.8 6.7 4.4 6.7 3.7 10 1.7 6.7 0.6 
5 6.7 13.9 6.7 4 6.7 4.6 6.7 1.6 6.7 1 
* 0 56.4 0 75.9 13.3 84.3 6.7 91 23.3 94.8 

4 1 100 16.3 100 3.8 100 2.3 100 1.9 100 1.6 
* 0 83.7 0 96.2 0 97.7 0 98.1 0 98.4 

 
Notably, as the SOM network size increases, both the identification rate of notable 

files and the volume of noise files decreases. For example, in Case 1, the percentage 
of notables from the 3x3 SOM to the 10x10 SOM reduces from 100% to 38.6% with a 
subsequent increase in the number of noise files being clustered from 59.3% to 
98.7%. If this approach was used as a triage tool to identify whether notable files exist 
on the image (rather than identifying all notable files) this setting would provide 
38.6% of notable files at a cost of 1.3% of noise files enabling the investigator to 
quickly understand the nature of evidence present. 

4.2 Email 

The results for the Email category where available are illustrated in Table 5. Please 
note, email was only present in two of the four cases. All the artefacts (both notables 
and noise) were grouped in one cluster for both cases; although around one quarter of 
the noise artefacts were separated from the notables for the network sizes 81 and 100 
for Case 1. Reasons for this phenomenon could be due to the small amount of total 
email artefacts (53 and 73 for Cases 1 and 2 respectively), or a high level of 
similarities that were presented within them (i.e., the majority of them were clustered 
in a single cluster).    

Table 5. Experimental results for the Email category of Cases 1 and 2 

Network Size 9 25 49 81 100 
Case ID Cluster ID P O P O P O P O P O 

1 
1 100 100 100 100 100 100 100 76.9 100 73.1 
* 0 0 0 0 0 0 0 23.1 0 26.9 

2 
1 100 100 100 100 100 100 100 100 100 100 
* 0 0 0 0 0 0 0 0 0 0 

4.3 EXIF 

As illustrated by Table 6, all the EXIF files within Case 1 were notables; the results 
also highlight that SOM is capable of sorting data according to their similarities. In 
contrast with the results presented by Case 4, a better set of outcomes are observed as 



90% of the notable files were grouped within two clusters by using the network size 9 
configuration.      

Table 6. Experimental results for the EXIF category of Cases 1 and 4 

Network Size 9 25 49 81 100 
Case ID Cluster ID P O P O P O P O P O 

1 

1 49.3 - 15.7 - 10.0 - 7.4 - 9.2 - 
2 41.5 - 8.7 - 8.7 - 4.4 - 3.9 - 
3 2.6 - 7.9 - 7.4 - 4.4 - 3.5 - 
4 2.2 - 7.4 - 5.7 - 4.4 - 3.1 - 
5 2.2 - 7.4 - 5.7 - 3.5 - 3.1 - 
* 2.2 - 52.9 - 62.5 - 75.9 - 77.2 - 

4 

1 50 7.5 50 2.2 40 1.3 40 1.3 40 0 
2 40 3.5 40 1.3 35 0 35 0 30 1.3 
3 5 11.9 5 5.3 15 2.2 15 1.8 10 0 
4 5 11.9 5 6.2 5 0.4 5 0.4 10 2.2 
5 - - - - 5 3.1 5 2.2 5 0.4 
* 0 65.2 0 85 0 93 0 94.3 5 96.1 

 
Regarding Case 4, more than 95% of the notables can be found within the rank-

five clusters for all network configurations; also the proportion of noise within the 
these five clusters reduces significantly as the network size increases: 34.8% of noise 
for the network size 9 in comparison with only 3.9% for the network size 100. 
Moreover, 100% of notable files can be observed under the network sizes 49, 81 and 
100, reinforcing that SOM can be used for clustering information with a very high 
performance. 

4.4 Internet 

The results for Cases 1, 2 and 4 are presented in Table 7 (Case 3 did not contain 
any Internet activity). At least 78.5% and 55.4% of the notables were grouped within 
the rank-five clusters for Cases 1 and 2 respectively. The best performance (in terms 
of the proportion of notables) was obtained by using the network size 25 for Case 1: 
100% of the notables were distributed in four clusters with only 18.8% of the total 
noise being clustered within. For Case 2, the worst performance was achieved under 
the configuration of the 10x10 network: only 55.4% of the notables were successfully 
clustered by the SOM within the rank-five clusters; however, due to the high density 
of notables within each cluster (4 with 100% of notables and 1 with 83.3% of 
notables), merely 2 noise artefacts (i.e., 0.3% of total noise in the case) were classified 
within those five clusters. 

Table 7. Experimental results for the Internet category of Cases 1, 2 and 4 

Network Size 9 25 49 81 100 



Case 
ID Cluster ID P O P O P O P O P O 

1 

1 35.4 13.5 33.8 3 33.8 2.5 23.1 1.1 23.1 1 
2 33.8 9.8 23.1 7 21.5 3.8 23.1 2.8 23.1 1.4 
3 20 3.9 23.1 4.9 20 3.9 13.8 1.9 12.3 1 
4 10.8 11.4 20 3.9 12.3 3.4 10.8 1.9 10.8 2 
5 - - - - 10.8 3.8 9.2 0.9 9.2 0.3 
* 0 61.4 0 81.2 1.6 82.6 20 91.4 21.5 94.3 

2 

1 41.6 5.9 18.8 1.1 15.8 2.9 15.8 2.9 15.8 0 
2 25.7 7.5 17.8 0.2 14.9 0.2 10.9 0.2 11.9 0 
3 15.8 11 15.8 7.2 13.9 0.8 9.9 0.2 9.9 0.3 
4 14.9 11.3 14.9 1.7 12.9 0.6 9.9 0 8.9 0 
5 1 13.8 9.9 0.3 9.9 0.3 9.9 0.3 8.9 0 
* 1 50.5 22.8 89.5 32.6 95.2 43.6 96.4 44.6 99.7 

4 

1 - 15.7 - 12.7 - 4 - 3.7 - 3.5 
2 - 14.7 - 6.8 - 3.8 - 2.7 - 2.4 
3 - 14.3 - 5.7 - 3.5 - 2.5 - 2.3 
4 - 14.1 - 5.7 - 3.3 - 2.4 - 2.2 
5 - 14 - 5.7 - 3.2 - 2.2 - 1.8 
* - 27.2 - 63.5 - 82.1 - 86.6 - 87.7 

 
The Internet history of Case 4 was also processed despite no notables being 

presented within this category as in practice no one would know whether a file is 
notable or not unless it is examined. It helps to highlight the problem in practice of 
identifying the most appropriate network size – as a network size of 9 would result in 
an investigator having to analyse 72.8% of noise files, whereas a network size of 100 
would offer the number of noise files to be analysed reduce to 12.3% if the rank-five 
clusters were selected. 

4.5 Further Analysis 

In general, a larger proportion of notables can be obtained with the rank-five 
clusters by using smaller SOM network sizes (e.g., 9 or 25); however, a considerable 
amount of noise files were also observed. A reduction in the noise can be achieved by 
choosing larger SOM network sizes (e.g., 81 or 100) with a compromise of the 
number of notables (as demonstrated in Fig. 1). Also, when the SOM network size 
increases, more clusters with a higher density of notables start to appear. Therefore, 
the granularity of the results is proportional to the sizes of the SOM network: smaller 
network sizes provide for coarser grained results while larger network sizes for finer 
grained outputs. This in part is obvious due to the larger number of clusters available. 
The need to be able to determine which network size to utilise is likely to be driven by 
the aim of the investigator (e.g., to obtain all notables at the cost of picking up more 
noise or obtain some notables to confirm the image has relevant content at the 
expense of very little noise). 



 
 

 

Fig. 1. Comparison on Notables and Noise in the rank-five clusters of the Case 3 File List on 
various network configurations 

5 Automated Evidence Profiler 

The previous section has highlighted that SOM-based analysis does have the 
potential to cluster notable versus noise files to a degree that would significantly 
reduce the investigation time. The research question that now arises is how to identify 
which clusters to analyse first – selecting the wrong clusters will lead the investigator 
to analyse a large number of noise files rather than notables. The following section 
describes a novel process for identifying and analysing relevant clusters and proceeds 
to present an evaluation of the approach. 

5.1 Automated Evidence Profiler Process 

The Automated Evidence Profiler (AEP) splits the problem of identifying relevant 
clusters into two aspects: 
 

• How to identify the very first cluster to analyse 
• How to identify subsequent clusters across the different metadata SOMs 

Also, the AEP needs to maximise the number of notable files identified whilst looking 
to minimise the number of noise files included. 
 
The solution to the first problem is based upon prior work completed in profiling 
criminal behaviour. It recognises that certain crime types will result in particular file 
formats being more likely to contain notable files than others. For example, child 



abuse cases will typically result in image-based files. The Department of Justice (DoJ) 
published a mapping of computer-based criminal activities versus file types (DoJ, 
2001). The AEP uses this information to identify the first cluster within the File List 
SOM that contains the greatest number of these file types based upon the intelligence 
of the criminal activity. 
 
In order to solve the issue of incorporating the results from the differing SOMs (File 
List and application-level SOMs) and to maximise the number of notable files 
identified, AEP proposes an approach that focuses upon analysing the timeline of files 
identified in the first cluster. The underlying assumption being applied is that when a 
suspect interacts with a file, the criminal activity is likely to involve other artefacts 
that are also notable within a short period of time (can be identified based upon their 
MAC times). For example, viewing a notable image is likely to involve viewing 
several images rather than a single image in isolation. Or the image is attached to an 
email and sent to another suspect. Fig. 2 illustrates the high-level process of AEP – 
from the initial crime mapping, to the creation of evidence trails and their subsequent 
prioritisation. The final step in the AEP process is to seek to improve upon the 
original crime mapping by feeding back into the process with the file types that have 
been identified as notable provide an adaptive and more reflective crime mapping. 
This process will also account for changes in criminal activities and how technology 
is used over time. For example, if a particular criminal activity begins to work with 
different file types, this process will account for this and ensure they are included. 
Whilst this feedback mechanism is proposed in this research, the evaluation did not 
include this aspect. 
 

 
Fig. 2. Automated Evidence Profiler Process 



 
The core of the AEP process is the creation of evidence trails and their prioritisation. 
As illustrated in Fig. 3, the initial identified cluster will give rise to a number of files 
within it. Each file is taken in turn and a time window (e.g., 30 seconds, 1 minute, or 
2 minutes) is applied to the accessed timestamp in both time directions (i.e., before 
and after) in order to create an evidence trail (i.e., finding any related artefacts within 
the given time window). Then these related artefacts are added to a global list of 
artefacts for the case. Having analysed all the files in the cluster, the resulting list of 
related artefacts is then sorted based upon the SOM in which the artefact resides and 
the cluster ID. The next cluster to be analysed is the one that appears most frequently 
within that global list. For example, as illustrated in Fig 3, based upon Evidence Trail 
1, Internet Browser activity was identified as an action that took place shortly after the 
identified “Child.jpg” artefact (from the first cluster). If upon completion of the 
analysis of all the files from the first cluster, the cluster from the Internet SOM to 
which the Facebook-Clare exists appeared most frequently; that cluster would be the 
next one to be analysed. When it is, Evidence Trail 4 will be created. The process then 
repeats as often as required. 

 
 

Fig. 3: Example of Evidence Trails 
 

 



All of the analysed artefacts will be included in the final report to the investigator. 
The final aspect of the process is to provide some degree of prioritisation of the 
artefacts. This is achieved through an analysis of the frequency by which the artefact 
has been identified – with reoccurring artefacts more likely to be key notable artefacts 
that a suspect has interacted with in comparison to infrequent used artefacts. 

5.2 AEP Evaluation 

 
An evaluation of the AEP process was performed utilising the aforementioned cases 
presented in section 3. Within the evaluation, impacts of three key parameters of the 
AEP are also tested: 
 

• Time Window (TW) – whilst the assumption that criminal activities are not 
undertaken in isolation may intuitively seem correct, the size of the TW will 
have an impact on the number of notables and noise files (with the former 
decreasing and the latter increasing if the TW is too large). 

• Number of clusters to be analysed – how many iterations of the process are 
necessary before the number of notable artefacts diminishes and the number 
of noise files increases. Too few iterations will result in insufficient notable 
artefacts being identified – too many and the process will present more noise 
files for the approach to be useful. 

• Network size – as indicated in the previous section, the relationship between 
notables and noise files are closely related to the network size 

In addition, it is also important to investigate whether the AEP process is able to 
incorporate the results of the other SOMs – rather than merely analysing clusters 
within the File List SOM. 
 
Table 8 illustrates the best-case results (and the algorithmic parameters required for 
the result). Given the only investigator interaction required in this process is to select 
the crime category, the process achieved recall rates (proportion of notable files 
identified) of between 75.3 to 93%. As the main aim of the digital investigation is to 
find as much evidence as possible, the recall rate achieved by the AEP is promising as 
at least three quarters of the notables files were identified across the four cases. While 
the precision rate is low in terms of what an average clustering technique enabled 
system can achieve, this phenomena could be caused by a number of factors, 
including the use of smaller network sizes, the lower number of notable artefacts, and 
the proportion of notables within the case (e.g. only 0.008% of the artefacts were 
notables in Case 4). It is worth highlighting, in terms of the computational time 
required, most of the analysis took a relatively trivial amount of time (in the order of 
minutes); however, Case 4 (with a large number of artefacts to process) did take on 
average an hour to process. In comparison to many forensic analyses this is not 
significant; however, it is worth highlighting and noting as an opportunity for future 



research. Overall, the investigator can still save huge amount of time when the AEP 
process is applied to analyse the case.  
 

Table 8. Overall Performance of the AEP Process 

Case 
ID 

Recall 
(%) 

Precision 
(%) 

F 
measure 

Process Parameters 
SOM 

Network 
Size 

TW 
(minute) 

SOM 
Iteration 

Time 
(minute) 

1 93 34.4 0.5 9 2 3 1 
2 75.3 36.3 0.49 9 0.5 2 7  
3 76.7 12.9 0.22 49 2 2 1  
4 92.8 0.5 0.01 100 0.5 1 ~60 

 
Fig. 4 illustrates the impact upon performance the TW has across differing network 
sizes. Generally as expected, beyond a certain TW, the proportion of noise files 
significantly increases with a disproportionate change in the notable artefacts 
identified. There appears to be a “sweet spot” at around the 2-5 minute window. 
 

 
Fig. 4: Impact of the Time Window on Performance 

 
In terms of how many SOM iterations should be analysed, the graphs illustrated in 
Fig. 5 show it is more dependent on the size of the SOM network utilised, which in 
turn appears to have a dependency on the number of artefacts to be processed. Cases 
with larger numbers of artefacts appear to operate better in larger SOM network 



configurations (although the limited number of cases analysed merely suggest this 
rather than definitively indicate it). 
 

 
Fig. 5. Impact of Cluster Iterations on Performance 

 
The final aspect of the investigation was to ensure the process was able to incorporate 
notable files that are contained in clusters pertaining to the other SOMs (i.e., EXIF, 
Internet and Email). For simplicity, Table 9 illustrates the effect of the process upon 
Case 1 and 2 versus three network configurations with four iterations. The first 
number indicates the SOM type and the second the cluster ID. In both of these cases it 
is clear that clusters from all relevant SOMs (where they exist) are being included 
within the analysis for notable files. For example, clusters from all four SOMs are 
included in Case 1. 
 

Table 9. SOM and Cluster IDs Identified 
 
Network Size 9 25 49 
Case ID TW 13 2 3 4 1 2 3 4 1 2 3 4 

1 
0.5 1,7 1,5 4,3 1,8 1,1 1,4 1,5 1,20 1,18 1,21 3,1 1,42 
1 1,7 1,5 4,3 1,8 1,1 1,25 3,17 3,21 1,18 1,6 3,1 3,8 
2 1,1 1,2 1,6 3,4 1,1 2,17 1,7 1,3 1,25 1,1 1,2 1,27 

                                                             
3 Iteration ID 



5 1,7 1,8 1,6 1,3 1,1 2,13 1,15 3,1 1,1 1,4 1,19 4,42 
10 1,7 4,5 1,8 4,3 1,3 3,1 3,6 3,10 1,33 2,1 2,4 4,23 
20 1,7 4,5 1,8 1,6 1,2 3,15 3,16 3,22 1,18 4,46 4,24 4,17 
30 1,1 4,5 1,8 1,6 1,1 2,25 3,2 3,3 1,31 3,3 3,4 3,10 

2 

0.5 1,1 1,4 1,7 1,6 1,7 1,10 1,16 1,1 1,22 1,47 1,43 1,12 
1 1,1 1,4 1,7 1,5 1,7 1,16 1,25 1,13 1,22 1,39 1,47 1,48 
2 1,4 1,1 1,5 1,7 1,7 1,25 1,16 1,21 1,22 1,47 1,40 1,48 
5 1,1 1,4 1,5 1,7 1,7 1,13 1,16 1,25 1,22 1,36 1,27 1,8 

10 1,1 1,4 1,5 1,7 1,7 1,16 1,25 1,2 1,22 1,43 1,37 1,27 
20 1,1 1,4 2,9 4,5 1,7 4,14 4,19 4,18 1,22 1,43 4,20 4,13 
30 1,1 4,3 4,5 2,9 1,7 4,14 4,19 4,18 1,22 1,43 4,7 4,13 

(Key: 1=File List SOM; 2=Email SOM; 3=EXIF SOM; 4=Internet SOM) 
 

6 Discussion  

Based upon the results presented in Tables 4-7, the application of SOM to artefact 
identification works well – showing that notable artefacts can be correlated based 
upon metadata that is derived from it. Indeed, for each of the categories (i.e., File List, 
Email, EXIF, and Internet) through all four cases, more than 93.5% of notables were 
grouped within the rank-five clusters at least under one SOM network configuration 
with at less than half of the noise files being included. The best performance of all 
results (in terms of grouping most notables within the rank-five clusters and also 
minimising the proportion of noise) was achieved by using the 10x10 network for the 
File List in Case 4 – all the notables were clustered in a single cell with only 1.6% of 
the total noise being present.  

Case 2 has proven to be challenging, both in the identification of notable versus 
noise files but also in the inclusion of sufficient notable files in the first place. The 
latter problem has the potential to be rectified through the inclusion of more 
application-level metadata SOMs. For example, a Recycle Bin SOM that extracts the 
metadata from the INFO2 (pre Windows Vista) or $I (Windows Vista and newer) 
would have identified previously deleted applications (as was the issue in Case 2). 
The same argument could be made for a variety of other application-level SOMs, 
including Microsoft Office files where metadata is extracted from the header, Skype 
SOM that extracts Skype call records and chat interactions, and Log SOMs that 
extract application and user based log records. The reason for the poor identification 
performance with the artefacts that were included in Case 2 is less clear; however, it 
is notable that having applied the AEP process the overall performance was 
commensurate with the remaining cases – achieving a recall rate of 75.3%. So whilst 
the SOM might have had some weaknesses, the proposed AEP process has 
counteracted these. 

The results from the AEP more generally are also very encouraging. Whilst ideally 
it would best to have identified all notable files (i.e., 100% recall rate), an 
appreciation of the issues regarding the volume of data, time taken to investigate, and 
the likelihood of human investigative error means the opportunity of undertaking a 



“gold standard” investigation is becoming less and less likely in the future. Therefore, 
more “intelligent” approaches, such as those proposed in this paper, provide a basis 
upon which simpler more technically trivial cases (which represent a large proportion 
of the day-to-day activities for law enforcement forensic investigators) can be 
undertaken, reducing (not removing or replacing) the time taken for an investigator to 
confirm the nature of the case and to present the relevant evidence in a report. 

7 Conclusions and Future Work 

The paper has presented an empirical study investigating the possibility of using SOM 
to cluster notable files for digital forensic investigations in an unsupervised manner – 
a significant enhancement over existing approaches. The experimental results show 
the analysis of file system and application-level metadata offers a good level of 
performance. It should be highlighted that in contrary to much of the literature in 
digital forensics, the purpose of this paper is to further the body of knowledge in the 
application of machine learning to digital forensics for the purpose of automated 
artefact identification. As such the paper has presented an investigation in the 
approach, developed a model and evaluated the model parameters to illustrate the 
impact upon performance. It is not the objective of the paper to present a forensic 
tool, nor to advocate that such an approach would remove the necessity of an 
investigator. The approach presented is the building block upon which further 
research can seek to refine and evaluate with a view to providing a triage tool that 
could assist in a range of computer-related crimes. The net effect will be to free up 
more investigative time for more technically complex cases (such as those involving 
the use of advanced data hiding and anti-forensics). 

Future work will focus upon investigating the effectiveness of other unsupervised 
machine learning approaches and seek to evaluate the proposed AEP process against a 
greater range of cases. Further work also needs to be undertaken to investigate the 
wider architectural aspects of implementing such an approach in practice – for 
example, the visualisation of the identified artefacts in order to enable a faster 
appreciation of their status and relevance by an investigator. This could also include a 
feedback loop that allows the system to adapt to changes in the identification process 
given by decisions from a trained and experienced investigator. 
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