
There and Back Again: Mapping and Factorizing Cosmological Observables

David Stefanyszyn *

School of Mathematical Sciences and School of Physics and Astronomy,
University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

Xi Tong †

Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom

Yuhang Zhu ‡

Cosmology, Gravity and Astroparticle Physics Group, Center for Theoretical Physics of the Universe,
Institute for Basic Science, Daejeon 34126, Korea

(Received 15 July 2024; revised 16 October 2024; accepted 21 October 2024; published 26 November 2024)

Cosmological correlators encode invaluable information about the wave function of the primordial
Universe. In this Letter we present a duality between correlators and wave function coefficients that is valid
to all orders in the loop expansion and manifests itself as a Z4 symmetry. To demonstrate the power of the
duality, we derive a correlator-to-correlator factorization formula for the parity-odd part of cosmological
correlators that relates n-point observables to lower-point ones via a series of diagrammatic cuts. These
relations serve as the first example of physically testable cutting rules as they involve observables defined
for arbitrary physical kinematics. We further show how the duality allows us to translate the cosmological
optical theorem for wave function coefficients into statements about cosmological correlators.
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Introduction—One of the ultimate goals of physics is to
understand the laws of nature at the beginning of time. A
cosmologist’s approach to this problem is to measure
spatial correlations in the cosmic microwave background
radiation and the large scale structure of the Universe.
These correlations are seeded by primordial “cosmological
correlators” of quantum fields evolving during inflation,
with their momentum dependence encoding the secrets of
the underlying physics at play during the Universe’s first
moments. For example, the soft limit of correlators probes
the cosmic expansion history [1,2] and the inflationary
particle spectrum [3–30], the equilateral limit probes
higher-dimensional self-interactions of the inflaton [31–
35], while the collinear limit probes the initial state [32,36–
40] and environmental effects [41]. Understanding the
structure of cosmological correlators is therefore of upmost
importance in our quest to understand the early Universe
and therefore physics at extreme energy scales.

In recent years, however, much attention has been paid to
more primitive objects, namely “wave function coeffi-
cients” that encode the inflationary dynamics in the
perturbative expansion of the wave function of the
Universe (given that we work on a fixed background
geometry, “field-theoretic wave function” might be a more
appropriate name) [42,43]. Although these objects are not
directly observable, cosmological correlators can be
extracted from them by applying the Born rule, and their
somewhat simpler kinematic dependence means that con-
straints from cherished physical principles such as sym-
metries, locality, and unitarity turn out to be more
transparent [44–64]. They also play an important role in
defining cosmological amplitudes [58,65–68], can be used
to understand the origin of IR divergences in de Sitter space
[69–71], contain (boost-breaking) flat-space amplitudes in
a certain singular kinematic limit [72–74], and have neat
connections to geometry [49,75–77].
In this Letter, we derive a duality between cosmological

correlators Bn and the “physical” part of wave function
coefficients ρn ≡ ψn þ ψ ♯

n, where ♯ stands for complex
conjugation and momentum reversal [78], that is valid to all
orders in perturbation theory (i.e., to all orders in the loop
expansion). We show that in the dictionary that translates
the fρng to the fBng, there exists a Z4 symmetry that
“syntactically” swaps ρn ↔ Bn and maps any valid equa-
tion to another valid equation within the dictionary. The
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duality therefore takes us from wave function coefficients
to cosmological correlators, and back again.
We use this duality, in combination with the results of

[79] where we showed that parity-odd correlators are
factorized, to prove that under a set of mild assumptions,
parity-odd correlators of inflatons and gravitons factorize
into a structured sum of products of lower-point correla-
tors. This factorization holds for physical kinematics (no
need for analytic continuation) and for generic momentum
dependence (no need to take specific kinematic limits) and
is in principle a relation that can be tested with observa-
tions. We show that it also has a neat interpretation in terms
of diagrammatic cuts. The first nontrivial example of this
correlator-to-correlator factorization (CCF) relates the tris-
pectrum of primordial perturbations to the bispectra involv-
ing two curvature perturbations and one additional state
with integer spin and a complementary series mass, and the
power spectrum of this state. The power of this relation lies
in the fact that it maps an observable to a combination of
other observables.
We further show the usefulness of our duality in the

context of unitarity and the cosmological optical theorem
(COT) [51]. The COT is most naturally derived for wave
function coefficients since unitary time evolution imposes a
set of conditions on the wave function of the Universe
[47,51–53,61]. It manifests itself as a relation between
analytically continued wave function coefficients. It is
desirable, however, to derive conditions on cosmological
correlators since these are ultimately the fundamental
observables and, while some progress has been made in
this direction [58] (see also [80–83] for cutting rules that
focus on the cosmological collider signal), the full set of
conditions has not been derived (even at tree level). In this
Letter we show how our duality can play an important role
in this regard by converting the COT for wave function
coefficients into statements for cosmological correlators.
Notations and conventions For conciseness, we use the

DeWitt notation [84], where both field indices and spatial
coordinates are abbreviated as a single Latin index as
φAðxÞ≡ φi. Contractions are interpreted as φiχ

i≡P
A

R
d3xφAðxÞχAðxÞ. We adopt the following diagram-

matic notations:

ð1Þ

These blobs represent the abstract notion of correlators and
wave function coefficients, respectively, without specific
perturbation theory structures inside. They should be
distinguished from the typical Schwinger-Keldysh and
Witten diagrams that compute Bn and ρn. For conciseness,
all momentum and tensor indices have been suppressed.
Correlator-wave function duality—We start with a light-

ning review of the wave function approach to primordial
perturbations. Consider a set of weakly interacting quantum

fields collectively denoted by ΦiðηÞ evolving in a classical
inflationary spacetime gμν ¼ a2ðηÞημν, aðηÞ ¼ −1=ðHηÞ.
In the Schrödinger picture, we define the wave function of
the Universe by projecting the time-evolved Bunch-Davies
(BD) vacuum onto a field-value eigenstate,

Ψ½φ� ¼ hφjUðη0;−∞ÞjBDi ¼
Z

Φðη0Þ¼φ

BD
DΦeiS½Φ�: ð2Þ

In practice, the Bunch-Davies vacuum choice means that
we integrate over fields that vanish in the far past (with a
suitable contour deformation). In perturbation theory, the
wave function is conventionally parametrized by

Ψ½φ� ¼ exp

�
þ
X∞
n¼1

1

n!
ðψnÞi1���inφi1 � � �φin

�
; ð3Þ

with the coefficients ψn computed via Witten diagram-
matics. Given our notation, there is an implicit sum over
different fields in (3), thereby ensuring that each wave
function coefficient has the appropriate normalization, e.g.,
for ψ3 with only two identical fields, we have an overall
factor of ð3=3!Þ ¼ ð1=2!Þ. We unconventionally start the
summation with n ¼ 1. This tadpole term starts out at loop
level and is necessary for the cancellation of the monopole
moment in observables.
The full n-point correlators of quantum fields are

computed by the Born rule as [85]

hφi1 � � �φini ¼
R
DφjΨ½φ�j2φi1 � � �φinR

DφjΨ½φ�j2 : ð4Þ

However, the quantities of more observational relevance are
their connected part, which we will denote as Bn, in which
only one momentum-conserving δ function is present in
momentum space. These are computed from the generating
functional

Z½J� ¼
Z

DφjΨ½φ�j2eiJiφi ð5Þ

by taking derivatives with respect to the auxiliary
current, i.e.,

ðBnÞi1���in ¼
∂

i∂Ji1
� � � ∂

i∂Jin
lnZ½J�

����
J¼0

: ð6Þ

This yields the correct normalization since the denominator
in (4) is simply Z½0�, and we emphasize that the derivatives
act on lnZ½J� rather than Z½J�, thereby ensuring we only
extract connected correlators. Alternatively, we can inte-
grate (6) to obtain

exp

�
þ
X∞
n¼1

in

n!
ðBnÞi1���inJi1 � � � Jin

�

¼
Z

Dφ exp

�
þ
X∞
n¼1

1

n!
ðρnÞi1���inφi1 � � �φin

�
eiJ

iφi ; ð7Þ
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where ρn ≡ ψn þ ψ ♯
n is the physical part of a wave function

coefficient. Therefore, the connected correlators can be
viewed as a Fourier transformation of the physical wave
function coefficients. Now notice that the two sides of (7)
take completely analogous forms. We can therefore per-
form an inverse Fourier transformation to rewrite (7) as

exp

�
þ
X∞
n¼1

1

n!
ðρnÞi1���inϕi1 � � �ϕin

�

¼
Z

DJ exp

�
þ
X∞
n¼1

in

n!
ðBnÞi1���inJi1 � � � Jin

�
e−iJ

iϕi : ð8Þ

After a change of the dummy variable J → −J, we obtain

exp

�
þ
X∞
n¼1

1

n!
ðρnÞi1���inϕi1 �� �ϕin

�

¼
Z

DJ exp

�
þ
X∞
n¼1

ð−iÞn
n!

ðBnÞi1���inJi1 � ��Jin
�
eiJ

iϕi : ð9Þ

Comparing (7) and (9), we see that a syntactic replace-
ment [86],

g∶
�
ρn

Bn

�
↦ ð−iÞn

�
Bn

ρn

�
; ð10Þ

maps them to each other (after some labeling). Since both
(7) and (9) are equivalent statements of the correlator-wave
function dictionary, we deduce that g is an exact symmetry
of the dictionary. Since g4 ¼ 1, the duality mapping
generates a Z4 group that maps the dictionary to itself.
The formal proof above shows that such a Z4 symmetry is
valid to “arbitrary” finite orders in perturbation theory,
since the Gaussian integrals in both (7) and (9) are well-
defined as long as ρ2 < 0 < B2. Note that in this derivation
we have dropped an integration constant since ultimately
the relationship between the ρn and Bn comes from taking
derivatives with respect to an auxiliary current and there-
fore an overall constant in (9) is inconsequential.
To demonstrate the duality, let us inspect some simple

examples. Up to n ¼ 5 at tree level, we have

B2 ¼ −
1

ρ2
; ð11aÞ

B3 ¼ −
1

ρ32
ρ3; ð11bÞ

B4 ¼
1

ρ42

�
ρ4 −

�
ρ3

1

ρ2
ρ3 þ 2 perms

��
; ð11cÞ

B5 ¼ −
1

ρ52

�
ρ5 −

�
ρ4

1

ρ2
ρ3 þ 9 perms

�

þ
�
ρ3

1

ρ2
ρ3

1

ρ2
ρ3 þ 14 perms

��
; ð11dÞ

where the internal DeWitt indices are understood as
contracted. Note that, up to minus signs, the coefficient
of each term is unity thanks to the normalization of the
wave function. Under the duality mapping g, Eqs. (11)
become

− ρ2 ¼ −
1

−B2

; ð12aÞ

iρ3 ¼ −
1

−B3
2

iB3; ð12bÞ

ρ4 ¼
1

B4
2

�
B4 −

�
iB3

1

−B2

iB3 þ 2 perms
��

; ð12cÞ

−iρ5 ¼ −
1

−B5
2

�
−iB5 −

�
B4

1

−B2

iB3 þ 9 perms

�

þ
�
iB3

1

−B2

iB3

1

−B2

iB3 þ 14 perms

��
; ð12dÞ

which are equivalent to solving the original Eqs. (11) for
the ρ’s. Note also that since the n ¼ 1 entry starts out at
loop level, we have neglected it here. In practice, it is
convenient to remove the tree-level tadpoles, so that the
Gaussian term dominates the typical field fluctuations.
However, we note that the duality (10) works for any values
of ρ1 and B1, since convergence is always guaranteed by
the Gaussian term at nontypically large field fluctuations.
In the Supplemental Material [87], we explicitly verify the
duality including the n ¼ 1 tadpole terms up to four-point
one-loop order, and show that consistently keeping tadpole
terms is essential for the duality to work. We have further
successfully confirmed the validity of the duality with a
channel-insensitive check at nine-point four-loop order
using a computer algorithm [88].
In general, the tree-level dictionary translating physical

wave function coefficients to correlators (in the absence of
linear mixings that we assume throughout) reads

Bn ¼
1

ð−ρ2Þn
Xn−3
k¼0

ð−1Þk
�
k cuts

�
ρ

; ð13Þ

with

�
k cuts

�
ρ ≡

X
n−k≥n1���nkþ1≥3

�
ρn1

1

ρ2
ρn2 � � � ρnk

1

ρ2
ρnkþ1

þ ðπn1���nkþ1
− 1Þ perms

�
: ð14Þ

The correlator-wave function duality then implies the
reciprocal formula
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ρn ¼
1

Bn
2

Xn−3
k¼0

ð−1Þk�k cuts�B; ð15Þ

where
�
k cuts

�
B is obtained from (14) via a syntactic

substitution ρ → B. Notice that here we have applied the
tree-level topology to write ð−iÞn1þ���þnkþ1−n ¼ ð−1Þk.
In summary, the power of the duality allows us to directly

invert the dictionary without the need of ever performing
the algebraic inversion in practice, and all the combina-
torics are automatically left intact.
Factorization of parity-odd correlators—Let us now see

how the duality we derived above can be put to good use. In
[79], we derived a factorization theorem for cosmological
correlators of the inflaton and graviton that states that n-
point functions of these states are factorized into lower-
point objects if these observables are parity-odd (PO) [89].
This theorem allows for correlators arising from the
exchange of additional states of any mass and integer spin
(in addition to contact diagrams), and relies on the
following small set of mild assumptions: (i) unitarity and
locality, (ii) the tree-level approximation, (iii) Bunch-
Davies vacuum conditions, (iv) IR convergence of the
nested time integrals that compute cosmological correla-
tors, and (v) scale invariance of the interactions.
An immediate consequence of the theorem is the absence

of total-energy singularities in the PO sector of primordial
perturbations that leads to a very nice distinction between
the PO and parity-even sectors [90]. The theorem does not,
however, state what objects such correlators factorize into.
This is where the duality we have derived here comes to
fruition. Indeed, the basis of the factorization theorem of
[79] is a proof that for the PO sector we have ρPOn ¼ 0 (as
long as the external states are the inflaton and/or the
helicity-summed graviton, and any internal states that are
produced during inflation and decay into these massless
states are in the complementary series of de Sitter repre-
sentations or the SOð3Þ representations of [26]). This
follows from the fact that for the PO sector we have
ρPOn ¼ ψnðkÞ − ψ�

nðkÞ, i.e., it is the imaginary part of wave
function coefficients that contribute to cosmological
observables, yet under the above assumptions, wave
function coefficients are purely real. This can be proven
on very general grounds by performing Wick rotations of
the time variables and using the fact that the time-ordered
part of the bulk-bulk propagator is purely real after this
rotation [92], as are the vertices and the bulk-boundary
propagator [79]. The result holds for exchanging fields of
arbitrary integer spin [95].
Turning our attention to (15), in the PO sector the

factorization theorem of [79] therefore implies

1

Bn
2

Xn−3
k¼0

ð−1Þk
h�
k cuts

�
B

i
PO ¼ ρPOn ¼ 0; ð16Þ

which can be rearranged to yield a formula for BPO
n in terms

of lower-point correlators,

BPO
n ¼

Xn−3
k¼1

ð−1Þk−1
h�
k cuts

�
B

i
PO
; ∀ n ≥ 4: ð17Þ

In these expressions ½…�PO indicates that we are projecting
correlators onto their PO part, which for correlators of the
inflaton means that we take the imaginary part [97]. Note
that this formula holds regardless of how the parity
violation arises, which could be due to parity-violating
vertices or due to the exchange of a spinning field with a
parity-violating two-point function. We therefore see that
the correlator-wave function duality has enabled us to
derive, using the factorization theorem of [79], a correlator-
to-correlator factorization (CCF) formula for the PO sector
of primordial perturbations that has a neat interpretation in
terms of correlator cuts. As an example, for n ¼ 4 there is
only one possibility where an exchange diagram is cut into
two cubic diagrams and (17) can be diagrammatically
represented by

ð18Þ

with the factor of 3 symbolizing the three different
channels. The absence of a contact diagram contribution
was already noted in [98–100]. For n ¼ 5 there is more
structure with single and double cuts possible. We have

ð19Þ

where again the numerical factors are counting distinct
channels, and the different colors allow for the exchange of
different fields.
In the above derivation we took additional states to be in

the complementary series as this allowed us to set ρPOn ¼ 0
[79]. If there are also principle series fields, then this is not
possible since then ρPOn ≠ 0. Correlators are indeed still
factorized, but they do not factorize into other correlators.
Our CCF formula is still useful for principle series fields,
however, since if we have an explicit expression for BPO

n
due to the exchange of complementary series fields (which
can be computed using the CCF formula), we can ana-
lytically continue the mass parameter to derive correspond-
ing expressions for the exchange of principle series
fields [106].
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The most relevant case for phenomenology is n ¼ 4
(corresponding to the trispectrum) and with curvature
perturbations as the external states. This observable has
received much attention recently due to the purported
detection of parity violation in the galaxy four-point
function [107,108] (see also [109,110], however). In this
case our CCF formula reads

BPO
4 ðfkgÞ ¼

�
B3ðk1;k2;−sÞ ·

1

B2ðsÞ
· B3ðs;k3;k4Þ

�
PO

þ ðtþ uÞ channels; ð20Þ

which provides a neat connection between distinct observ-
ables, namely between the PO part of the trispectrum of
curvature perturbations, the bispectrum consisting of two
curvature perturbations and one additional state with
integer spin and mass in the complementary series, and
the power spectrum of this new state. This relation is in
principle testable, and any violation of this relation would
imply one of the above listed assumptions is violated. One
case of particular interest is where the exchanged field is the
graviton. Parity violation in such a setup can come from a
number of sources, e.g., as a dynamical Chern-Simons
correction to the graviton propagator [111] or due to a
mixing between the graviton and an SUð2Þ gauge field
[112,113]. It would be interesting to study these cases in
more detail given our CCF formula.
Finally, let us point out that although the CCF relation

(17) is almost completely transparent in the wave function
language thanks the correlator-wave function duality, it
seems rather mysterious from the traditional in-in and
Schwinger-Keldysh diagrammatics of [114]. One can
indeed derive CCF relations using Schwinger-Keldysh
diagrammatics for specific lower-point examples, as we
demonstrate for n ¼ 4 in the Supplemental Material, yet the
general proof seems to be hidden from sight. It remains an
intriguing question as to why boundary correlators should
factorize into other correlators even away from specific
kinematic limits (e.g., the operator product expansion
limit).
Unitarity and cosmological correlators—We now turn

our attention to unitarity. Understanding the consequences
of unitarity on observables is a vital component of a
bootstrap toolbox. For scattering amplitudes unitarity
requires tree-level processes to factorize near poles, and
consistent factorization across multiple channels can
heavily constrain the space of admissible amplitudes and
therefore admissible theories [74,115]. More generally,
unitarity imposes a set of Cutkosky cutting rules for
scattering amplitudes [116]. For cosmology the constraints
imposed by unitarity are best understood at the level of
wave function coefficients where a set of conditions
imposed by unitary time evolution impose relations
between analytically continued wave function coefficients
[47,51–53,61]. Given that correlators rather than wave

function coefficients are the true observables that are
probed by cosmological surveys, it is desirable to find
conditions that unitarity imposes directly on correlators.
Progress in this direction has been made in, e.g., [58];
however, the general relations are not yet known. In this
section we show how the duality we have derived in this
Letter can be used to convert the COT for wave function
coefficients into relations between analytically continued
cosmological correlators, and as an example we derive the
general relation for the tree-level five-point function of
massless scalars fields, with IR-finite interactions, in de
Sitter space. To complement the other discussions in this
Letter, we will assume parity-even interactions.
The above assumptions are useful since they imply that

the wave function coefficients are purely real [79,99]. We
therefore have ρn ¼ 2ψn, which we can use to write the
COT in terms of ρn followed by using our duality to convert
the rules into statements about Bn. Let us illustrate this
procedure for n ¼ 4 where unitarity imposes the following
relations between ρ4 and ρ3 [51]:

ð21Þ

where s ¼ jk1 þ k2j, and

Discyfðfxg; yÞ ¼ fðfxg; yÞ − fðfxg;−yÞ; ð22Þ

with fxg a set of variables that do not flip sign under the
discontinuity. Note that we do not include a complex
conjugation on the right-hand side of (22), in contrast
to, e.g., [53], since the wave function coefficients are real,
and we have suppressed the dependence on spatial
momenta and only included the dependence on the energies
[117]. By acting on the fully symmetric ρ4 with Discs we
project onto the s-channel exchange diagram only. The
relation (21) can be derived from the assumption of real
couplings and factorization properties of the bulk-bulk
propagator [51]. We can now use the duality, namely the
relations between the ρn and Bn in (12) on both sides of
(21) to yield

ð23Þ

where we have used B2ð−sÞ ¼ −B2ðsÞ, which holds for
massless fields. This recovers the expression derived in
[51]. We emphasize that although this relation shares some
similarities with the CCF formula, it requires us to work
with nonphysical momenta, whereas the CCF formula is a
true statement also for physical momenta. We can follow
the same procedure for n ¼ 5, where unitarity imposes the
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following relation between ρ5, ρ4, and ρ3:

ð24Þ

If we now use the relations (12) on both sides of (24) we
arrive at

ð25Þ

which relies on a very nontrivial cancellation between the
contributions with three copies of B3. We emphasize that
we have not been restricted to particular diagrammatics or
channels in the above relations: they hold for the full fρng
and fBng at tree level, with the duality automatically
keeping track of the combinatorics. We find it very
interesting that the form of the COT is universal, i.e.,
the ρ relations are identical to the B ones. This seems to
suggest that the COT commutes with a naive application of
the duality. We believe that this deserves further attention
and we plan to return to it in the future.
Summary—In this Letter we have derived a duality in the

dictionary between cosmological correlators fBng and the
physical part of wave function coefficients fρng that is
valid to all orders in perturbation theory. This duality allows
us to derive a reciprocal formula that reconstructs fρng
from fBng in a syntactic fashion. When combined with the
results of [79], which states that ρPOn ¼ 0 for massless scalar
and graviton external states, and complementary series
internal states, we obtain an infinite set of correlator-to-
correlator factorization (CCF) formulas. These relations
state that n-point PO correlators at tree level are factorized
into structured combinations of lower-point correlators.
These CCF relations involve observables defined for
physical kinematics and can therefore in principle be tested
observationally. Any violation of these relations would
directly point to the failure of the tree-level assumption,
unitarity, locality, scale invariance, or the Bunch-Davies
vacuum. We showed how our CCF formulas can be
understood in terms of diagrammatic cuts, and since taking
these cuts does not require any analytical continuation, they
serve as the first example to understand the general
structure of cosmological observables in a physically
accessible manner.
In addition to deriving physically testable relations, we

also showed how the duality can be used to map the COT
for wave function coefficients, which follows from unitary
time evolution, into statements about cosmological corre-
lators. Intriguingly, the form of the COT remains the same
before and after application of the duality. We believe that
this observation deserves further attention. It would also be

interesting to use the duality to derive the COT for all n,
thereby generalizing what we have focused on in this Letter
for n ¼ 4, 5.
Our Letter certainly opens up many more avenues for

future exploration. For instance, the Z4 symmetry goes
beyond the context of cosmology all the way to connected
Green functions and effective field theory Wilson coef-
ficients in general quantum field theories. It would be
interesting to see if one can make general statements there,
too. In addition, it would be interesting to extend our CCF
formula (or something akin to CCF) to loop level. Finally, it
would be neat to find a full proof of the CCF formula
directly using the Schwinger-Keldysh formalism, where
only observables are involved from the get-go.
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