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Abstract

Plant roots play myriad roles that include foraging for resources in com-
plex soil environments. Within this highly dynamic soil environment roots
must sense, interact with, and acclimate to factors such as water availabil-
ity, microbiota, and heterogeneous distribution of nutrients. To aid their
acclimation, roots alter their growth and development to optimize their
architecture and actively regulate the physical, chemical, and biological
properties of their rhizosphere. Understanding the complex interactions
between roots and rhizosphere is critical for designing future crops with im-
proved root traits better adapted to diverse and challenging soil conditions.
However, studying roots and their interactions with soil under real-world
conditions presents significant challenges. Addressing these challenges de-
mands developing realistic laboratory-based model systems and innovative
field-based root imaging techniques. Our review surveys the current knowl-
edge and recent advances in understanding root—environment interactions
while proposing future solutions to study roots under more “real-life” soil
conditions.
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Rhizoid: a root
hairlike structure
emanating from
nonvascular plants that
helps anchor plants
and absorbs moisture
from soil

Rhizotron: a 2D root
architecture
phenotyping chamber
that allows monitoring
of root architecture
responses visible on
the surface of a thin
soil layer

X-ray computed
tomography (CT):
X-ray-based
phenotyping system
that enables
noninvasive imaging of
3D and 4D root-soil
interactions at up to a
submicron-scale
resolution
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INTRODUCTION

Roots are fundamental to the success of modern terrestrial plants. The earliest land plants, colo-
nizing dry land ~450 million years ago, initially relied on simple root hairlike structures termed
rhizoids for limited anchorage and fungal symbionts to enhance resource capture (31). Plants
later developed root systems ~400 million years ago to meet the challenges of terrestrial life. For
example, the evolution of true roots and the greater anchorage they provided allowed for greatly
increased plant sizes. Early vascular plants such as lycophytes shaped their root architecture by un-
dergoing dichotomous branching, which involves splitting the root tip into two new meristems.
Opver time, root branching shifted away from apical meristem to root elongation zone. Vascular
plants initiated priming lateral root (LR) stem cells in the basal meristem at the boundary with
the elongation zone (89). This shift has contributed to higher branching densities, environmental
responsiveness, and plasticity.

The survival and success of plant species hinges on their ability to sense and acclimate to
environmental signals and stresses. Roots are particularly adept at adapting to heterogeneous
conditions in their soil environments, as demonstrated by the remarkable levels of plasticity in
root architecture and anatomy. For example, roots branch in response to soil moisture availability
to optimize water foraging (83). Similarly, roots form suberized and lignified barriers to pre-
vent the diffusion of root oxygen into hypoxic soil (33). These interactions between plant roots
and their surroundings, or rhizosphere, reciprocally lead to changes in their soil environment,
through modifying their physical, chemical, and biological properties. For example, the secre-
tion of root exudates alters the hydraulic properties of soil, thereby influencing water uptake (16).
Such complex interactions and feedback highlight the importance of studying root-environment
interactions to fully understand plant life and the ecosystems they support.

Studying roots noninvasively in soil is often challenging. Many classical and advanced imag-
ing techniques, such as rhizotrons, X-ray computed tomography (CT), and magnetic resonance
imaging (MRI), provide scientists with the means to observe root growth and interactions within
a soil environment (as discussed in the section titled Challenges and Solutions to Studying
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Roots Under Real-World Conditions and summarized in Table 1) (88, 106, 123). Neverthe-
less, developing highly innovative and disruptive research methodologies and technologies is
essential for deeper understanding of root—environment interactions, particularly in natural
ecosystems and field-structured soil settings. Our review addresses root growth and develop-
ment in “real life,” discussing recent advances and challenges in studying root—soil environment
interactions.

DYNAMIC INTERACTIONS AT THE ROOT-SOIL INTERFACE
The Rhizosphere: A Matter of Exchange

The rhizosphere, which describes the volume of soil and associated organisms influenced by the
activity of living roots, is shaped by the interactions between plant physiological and soil physical,
chemical, and biological processes (69, 90, 136, 142) (Figure 1a,b). Despite the pivotal role of the
rhizosphere for the functioning of terrestrial ecosystems (69, 90), and thus agricultural produc-
tivity (139, 149), the definition of the boundaries of the rhizosphere varies widely (142). This is
due to the spatial impact of different plant physiological processes such as root growth, rhizode-
position, or water and nutrient uptake on rhizosphere formation and dynamics (136, 142). For
example, distinct spatial concentration gradients of plant nutrients have been reported around
roots (75). Similarly, spatial concentration and activity gradients differ between root exudates and
exoenzymes, respectively (69), while contrasting water uptake rates can also exist between root
classes (1).

The rhizosphere always includes roots that either (#) add matter to the soil in the form of
root biomass, various rhizodeposits (e.g., mucilage, sugars, organic and amino acids, H*, exoen-
zymes), and metabolic byproducts such as CO; or (§) extract matter, predominately water and
plant nutrients, from the soil (90, 142) (Figure 1b,c). Hence, the size and shape of the rhizo-
sphere is essentially determined by this dynamic exchange between plants and soil. It should be
noted that carbon, nutrient, and water transfer through hyphal networks of mycorrhizal fungi
can substantially increase the volume of soil that is indirectly affected by root activity, termed the
mycorrhizosphere (139, 142).

Soil Structure Development Is Key to Rhizosphere Formation and Processes

Rhizosphere formation is initiated by the effects of living roots on soil structure, i.e., the spatial
arrangement of solids and pores (90) (Figure 15). Depending on the architecture of the preexist-
ing pore system, the displacement of soil particles by growing roots can increase or decrease soil
porosity in the vicinity of roots (77, 133) (Figure 1d). Subsequently, the pore system adjacent to
roots can be further modified by root hairs (67). Moreover, root hairs entangle soil particles (90)
and increase the root surface area and thus rhizodeposition (69), which support soil aggregation
(90). Studies show that root water uptake is substantially influenced by the increased root—soil
contact facilitated by root hairs (Figure 1c). However, soil drying causes shrinkage of root hairs,
reducing their effectiveness in water uptake (32). Root water uptake leads to localized soil drying,
which in many soils results in soil shrinkage and subsequent crack formation (22). These changes
in soil structure alter gas and water transport characteristics in the vicinity of roots, which directly
impacts soil exploration and resource acquisition. For example, low soil porosity impedes ethy-
lene, O, and CO, exchange between roots, the rhizosphere, and bulk soil, leading to decreased
root growth (90, 98). Conversely, greater soil density around roots helps to maintain hydraulic
conductivity and thus water uptake in drying soil (2).

Structural features of the rhizosphere such as porosity gradients have been linked to the emer-
gence of increased chemical interactions and biological activity around living roots (48, 133)
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Magnetic resonance
imaging (MRI):
noninvasive root
imaging technology
that visualizes 3D and
4D images of roots and
transport of abundant
proton-containing
molecules like water

Rhizodeposit:

an extracellular
compound released by
roots into soil

Mycorrhizosphere:
zone of interaction
among mycorrhizal
fungi, roots, and soil
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(Figure 1e). Plants release myriad organic compounds into soil in the form of mucilage, sloughed
off root cap cells, and exudates, which fuel the activity of soil microorganisms in the rhizosphere
and thus turnover of soil organic matter (SOM) (69, 139). Depending on the composition of SOM,
e.g., stoichiometric ratios between carbon and plant nutrients, microbial activity can lead to mo-
bilization as well as immobilization of plant nutrients (69, 102). Exudation of exoenzymes further
contributes to SOM breakdown (69), while rhizosphere acidification via release of H* and organic
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Detritusphere:
volume of soil affected
by dead and decaying
plant residues that
impact soil structure
dynamics and
microbial processes
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Figure 1 (Figure appears on preceding page)

Dynamic interactions at the root—soil interface. (#) Illustration highlighting key processes involved in the
formation of the rhizosphere, i.e., the volume of soil and associated organisms affected by living roots (/ight
brown, immediately surrounding the roots). Soil structural changes caused by the activity of living roots (e.g.,
growth, exudation, resource uptake) initiate rhizosphere formation, leading to the emergence of spatial
gradients in soil physical, chemical, and biological properties and processes around living roots. In turn,
these heterogeneities characterizing the rhizosphere shape the overall environment of the roots, leading to
feedback with root growth and architecture. (b)) Roots modify the physical, biological, and chemical
properties of the rhizosphere by releasing rhizodeposits (e.g., mucilage, sugars, organic acids, ions,
hormones, and exoenzymes) and extracting resources such as nutrients and water from soil. (¢) Distribution
of resources in the rhizosphere, such as water, is highly heterogeneous, and soil stresses, such as soil drying,
exacerbate this variability. Root structures, such as root hairs, enhance root-soil contact and influence the
uptake of unevenly distributed water resources. Synchrotron-based X-ray computed microtomography and
image-based modeling demonstrate the gradients in water potential within the root—soil continuum under
dry soil conditions. The color scale represents gradients in soil matric potential (MPa). Panel ¢ adapted from
Reference 32 (CC BY 4.0). (d—) Growing roots alter soil structural properties, such as porosity, in the
vicinity of roots, depending on the architecture of the preexisting pore system. For instance, (d) Lucas et al.
(77) performed 3D visualization of root-soil contact, with a distance map (gradient color) showing the
distance from every pixel to the nearest biopore. The study revealed that roots compact the rhizosphere
when the soil structure does not have enough well-connected large pores. Panel d adapted from

Reference 77 (CC BY 4.0). Similarly, (¢) high-resolution X-ray computed tomography images reveal how
plant roots impact the structural development of the rhizosphere by causing changes in soil pore thickness
over time. Panel e adapted from Reference 48 (CC BY 4.0).

acids alters solubility of nutrients bound to soil particles (133, 149). Moreover, mucilage allows
greater water retention in the rhizosphere and the formation of liquid bridges connecting soil
particles, which are critical to water transport in the rhizosphere and plant water uptake in dry
conditions (15).

Living and Dead Roots Shape Spatiotemporal Heterogeneities That Define
Soil Environments

Root activities including root growth and respiration, rhizodeposition, as well as water and nu-
trient uptake lead to the development of distinct spatial gradients of rhizosphere processes and
properties (136). For example, root exudate concentration and microbial and enzyme activity de-
crease with the distance from the root surface, while the opposite pattern occurs for plant nutrient
concentration and microbial diversity (69, 136). Certain gradients emerge almost immediately
(e.g., soil porosity), while others can take several days (e.g., nutrient and enzyme concentrations)
to weeks and even months (e.g., microbial community structure) (69). Mounting evidence sug-
gests these spatiotemporal gradients are the foundation for a functioning rhizosphere (136, 149)
and that root acclimation and adaptation to rhizosphere heterogeneity are key to plant growth
23,139).

While the rhizosphere needs living roots by definition (69, 90, 136, 142), the effects and ulti-
mately the legacy of plant physiological processes on the soil environment are not constrained to
living root tissues. Dead root tissue constitutes a major input of the detritusphere—i.e., the vol-
ume of soil affected by dead root tissue, a hotspot for biological activity, organic matter turnover
and nutrient cycling, and soil structure dynamics (90). Moreover, macropores formed by roots
improve water infiltration and can be exploited by subsequent plants as preferential growth paths
to gain access to water stored in deeper soil layers (141). Thus, short- and long-term effects of the
complex interactions at the root-soil interface collectively shape the heterogeneous yet organized
environment of plant roots and thereby crop yield.
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ROOT ADAPTATIONS TO ENVIRONMENTAL SIGNALS
AND STRESSES

Plant roots are able to sense and acclimate to a diverse range of soil structures and environmental
signals and stresses, as demonstrated by the remarkable levels of plasticity in their architecture
(Figure 2). The following section reviews a selection of these environmental signals and the
chemical, biological, and physical stresses including water, nutrients, oxygen, microbiome, and
mechanical impedance. For details on other root environmental stresses such as salt, pH, or heavy
metals, we recommend several excellent reviews (50, 59, 132).

a Soil water distribution b soil nutrient distribution

Hydropatterning

Xerobranching

Hydrotropism

C Soil compaction d Soil microbiota

Noncompacted Compacted

Suberin
deposition

No microbes Microbes

29 Bacteria @& Nitrate "Ammonium % Phosphate O Ethylene
(Caption appears on following page)
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Hydrotropism:
acclimative plant
response involving
roots growing toward
volumes of soil with
higher water potential
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Figure 2 (Figure appears on preceding page)

Root adaptations in response to soil environmental signals. (#) Schematic illustration of mechanisms of root
adaptations to heterogeneous soil water availability. Roots show hydropatterning to position their lateral
roots toward the side in contact with soil water (blue) (96). When roots temporarily lose contact with water
in soil pore spaces (black), they exhibit xerobranching to pause lateral root formation. Root tips navigate
toward areas with high water potential by directing their tip growth via hydrotropism. Blue boundaries
surrounding soil particles indicate areas with available water. () Roots employ adaptive strategies to cope
with nutrient limitations in soil. Under low nitrogen availability, roots enhance lateral root formation in
deeper soil layers to access nitrogen sources that may be more concentrated at depth. Conversely, in
phosphorus-deficient soils, roots enhance lateral root growth in the topsoil where phosphate is more
abundant. Additionally, roots elongate their root hairs to expand their surface area, thereby increasing their
capacity for nutrient uptake. (c) Soil physical properties such as soil bulk density influence root growth.
Higher bulk density or compacted soil conditions restrict the diffusion of ethylene, resulting in inhibited
root growth and triggering a thickening response in roots (73, 97). (d) Roots establish symbiotic associations
with mycorrhizal fungi and nitrogen-fixing bacteria, significantly enhancing a plant’s ability to obtain
essential nutrients. Root-inhabiting microbiota also regulate the plasticity of root branching and deposition
of the endodermal diffusion barriers such as the Casparian strip and suberin lamellae, crucial for nutrient
homeostasis in plant. Abbreviations: ABA, abscisic acid; ARF7, AUXIN RESPONSE FACTOR 7; IAA3,
INDOLE-3-ACETIC ACID INDUCIBLE 3; P, phosphate; S, SUMO protein.

Divining for Water in Soil

Plants continuously seek out water through their root systems. Reduced access to soil water due to
poor rooting has been identified as a key factor contributing to lower crop yield improvements in
recent decades (140). For wheat, it is estimated that each additional millimeter of water extracted
by deep-growing roots can increase yield by up to 55 kg per hectare, highlighting the importance
of water availability (81). The availability of water to roots is influenced by the heterogeneous
distribution of moisture in soil. Factors such as soil type, depth, variability in precipitation, and
availability of irrigation impact how water is distributed. Additionally, root distribution in soil
and the dynamics of root water uptake further contribute to this variability. To adapt to these
heterogeneous soil conditions, roots perceive gradients of soil moisture availability and employ
various acclimative responses to optimize water uptake (Figure 24).

Hydrotropism. Roots can modify their direction of growth toward zones with a higher water
potential using hydrotropism (29) (Figure 24). This tropic response has served as a model for
water-driven root adaptive responses since the classical studies of Darwin and Sachs (26, 111).
However, designing experimental setups that closely replicate natural soil moisture distribution
patterns has proved challenging. Typically, researchers resort to using high concentrations of os-
molytes, which induce osmotic shock and fail to mimic the gradual water stress roots experience
under field conditions (43). The widely used split-agar-based method illustrates this approach,
where 1% agar with or without 400 mM sorbitol are poured side by side. Seedling root tips
are positioned close to the agar—sorbitol interface. Takahashi and coauthors (125) demonstrated
that this system can establish a water potential gradient ranging from —0.2 MPa (plain agar) to
—1.0 MPa (400 mM sorbitol) across the agar-sorbitol front. At the agar—sorbitol interface, the
water potential gradient was measured at —0.33 MPa. Interestingly, these water potential values
closely resemble the varying water potentials of soils used to study plant water stress responses,
such as Wsoil —0.1 MPa (well-watered), Wsoil —0.8 MPa (moderate stress), and Wsoil —1.4 MPa
(severe water stress conditions). However, it is important to note that the water potential gradi-
ent in the split-agar-based method diminishes gradually over 24 h due to diffusion. Nevertheless,
the split-agar-based method has proven instrumental in uncovering key mechanisms underlying
hydrotropism.

Mebhra et al.



The split-agar-based system helped identify that abscisic acid (ABA) is a key signal controlling
hydrotropism. Mutants defective in ABA biosynthesis such as abal-1 (ABA-deficient 1), or in ABA
signaling like abi2-1 (ABA-insensitive 2) (see Supplemental Table 1), exhibit reduced hydrotropic
bending (125). Cell type-specific complementation assays of the ABA signaling mutant snrk2.2/2.3
(sucrose nonfermenting 1-related protein kinase 2.2/2.3) (Supplemental Table 1) and mathematical
modeling revealed that asymmetric ABA response in the elongation zones of hydrostimulated
roots leads to enhanced cortical cell expansion on the convex side of roots facing low water po-
tential (30). Nevertheless, it remains unclear whether this asymmetric ABA response is preceded
by a moisture-driven lateral ABA gradient in the elongation zone.

The asymmetric distribution of other signals such as Ca** have also been shown to regu-
late hydrotropism (119). Like the ABA response, Ca** becomes asymmetrically distributed in
the elongation zone with a stronger accumulation on the convex side of the root. Treatments
with a calcium chelator (BAPTA-AM) inhibited hydrotropism, whereas treatment with the Ca’*
ionophore (Br-A23187) enhanced hydrotropic response (119). The important regulator of root
hydrotropism, MIZ1 [MIZU-KUSSEI I; meaning hydro (Mizu, 7K) tropism (Kussei, i 14) in
Japanese; 66], regulates levels of cytosolic Ca?* upon hydrostimulation. MIZ1 encodes a pro-
tein of unknown function localized on the surface of the endoplasmic reticulum (ER), where it
inhibits the ER-localized calcium-ATPase pump (ECA1). Inhibition of ECA1 enhances cytoso-
lic Ca?* concentration, which is critical for root hydrotropic bending. Mutations in 7ziz1 lead to
impaired Ca** accumulation, specifically in columella cells (119). These findings are intriguing,
as MIZ1 primarily functions in the root cortex, prompting the question of how root cap calcium
dynamics are linked to MIZ1 activity. Contrary to these findings, Dietrich et al. (30) reported that
the elongation zone, and specifically the cortex layer, acts as the primary site of hydrotropic per-
ception. Laser ablation or microdissection of the entire Arabidopsis root cap disrupts gravitropism
but does not inhibit hydrotropism. This finding suggests that different root tissues play distinct
roles in perceiving hydrotropic versus gravitropic stimuli.

Xerotropism. When topsoil dries out, roots often respond by growing deeper and steeper in
search of water. This phenomenon, where roots exhibit enhanced gravitropism in response to a
water deficit, is referred to as xerotropism (34). Xerotropism involves LRs changing their growth
direction from shallow to steeper angles. Interestingly, this tropic response is independent of hy-
drotropism, since mutants like 7ziz1 still exhibit xerotropism. Instead, auxin has been implicated
since auxin receptor mutants such as tirl (transporter inbibitor response 1) fail to reorient LRs in
response to water deficit (105). In rice, the expression of auxin-regulated DRO1 (deeper rooting 1)
has been associated with steeper root growth. DRO] is negatively regulated by auxin on the lower
side of gravistimulated roots, leading to reduced cell elongation compared to the upper side. This
asymmetric growth results in root curvature toward gravity (131). DROI alleles improve drought
tolerance in rice by promoting deeper rooting. Recent studies in maize identified ABA response
factor binding elements in the promoter of ZmDRO1 (Zea mays deeper rooting 1) required for ABA
induction. Expression of ZmDRO1 using a synthetic ABA-inducible promoter also conferred in-
creased yield under water-deficit conditions, further emphasizing the role of ABA in shaping root
architecture in response to soil water availability (35).

Since the discovery of OsDROI in rice, three homologs have been identified in Arabidopsis:
AtDRO1/AtLAZY4, AtDRO2/AtLLAZY3, and AtDRO3/AtLAZY?2 (45). Similar to rice, mutants of
AtDRO1/AtLAZY4 exhibit LRs with wider root angle (45). The cellular mechanism of LAZY
protein action on gravitropism was recently elucidated by several groups. Studies have shown
that LAZY proteins rapidly change their polarity in response to gravistimulation. Gravistimu-
lation triggers phosphorylation of LAZY proteins, enhancing their interaction with amyloplast
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surfaces in columella cells. Sedimentation of amyloplasts causes AtLAZY proteins to relocate
from the amyloplast surface to the adjacent plasma membrane, initiating signaling pathways that
drive asymmetric auxin distribution and differential root growth along the gravity vector (18, 93).
Despite significant efforts to understand the role of DROI-like genes in Arabidopsis, it remains
uncertain whether these proposed mechanisms are universally conserved across crop species,
particularly in regulating root growth angle under xerotropism.

Xerobranching. Apart from promoting deeper and steeper root growth to enhance water foraging
during drought conditions, ABA also regulates LR plasticity in response to microscale differences
in soil moisture. For instance, when growing root tips temporarily lose contact with water in soil
pore spaces, ABA suppresses root branching until roots reconnect with moist soil. This suppres-
sion of root branching in dry soil pore spaces is termed xerobranching (84, 95) (Figures 24 and
3b). Studies on ABA-deficient maize and tomato mutants, which continue to branch in soil air
gaps, validate the role of ABA in xerobranching (84). Similar results were observed in Arabidopsis
ABA signaling and biosynthetic mutants using an agar plate-based air-gap assay, which replicates
xerobranching in soil.

How do hormone signals like ABA control xerobranching? Hydrodynamic modeling revealed
that when external water uptake is transiently blocked as a root tip transits an air gap, phloem-
derived water is required to flow outward to sustain root growth. This reversal in water flux
comobilizes ABA from its phloem companion cell source toward outer root tissues. Using a high-
resolution FRET-based hormone biosensor, nlsABACUS2 (109), it was observed that ABA levels
reach approximately 300 nM in outer root tissues following a xerobranching stimulus. Elevated
ABA levels reversibly close plasmodesmata in these outer root tissues, which temporarily blocks
radial inward symplastic auxin movement from the epidermis to the LR stem cells in the pericy-
cle, thereby suppressing branch formation. Strikingly, this transient ABA response is attenuated as
soon as the root tip reconnects with moist soil, allowing LR formation to resume. This dynamic
hormone flux illustrates a hydrosignaling mechanism involving the redistribution of signals such
as auxin and ABA in response to changing water availability (84). By integrating hydraulic fluxes
with the redistribution of these hydrosignals (ABA and auxin), roots can adapt their branching
according to soil water availability.

Hydropatterning. Soil water distribution also influences the radial patterning of LRs. For exam-
ple, roots in contact with soil water on only one side preferentially position branches toward that
side, a response known as hydropatterning (5) (Figures 24 and 3c¢). Both hydropatterning and
xerobranching demonstrate how local, microscale differences in water availability continuously
optimize root architecture and foraging for soil resources. Despite their superficial similarities,
hydropatterning and xerobranching are regulated by distinct hormone signals. While auxin sig-
naling regulates hydropatterning, ABA serves as the primary regulator of xerobranching (5, 84).
This reveals that spatial differences in water availability activate distinct signaling mechanisms:
A radial water potential gradient experienced by one side of a root triggers auxin-mediated hy-
dropatterning, while the absence of an external water source by a root tip transiting a soil air space
induces an ABA-mediated xerobranching response.

Hydropatterning requires biosynthesis and transport of auxin on the water-exposed
side of the root compared to the air-exposed side, mediated by TAAl (TRYPTOPHAN
AMINOTRANSFERASE OF ARABIDOPSIS 1) and PIN3 (PIN-FORMED 3) (5). This
response is also regulated by the posttranslational modification of LR regulator ARF7 (AUXIN
RESPONSE FACTOR 7) (96). On the air-exposed side of the root, ARF7 undergoes SUMOyla-
tion, which leads to the preferential recruitment of the auxin signaling repressor JAA3 INDOLE-
3-ACETIC ACID INDUCIBLE 3) via its SUMO interaction motf (SIM). This recruitment
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Figure 3 (Figure appears on preceding page)

Phenotyping methods to visualize root—environment interactions. (#) X-ray computed tomography (CT)
images compare noncompacted and compacted soil cores, offering 3D visualizations of air-filled soil pores
(98). Soil compaction reduces soil pore volume, leading to significant alterations to soil structure. Panel 2
adapted from Reference 98. (b) X-ray CT image of maize roots illustrating xerobranching response, where
roots suppress branching when they lose contact with soil moisture in air gaps. (¢) X-ray CT image
demonstrates hydropatterning, where maize roots grown through a macropore position lateral roots toward
the contact side with high water availability. (d) Time-resolved X-ray CT scanning reveals the impact of
varying soil textures (sand and loam) on maize root growth. Superimposed sequential CT scans at 7, 14, and
21 days show detailed temporal root development, including root diameters and root types (primary, seminal,
and lateral roots). Panel d adapted from Reference 74 (CC BY 4.0). (¢) X-ray CT imaging compares maize
root responses to localized phosphate (P, yellow) versus uniform phosphate supply. Roots proliferate more in
the localized phosphate patch compared to the uniform phosphate supply. Panel e adapted from

Reference 39 with permission from SNCSC (CC BY-NC-ND 4.0). (f) Time-resolved neutron tomography
of maize roots showing water uptake and axial transport by individual roots using deuterated water (D, 0O).
Panel fadapted from Reference 128 (CC BY 4.0). (g) Time-resolved magnetic resonance imaging and
positron emission tomography (MRI-PET) reveal that the maize seminal rootless mutant 7zcs produces more
lateral roots and allocates more carbon to lateral root development compared to wild-type maize, which has
a higher number of seminal roots. Panel g adapted from Reference 145 with permission from SNCSC

(CC BY-NC-ND 4.0). (h) Laser ablation tomography (LAT) showing the colonization and distribution of
arbuscular mycorrhizal fungi in the cortex of maize roots (yellow) and the presence of root cortical
aerenchyma (green). Panel b reproduced from Reference 122 with permission from Oxford University Press.
(/) LAT images of maize roots with and without multiseriate cortical sclerenchyma (MCS). Roots with MCS
exhibit greater tensile strength, enhancing root penetration in compacted soil conditions (116). Panel i
adapted with permission from Hannah Schneider/The Pennsylvania State University.

blocks ARF7-dependent expression of the LBD16 (LATERAL ORGAN BOUNDARIES-
DOMAIN 16) transcription factor, which is required to trigger LR initiation. In contrast, on the
water-exposed root side, non-SUMOylated ARF7 continues to trigger LR initiation via LBDI16.
Arabidopsis mutants defective in ARF7 SUMOylation disrupt hydropatterning. This example
reveals the critical role of posttranslational modifications in the rapid regulation of root adaptive
responses within heterogeneous soil environments.

How does a hydropatterning stimulus trigger a radial auxin gradient and activate its response
machinery, leading to asymmetric root branching patterns? Like xerobranching, hydraulic fluxes
are likely to play a key role during a hydropatterning response. Robbins & Dinneny (107) pro-
posed a sense-by-growth theory, suggesting that the sensitivity of roots to radial water availability
is highly influenced by their growth rates. Using computational modeling, the authors predicted
that faster-growing root tips establish stronger water potential gradients at their tips, explaining
their more pronounced hydropatterning response compared to slower-growing root tips. The au-
thors proposed that water availability is perceived in a competence zone, which overlaps with the
region where auxin primes LR formation. Mehra et al. (84) demonstrated that auxin in epidermal
cells of the elongation zone moves radially inward via plasmodesmata to trigger LR stem cells.
Hence, radial symplastic movement of water and auxin is coupled in this zone. In principle, root
tips exposed to a radial water potential gradient would experience asymmetric water uptake. The
comovement of water and auxin in the competence zone could provide a simple hydraulic mech-
anism for generating a radial auxin gradient that triggers asymmetric LR patterning. However,
further studies are needed to validate how radial water potential gradients are perceived.

Both monocots and eudicots exhibit root adaptive responses such as xerobranching, suggest-
ing a wide conservation of these water-sensing mechanisms. Interestingly, nonflowering vascular
plants like ferns do not appear to exhibit xerobranching (83), which concurs with the hypoth-
esis that ABA was recruited for water-stress adaptive roles in seed-forming plants (11). These
observations suggest that seed plants may be better adapted to foraging in heterogeneous soil
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environments. Further research is required to test this important question and also determine
when water-adaptive root responses like hydropatterning and xerobranching emerged during land
plant evolution.

Foraging for Soil Nutrients

In addition to water, nutrient availability in soil is critical for plant growth and development.
Due to their chemical properties, solubility, and reactivity, most nutrients are heterogeneously
distributed across soil profiles. For example, orthophosphate (HPO4~, the readily available form
of phosphorus) is highly immobile as it quickly reacts with positively charged chemical species
(AP*+, Fe**, and Ca?*). HPO4?~ accumulates in topsoil. In contrast, inorganic nitrogen (nitrate)
can be mobilized with water into deeper soil profiles. Potassium distribution in soil is distinct from
the other two major macronutrients, phosphorus and nitrogen. Despite its high abundance in soil,
potassium bioavailability is limited (90-98% is present in crystalline-insoluble forms). However,
there are two other forms of potassium: sparingly available (trapped between clay layers) and
easily available (dissolved in soil water). This makes potassium distribution highly heterogeneous,
depending on soil moisture and clay availability.

Given the complex spatial distribution of these key macronutrients (10), root nutrient sens-
ing and adaptive responses are highly dynamic, plastic, and localized (Figure 2b). Root adaptive
responses in real soil environments are designed to improve foraging for a zone or a patch of
nutrients. For example, since high phosphate concentrations accumulate in topsoil, rice roots use
external phosphate levels to control root angle and thereby improve foraging for this macronutri-
ent (55). Once close to a nutrient patch, plant roots often elongate their root hairs to increase the
local surface area and enhance nutrient uptake. Roots employ distinct auxin-based regulatory path-
ways to promote hair elongation in response to local nitrogen or phosphorus availability (8, 58).
Despite this localized adaptive root foraging behavior, most nutrient studies use agar-based, hy-
droponic, and/or aeroponic systems to study molecular and cellular responses. Such experimental
conditions provide homogeneous nutrient availability, which masks the local responses that plant
roots experience in heterogeneous soil conditions. In addition, researchers often use much higher
levels of these macronutrients than those found in natural soils. For instance, phosphate levels in
most arable soils are in the range 16-25 ppm, whereas researchers generally use 200-300 pM of
H,PO; in agar or hydroponic systems to study molecular and cellular responses. Typical nitrogen
concentrations in soil solution range from 10 to 50 ppm, whereas most agar-based experiments
use >160 ppm.

Soil is composed of more than just soil particles, water, nutrients, and microbes. The presence
of SOM plays a key role in determining the availability of micronutrients (28). Besides SOM, soil
pH and texture also regulate micronutrient availability. For example, boron is mostly locked up at
pH levels above 7.0, especially in sandy soils. Another micronutrient, copper, is highly immobile in
soil, and its availability is highly dependent on soil pH. Copper solubility increases approximately
100 times for each unit decrease in soil pH (82). Therefore, nutrient sensing and molecular re-
sponses in axenic systems often do not mimic real soil conditions, making it challenging to study
the molecular, physiological, morphological, and cellular responses of roots. New methods and
approaches are needed to study how plant roots sense and respond to localized nutrients in more
realistic conditions which are closer to “real life.”

Soil Compaction

In addition to water and nutrient availability, soil physical properties also profoundly influence
root growth and development. For example, the degree to which root tips growing through a soil
matrix are mechanically stimulated depends on soil density. The soil type, along with the range of
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Bulk density (BD):
dry weight of soil per
unit volume of soil that
reflects the mechanical
impedance of the soil

particle and pore sizes, also influences water availability to roots. Hence, roots growing through
soil versus along a vertical agar plate experience completely different growth environments. The
former provides a complex 3D/4D growth matrix, while the latter offers a simple 2D surface. To
illustrate the impact of soil structure on root growth, in this section we discuss compaction stress,
which arises from changes in soil structure.

Soil compaction negatively affects soil properties, but not all soils are affected equally. A mod-
erate degree of soil compaction is required to ensure good root-soil contact (143) and can increase
soil moisture content or even crop yield (147). However, alternating and repeated wetting and dry-
ing cycles, as well as frequent passes of heavy machinery or cattle over the soil, increase its bulk
density (BD, g cm™?), which is an indication of the amount of compaction in specific agricultural
land (41). Compaction stress is also influenced by properties such as soil type, SOM, soil porosity,
or soil water content as they all impact the capacity of soil to deform (92). Compaction stress also
reduces soil macropore volume and interconnectivity (Figure 34); with increasing BDs, most soil
pore interconnections are severed, resulting in poor water drainage and gas diffusivity (76). More-
over, higher BDs increase the penetration resistance that roots need to overcome to grow in the
hard soil. The topmost soil layer usually has the highest increase in penetration resistance due to
soil compaction compared to deeper soil layers (147). However, long-term compaction stress can
lead to higher subsoil compaction, an often-overlooked issue (62), particularly considering that
deeper soil layers naturally present higher penetration resistance (3).

The combination of these detrimental soil structural effects disrupts the growth and develop-
ment of root systems (97). Soil compaction reduces water infiltration and storage capacity (92),
leading to an overall decline in water availability to roots, together with reduced nutrient up-
take and poor soil aeration (118). The higher penetration resistance also imposes mechanical
impedance, a physical stress that is one of the main factors limiting root growth (6). Moreover,
root density and length of new roots (LRs, nodal roots) are reduced in several key crops like wheat
and soybean (25).

Recent research has revealed monocot and eudicot roots employ a novel regulatory mech-
anism to detect and respond to soil compaction. As noted above, gas diffusivity is reduced in
compacted soils. If gases diffuse much slower, volatile signals will accuamulate in the compacted soil
surrounding a root tip. Of particular interest is ethylene, a gaseous plant hormone that regulates
a plethora of developmental and stress responses (9), which is released by root tips. In compacted
soil, the reduction in gas diffusivity leads to the buildup of ethylene inside and around root tip
tissues, triggering growth inhibition (9) (Figure 2c¢). Interestingly, ethylene-insensitive Arabidop-
sis and rice mutants (e.g., ein2) remain able to grow through highly compacted soils and reach
root lengths akin to those of wild-type plants growing in noncompacted soils (98). This surpris-
ing result reveals that it is actually ethylene that inhibits root growth, rather than mechanical
impedance of compacted soils. Hence, roots employ ethylene as part of a novel gas diffusion—
based sensing mechanisms for compacted soil (98). The compaction-induced ethylene buildup
also triggers changes in the synthesis and transport of other downstream hormone signals includ-
ing auxin and ABA. Higher auxin concentration in epidermal cells restricts root elongation, and
greater ABA concentration causes anisotropic root swelling in compacted soil (54). Compaction
triggers auxin biosynthesis at the root tip, and concomitant shootward auxin transport leads to
longer root hairs, providing better anchorage and mechanical support to penetrate the compacted
soil layer (68). Moreover, higher ethylene buildup in compacted soil conditions promotes crown
rooting by inducing WOX11 (WUSCHEL-related homeobox 11) expression, which enables bet-
ter foraging in topsoil as deeper rooting is challenging due to greater mechanical impedance in
compacted soil (73). Thus, ethylene orchestrates auxin, ABA, and GA (gibberellic acid) as dis-
tinct downstream signals to regulate root compaction responses such as root growth inhibition,
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root hair elongation, root thickening, and crown root development in compacted soil conditions

©7).

Soil Oxygen

As described previously, soil compaction limits gas diffusivity. For soils such as sandy loam and
sandy clay loam, moderate and high BDs progressively restrict gas diffusivity as pore size and
interconnection decrease (143). Gas diffusivity is also influenced by soil water content (44), as
gas diffusion in water is 10,000-fold slower than in air (99). Considering O, supply to soil is
mainly through diffusion, O, from the atmosphere to a flooded soil is restricted, which affects
root respiration (7) and leads to tissue hypoxia and reduced root elongation (134).

Some plant species increase root aerenchyma formation to reduce the metabolic maintenance
cost of the root system (79). Continuing the waterlogging-soil compaction analogy, aerenchyma
formation also enhances longitudinal O, diffusion from aerial parts of the root not subjected to
restricted O, supply to the belowground parts experiencing tissue hypoxia, thus helping to sus-
tain root respiration and growth (99). In waterlogged soils, some plant species produce suberized/
lignified barriers to further maintain the O, diffusing from the aerial parts to the roots by pre-
venting its diffusion to the hypoxic soil (21). In compacted soils, lignification of root tissues is also
induced, to provide mechanical strength to roots so that they can penetrate harder soils (116).
Additionally, it has been shown in maize that genotypes with a specific anatomical phenotype
called multiseriate cortical sclerenchyma (MCS) exhibit higher concentration of lignin and better
root penetration in compacted soil conditions (116). It is possible that suberization/lignification
of roots induced by soil compaction could also help, in combination with aerenchyma formation,
to support higher O, tissue levels (100).

Soil Microbiota

In addition to its chemical and physical characteristics, the biological properties of soil also pro-
foundly influence root growth and development. Over the past decades, a compelling body of
scientific evidence has revealed roles for a wider range of soil microbiota beyond classical rhizobia
and mycorrhizal exemplars (17, 78). Plant roots have evolved unique morphological and metabolic
characteristics that have provided an attractive environment for a group of soil microbes. Roots
provide a continuous supply of nutrients and a shield for the surrounding microbiota, which in
turn influence root development and function, interfering with nutrient acquisition and assimi-
lation, plant hormone homeostasis, signaling processes, or the establishment of other members
of the root microbiota. To colonize and survive in the root environment, microbes use complex
mechanisms related to chemotaxis toward the root, root attachment, and biofilm formation on
the root surface (65, 71). Microbial mechanisms of attachment to the root surface and hairs can be
influenced by soil parameters such as pH, the presence of divalent cations, and water availability
(65). Likewise, bacteria—bacteria interactions can modulate the ability of the microbiota to effi-
ciently colonize plant roots. A recent study identified the antimicrobial 2,4-diacetylphloroglucinol
and the iron chelator pyoverdine as bacteria-derived exometabolites that drive competitive inter-
actions among microbiota members with a robust effect on root microbiota composition (40).
Roots control their microbiota membership via modulation of exudate composition according to
the plant developmental stage (94, 114), the biosynthesis of root triterpenes (53), the colonization
by specific root-associated microbes, or the activation of the immune system (70, 144). However,
root-associated commensal bacteria can evade immune system activation by suppressing MAMP
(microbe-associated molecular pattern) responses to promote root colonization. It is known that
some peptide derivatives of flagellin,a MAMP detected by the plantimmune system and present in
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commensal bacteria, can evade recognition (20, 126), and effectors of the type III secretion system
suppress MAMP perception (19). Recently, an additional explanation has been given to the estab-
lishment of the microbiota in the root. Nonpathogenic microbes can colonize the root, simply by
avoiding damaging plant tissues. By doing this, they also avoid the strong activation of immune
responses that follow cellular damage in the root and prevent microbial colonization (150). These
root colonization mechanisms are modulated by the presence of endodermal diffusion barriers in
the roots, since the Casparian strip and the suberin lamellae prevent the free diffusion of immune
peptides derived from the microbiota, compartmentalizing the perception of colonizing microbes
(150).

The root hosts bacteria primarily from the phyla Proteobacteria, Actinobacteria, and
Bacteroidetes (12, 78). These populations of microbes living in close association with the roots can
interfere with the root function specifically with the endogenous root responses to nutrients. Soil
resident nitrogen-fixing bacteria and mycorrhizal fungi can establish symbiotic relationships with
the roots (Figure 2d), contributing alone or in association with other members of the root micro-
biota to the metabolism of nitrogen and phosphate in the root tissues (27, 138, 146). Other com-
mensals within the plant microbiota also contribute to nutrient acquisition and use in coordination
with the root responses to low nutrient levels. Colletotrichum tofieldine, an endophytic fungus in
natural Arabidopsis thaliana populations, increases root phosphorus uptake under low-phosphorus
conditions. Root colonization and the benefits derived from association with this fungus are
controlled by the host’s phosphate starvation response in coordination with the plant’s immune
system (51). This crosstalk between the phosphate starvation regulatory network and plant defense
elements also modulates the assembly of a beneficial plant microbiota under low-phosphorus con-
ditions (17). Differences in nitrogen use efficiency in field-grown rice varieties are attributed to
discrepancies in root microbiota composition, specifically in members of the microbiota with ni-
trogen metabolism functions, whose recruitment is modulated by the plant nitrate transporter
NRTT1.1B (148). The adaptation of plants to iron-limited soils is based on plant beneficial inter-
action with the root microbiota that is mediated by coumarins exuded by the roots, the synthesis of
which is regulated by the transcriptional factor MYB72 (46, 121). Therefore, the root microbiota
is proposed to be an integral mediator of root function in nutrient uptake and utilization.

Root architecture and anatomy can also be modulated by its resident microbiota. Members of
the bacterial genus Variovorax contribute to maintaining optimal root development by manipu-
lating their hormonal levels, counteracting possible inhibitory effects on root growth caused by
other bacteria (36). Furthermore, the root-inhabiting microbiota can regulate the plasticity of root
branching by inducing the auxin and/or ethylene pathways that are known to control this process
(42, 87). In another example, a regulatory mechanism of root endodermal differentiation driven
by the root microbiota has been characterized. The deposition of the endodermal diffusion barri-
ers (the Casparian strip and suberin lamellae) is influenced by the microbiota with consequences
for mineral nutrient homeostasis. This microbial effect on endodermal function is associated with
the ability of the microbiota to modulate responses to the phytohormone ABA in the root (112)
(Figure 2d). Furthermore, the capacity of root microbiota to induce root endodermal suberiza-
tion and aerenchyma formation in sorghum plants has been associated with the inhibition of root
infection by Striga (a genus of parasitic plants) (60).

Not only can the morphology of the root be influenced by its microbiota, but correspondingly,
the morphological and anatomical characteristics of the root can also modulate the establishment
of the microbiota in the root. In plant species with complex root systems like monocots, primary,
seminal, crown, and brace roots with different cellular patterning accommodate distinct bacte-
rial and fungal communities (61). In some roots, the capacity to form aerenchyma influences the
level of colonization by beneficial microbes such as arbuscular mycorrhizal fungi and restricts
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infection with pathogenic fungi (38). Similarly, root order (64), absence of root caps (110), and
root hairs (108, 110, 124) have a strong effect on microbiota assembly as well as on the root zone
in the longitudinal axis (110) and root compartments (146). The impressive progress recently
being made uncovering these functional feedback and regulatory mechanisms between root tis-
sues, zones, and soil microbiome communities is helping reveal an unprecedented level of spatial
understanding into the cross-kingdom interactions occurring in the rhizosphere that underpins
root-soil colonization, resource capture, and, ultimately, plant success.

CHALLENGES AND SOLUTIONS TO STUDYING ROOTS UNDER
REAL-WORLD CONDITIONS

The opaque nature of soil and its spatial and temporal heterogeneity make quantifying plant
roots and rhizosphere dynamics extremely challenging. The challenge is twofold: to develop
improved in agri techniques to quantify root and rhizosphere traits and to improve reproduc-
tion of real-world conditions in laboratory-based experiments. A single solution is unlikely, and a
combination of modalities and scales has a greater chance of success (137). For example, by com-
bining low- and high-resolution X-ray CT images with X-ray fluorescence microscopy, nanoscale
secondary ion mass spectrometry, and laser ablation isotope ratio mass spectroscopy, carbon in-
puts and nitrogen uptake have been mapped in maize grown under undisturbed conditions (75).
Very-deep super-resolution neural networks (63, 103) have been created to upscale images from
high- to low-resolution. Cross-modal techniques (117) are now available that may enable high-
resolution field-to-laboratory techniques such as X-ray CT to inform networks to upscale the
lower-resolution outputs from field techniques such as electrical resistivity tomography (ERT)
and electrical impedance tomography (EIT).

Phenotyping for root traits and visualization of rhizosphere components in agri generally em-
ploy either destructive techniques or less-invasive proxy measurements (Table 1) that measure
outputs of root activity in the rhizosphere. An exception is ground-penetrating radar that has
been successfully used for estimation of coarse roots (>2 mm) in soil. Direct, destructive methods
include crown excavation, trenches, coring, and monolith sampling (37,127, 130, 135). Rhizotrons
allow imaging of roots that intersect a transparent window [either an access tube (minirhizotrons)
or an underground chamber]. Quantification of root exudates has been performed in the field
combining underground soil columns and exudate extraction methods to successfully quantify ex-
udation ratio and composition of in-field grown roots (113). Proxy measurements include ERT
(104), EIT (24), thermoacoustic tomography (T'T) (120), and electrical current source density
(ECSD) (101). ERT, EIT, and ECSD are indirect methods to visualize roots activity by quanti-
fying soil water content that can be correlated with the root-soil system. However, at present, all
have relatively coarse spatial resolution.

Advances in noninvasive imaging techniques have allowed investigation of rhizosphere pro-
cesses in the laboratory (Figure 3). Tomographic approaches are the most used for direct
visualization of roots in soil, in particular X-ray CT (Figure 3b—e) and MRI (Figure 3g) (4,39, 74,
85,123). X-ray CT offers higher spatial resolution than MRI, detecting even the thin roots of Ara-
bidopsis (<50 pm voxel size). MRI offers a coarser spatial resolution but faster segmentation better
suited for high-throughput approaches. Neutron radiography and fast neutron tomography have
been used to resolve water uptake in 2D and 3D by using deuterated water and isotope tracers
to indirectly measure root activity in soil to visualize the spatial distribution of water and carbon,
thus quantifying root water radial and vertical lift (Figure 3f) (47, 128, 129) and deposition of
mucilage exudates (52). Similarly, positron emission tomography (PET) uses isotopes as tracers
to visualize fluxes in carbon, water, macro- and micronutrients in plants grown in soil media (86,
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115, 145) (Figure 3g). Such techniques allow visualization of rapid changes within the root-soil
interphase. To phenotype root systems at high throughput, automated platforms have been
developed using hydroponics, rhizotrons, and various transparent media (72). Laser ablation to-
mography (LAT) is another advanced imaging technology that provides 3D phenotyping of root
anatomy. This innovative technique is high-throughput, provides micron-level resolution, and
reveals root adaptations such as formation of root aerenchyma, MCS, and root colonization by
arbuscular mycorrhizal fungi (116, 122) (Figure 3b,i).

Improvements in controlled environment technologies now allow the precise and dynamic re-
production of climatic conditions (temperature, humidity, gas composition, and the intensity and
spectral composition of illumination). Placing rhizotrons and mesocosms in such infrastructures
allows the impact of predicted climate changes on rhizosphere processes to be evaluated (49).
To improve replication of realistic field conditions, it is essential to reproduce the same variabil-
ity in the soil where plants are grown. Temperature gradients, nutrient and water heterogeneity,
microbiome composition, and temporal changes are often not reproduced in controlled experi-
mental systems. Additionally, most plate-based laboratory experiments involve direct illumination
of roots, which potentially disrupt several molecular and physiological responses, including root
responses to water and nutrients and interactions with microbiota (13). These findings emphasize
the significance of studying plant roots in vivo. Integrating these important parameters will allow
characterization of the physiological relevance of adaptive root traits in response to more realistic,
more heterogeneous, and increasingly challenging future soil conditions.

FUTURE PERSPECTIVES

Understanding complex, multiscale root-soil processes will increasingly demand greater inter-
disciplinary engagement (i.e., beyond agronomy and life sciences). For example, revealing how
molecular mechanisms influence a root tip or system scale processes will require the integration
of multiscale mathematical modeling approaches into our research (98). Similarly, performing
high-throughput phenotyping of root architecture and anatomy will necessitate the use of artifi-
cial intelligence algorithms. Future root research must also consider the importance of biological
time and space in soil ecosystems. Temporally, legacy effects of previous year’s crops via allelo-
chemicals highlights the importance of intergenerational timescales (80). At the other end of the
biological timescale, the development of biosensors has revealed that roots experience dynamic
changes in the levels of hormones and ROS (reactive oxygen species) signals within seconds to
minutes after experiencing environmental stress (14, 109). Spatially, very few root-soil studies use
naturally structured field soils that contain stones, biopores, or cracks, relying instead on finely
sieved and repacked soil materials. This simplification is used despite the majority of crop roots
being known to prefer growing via preformed biopores in the subsoil profile below the plough
pan (56). Ecosystem-wise, much of the root research literature is too focused on temperate crops
and their soil environments, largely ignoring other ecological settings (e.g., desert, forest). Hence,
much greater consideration of time, space, scale, and ecosystem context is required to advance the

field in the future.

1. Soil properties vary spatially and temporally, impacting root growth differently across
landscapes and seasons. This heterogeneity makes it difficult to capture root dynamics.
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2. Root behavior in soils is influenced by several factors, including distribution of wa-
ter, nutrient availability, soil compaction, oxygen dynamics, and interactions with soil
microbiota.

3. Controlled laboratory environments often fail to replicate the complexity of field con-
ditions, including heterogeneous nutrient gradients, water availability, gas diffusion, and
microbiome interactions.

4. Advanced imaging techniques like X-ray computed tomography (CT) and magnetic
resonance imaging (MRI) have proved instrumental in quantifying roots and rhizo-
sphere dynamics in real-world conditions but require further refinement for field-scale
applications.

5. Noninvasive techniques such as electrical resistivity tomography (ERT) and electrical
impedance tomography (EIT) offer indirect measurements but lack fine-scale resolution.

6. Future research should focus on integrating high-resolution imaging with field-based
techniques to simulate realistic soil conditions, enhancing our understanding of root
responses to environmental stresses and facilitating sustainable agricultural practices.
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