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Abstract: More than half of all tropical forests are degraded by human impacts, leaving them 

threatened with conversion to agricultural plantations and risking substantial biodiversity and 

carbon losses. Restoration could accelerate recovery of Aboveground Carbon Density (ACD), 
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but adoption of restoration is constrained by cost and uncertainties over effectiveness. We report 

a long-term comparison of ACD recovery rates between naturally regenerating and actively 

restored logged tropical forests. Restoration enhanced decadal ACD recovery by more than 50%, 

from 2.9 to 4.4 megagrams per hectare per year. This magnitude of response, coupled with 

modal values of restoration costs globally, would require higher carbon prices to justify 

investment in restoration. However, carbon prices required to fulfil the 2016 Paris climate 

agreement (US$40–80 per tCO2 e) would provide an economic justification for tropical forest 

restoration. 

One Sentence Summary: 

Active restoration of logged tropical forests would be incentivised by carbon prices consistent 

with the 2016 Paris agreement 

 

Main Text 

Tropical forests contain 55% of global stores of aboveground forest carbon (1), but the size of 

these stocks is declining rapidly because of forest loss and degradation (2). Across the tropics, 

primary forests continue to be degraded by numerous human impacts such as timber harvesting, 

agriculture, and fire. Consequently, more than half of all tropical forests have some human 

impact, even though many disturbed sites retain high tree cover (3). Loss of tropical forest cover 

is particularly acute in Southeast Asia, which has the highest deforestation rate in the tropics and 

where the intensity of logging is increased by the high densities of commercially important 

dipterocarp trees (4). These forests, which are no longer pristine, may still support numerous 

ecosystem services, including timber production, sequestration of carbon, maintenance of 

biodiversity, and hydrological services (5–8).  



 

Despite their ecological value, degraded forests remain vulnerable to conversion to 

agroecosystems possessing substantially lower carbon stocks and biodiversity (5, 9, 10). 

Alternatively, carbon stocks in degraded tropical forests can recover, particularly if accelerated 

by active restoration and if financial compensation mechanisms encourage avoided deforestation 

projects. However, these mechanisms require verification of aboveground carbon density (ACD) 

baseline values and recovery rates (11), which are currently lacking. Mean and maximum ACD 

values are higher in Southeast Asian forests than in other tropical forests, and the highest values 

occur in Malaysia (12). For example, in the Malaysian state of Sabah, where selective logging 

has been one of the main forms of habitat degradation, unlogged lowland forests show 

consistently high ACD values averaging over 200 Mg C ha-1, whereas in logged forests, ACD 

varies from 60 to 140 Mg C ha-1 (10). The difference in ACD between logged and unlogged 

forests in Sabah shows the potential carbon gain if logged forests were allowed to recover, which 

is estimated at 362.5 Tg C (10). At current carbon prices [typically between $2 and $10 (USD) t 

CO2 e), the potential value of this sequestered carbon would total between $0.725 billion and 

$3.625 billion for Sabah alone (13–15). Similar values could be calculated for any territory that 

has a comprehensive map of forest carbon and information on land-use history, but such data are 

not widely available across the globe.  

 

Carbon sequestration rates in degraded tropical forests are highly variable. Long-term studies 

indicate that post-logging carbon recovery rates are between 0.30 and 4.3 Mg C ha-1year-1 in 

Southeast Asia (11) and 0.04 and 2.96 Mg C ha-1 year-1 in Amazonia (16), whereas naturally 

regenerating pasture and abandoned agricultural land accumulate ACD at a mean rate of 3.05 Mg 



C ha-1 year-1 in the Neotropics (17). These rates could be enhanced by implementing active 

restoration measures, which include tree planting, cutting of climbers such as lianas, and 

liberation of sapling trees from competing vegetation by thinning. Enrichment planting is 

especially important in the logged forests of Southeast Asia because selective logging affects the 

ecologically and economically important dipterocarp trees that are dispersal limited and mast 

fruit at irregular intervals (18, 19). Such measures are, however, expensive to implement; for 

example, enrichment planting of lowland forest in Sabah costs ~$1500 to $2500 ha-1 over the 

implementation period, consistent with estimates of restoration costs for other tropical forests 

globally (table S1). Carbon offset schemes could provide a potential financing mechanism for 

these restoration costs, but evidence of restoration treatment efficacy with respect to ACD 

recovery in degraded forests exists for very few sites globally (table S1). The likelihood that such 

measures will be adopted is critically dependent on the operational costs over the lifetime of the 

stand relative to the additional value in terms of enhanced ACD accumulation. 

 

Here, we report estimates of the response of ACD accumulation rates to active restoration using 

a combination of climber cutting and enrichment planting in a logged tropical forest over decadal 

time scales. We compare the fiscal benefits of this restoration across a range of potential carbon 

prices. Using detailed information on logging history and repeated in situ measurements from 

257 forest plots from three different plot networks in Sabah, Malaysia, we compared recovery 

rates for naturally regenerating forest with recovery rates for areas that had been actively restored 

(20). During the 30 to 35 years after logging, naturally regenerating forest accumulated 

aboveground carbon at a rate of 2.9 Mg ha-1 year-1 (Fig. 1 and fig. S2) [confidence interval (CI): 

2.1 to 3.7], whereas those areas with active restoration recovered at the considerably higher rate 



of 4.4 Mg ha-1 year-1 (Fig. 1 and fig. S2) (CI: 3.6 to 5.2). These values suggest that the reduction 

in ACD associated with a single logging event would be recovered to the ACD of unlogged 

forest (mean of 203 Mg ha-1) (Fig. 1) and fig. S2) (95% CI: 157 to 247) through natural 

regeneration after ~60 years, but that this could be reduced to 40 years if restoration treatments 

are applied.  

 

We validated the distribution of ACD spanned by our plots using a fine–spatial-resolution ACD 

map of the study landscape that was generated using an airborne LIDAR (light detection and 

ranging) survey in 2016 and calibrated with independent ground surveys (10, 21). Remote 

estimates showed a mean ACD of naturally regenerating forests in 2016 to be 135 Mg ha-1 (Fig. 

2) (CI: 123 to 148), whereas that of forest that had been subjected to restoration treatments was 

166Mg ha-1 (Fig. 2) (CI: 152 to 176), confirming a substantial difference in ACD in response to 

restoration (Fig. 2).We inferred remote estimates of ACD accumulation rates based on the 2016 

LIDAR-derived carbon map and baseline ACD values derived from plot data (the intercepts in 

Fig. 1), which gave values of 3.5 and 4.8 Mg C ha-1 year-1 without and with restoration 

treatments, respectively, consistent with the results from ground surveys alone. Together, these 

results suggest that our estimates of carbon recovery are robust and scalable across the whole 

study area.  

 

To estimate the economic feasibility of applying restoration treatments, we modeled the carbon 

price required to offset the cost of restoration, assuming carbon credits are released every 5 years 

for a project life span of 30 years and adjusting for the time value of money through nominal 

discount rates of 1, 5, and 10% (Fig. 3 and fig. S3). Carbon prices on the voluntary market 



fluctuate widely, and our analyses suggest that only values close to the top of those seen in recent 

years (around $10 per tCO2 e) approach the minimum value required to offset the cost of 

restoration by tree planting and maintenance (13–15). Accounting for variation in ACD recovery 

rates suggests that implementing restoration uniformly across the logged forest landscape would 

require carbon prices 2- to 10-fold greater than those that currently exist in the voluntary carbon 

market (Fig. 3). Independent reports suggest that carbon prices in the range of $40 to $80 per 

tCO2 e by 2020 are required to fulfill the obligations of signatories to the Paris Climate 

Agreement for maintaining a global temperature rise of less than 2°C (22), and a value in this 

range would be sufficient to offset the costs of tropical forest restoration in our model (Fig. 3). 

 

We report the long-term gains in tropical forest ACD after restoration of logged forest using 

interventions such as enrichment planting, climber cutting, and liberation thinning. These 

methods contribute differentially to ACD recovery. Climber cutting is likely effective because 

lianas compete with trees and substantially reduce carbon accumulation in tropical secondary 

forests (23–25). Enrichment planting eliminates the constraints of dispersal limitation for large 

canopy trees and may have resulted in a more uniform distribution of trees than in areas 

regenerating naturally, thus filling canopy gaps more quickly and reducing light competition 

from other species (18). The tree species that were planted, mostly in the Dipterocarpaceae 

family, have a potential for rapid growth rates (26, 27) and include the tallest trees recorded in 

the tropics (28), yielding high biomass when mature. Our findings support previous claims that 

rates of ACD accumulation in formerly logged Southeast Asian tropical forests are among the 

highest in the tropics [e.g., (11)] and reinforce the value of logged forests with respect to carbon 

storage potential in addition to maintenance of biodiversity and other ecosystem functions and 



services (5–8, 10, 29). We also show that targeted restoration treatments, initiated an average of 

9 years after logging, generate substantially higher rates of ACD over the following two decades, 

which has important implications for the conservation and management of logged forests. 

 

The breakeven carbon price can be estimated for any combination of ACD accumulation rate 

attributable to restoration and restoration costs for a specific set of economic assumptions (Fig. 

4). Restoration programs have a lower breakeven carbon price if they achieve a higher additional 

ACD accumulation rate (over and above natural regeneration) or if the costs are reduced (Fig. 4). 

To our knowledge, only two other studies have reported both the costs and additional carbon 

benefits of tropical forest restoration (30–32). In Uganda, for lands dominated by grasses that 

were degraded by agricultural encroachment, an additional ACD gain of 1.62 Mg ha-1 year-1 was 

achieved through protection from fire and tree planting at a cost of $1200 ha-1, and abandoned 

pastures in Costa Rica gained an additional ACD of 1.17 or 2.48 Mg ha-1 year-1 through tree 

planting at costs of $297 or $1100 ha-1, respectively, depending on planting strategy. The mean 

cost of tropical forest restoration (except Australia) across more than 50 published examples was 

$1596 ha-1 (95% CI: $1338 to $1854 ha-1) (Fig. 4 and table S1). Most of these examples were 

derived from projects in tropical developing countries where restoration costs are less than $5000 

ha−1, whereas restoration costs of Australian forests are in the range of $6000 to $15,000 ha-1 

(table S1).  

 

This review of previously published costs suggests that the range of carbon prices available on 

the voluntary market during 2017 and 2019 would be sufficient to incentivize investment in 

widespread active restoration in about half the settings where restoration costs have been 



reported, as long as the additional ACD gains from this investment are equivalent to those 

achieved by the three case studies in Fig. 4. Conversely, current carbon prices may be 

insufficient to support restoration in the logged forests of Southeast Asia despite the high rates of 

recovery reported in this study, unless financing to accept a low (1 to 3%) nominal discount rate 

is available (fig. S3). An additional constraint is that the infrastructure and labor force required to 

implement this large-scale restoration across the global tropics are lacking in many sites, 

particularly in Southeast Asia, where mast fruiting necessitates greater investment in seedling 

nurseries (33). Under these circumstances, an alternative approach is to implement generic low-

cost measures such as climber cutting, combined with selective tree planting in accessible parts 

of the degraded forest landscapes where the density of mature trees is insufficient to ensure 

adequate natural regeneration. This strategy may be attractive to investors in the carbon market, 

even at current carbon prices, and would leverage recent investments in a new generation of 

space-borne sensors designed to deliver global high-resolution maps of forest biomass (34–36). 

Varying the type and intensity of restoration treatments according to the residual ACD of the 

stand has the potential to reduce the net costs of implementation, help bridge the gap to financial 

sustainability, and therefore enable much larger areas of forest to be restored. 

 

Carbon stocks and future carbon sequestration are not the only valuable services provided by 

forest ecosystems (37), and climate change mitigation is not the single goal of restoration, 

particularly for local stakeholders. The multiple co-benefits of restoration, such as biodiversity 

conservation (8, 38), flood protection, provision of clean drinking water, and support for the 

livelihoods of local communities and stakeholders, provide additional justification for legislation 

and financing mechanisms that incentivize tropical forest restoration. 
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Fig. 1. ACD as a function of time since logging. (A and B) The recovery of ACD in (A) 

naturally regenerating logged forest and (B) forest with active restoration using climber cutting 

and enrichment planting. Blue solid lines represent the mean recovery rate, and blue dashed lines 

represent the 95% CI. Each gray line represents the recovery for an individual plot between 

measurement intervals. The plot on the far right displays the mean (±95% CI) ACD of unlogged 

forest and therefore highlights the potential for ACD recovery. The green arrow represents the 

time frame in which restoration activities took place. 

 

 

 



 
 

 

Fig. 2. ACD across the entire study area. (Left) ACD (Mg ha-1) across the study landscape in 

2016 derived from an airborne LIDAR-derived carbon map (30 m resolution). Naturally 

regenerating logged forest (225 km2) is outlined in red, logged forest that underwent active 

restoration (124 km2) is outlined in blue, and the primary forest (449 km2) is outlined in green. 

The color bar indicates low (dark) to high (light) values of ACD. Universal Transverse Mercator 

(Right) Violin plots indicating the distribution of ACD (Mg ha-1) from logged forest allowed to 

regenerate naturally (left, red outline), actively restored (middle, blue outline), and from primary 

unlogged forest (right, green outline). The data presented on the right correspond to the full study 

area shown on the left and are independent of those used in the analysis of forest regrowth (Fig. 

1). 

 



 

Fig. 3. Carbon price breakeven point as a function of restoration costs. Estimates of carbon 

price breakeven point for the increase of 1.5 Mg ha-1 year−1 (CI: 0.4 to 2.6) in ACD recovery 

attributed to restoration over a 30-year period with discounted revenues accrued at 5-year 

intervals, assuming a nominal 5% discount rate. The envelope shows a CI propagated from the 

ACD recovery model. The breakeven carbon price represents the threshold price required to 

offset restoration costs. Dark green lines highlight the typical range of enrichment planting costs 

in Malaysia at the present time. The red region within the confidence envelope highlights the 

current (2017 to 2019) range in the voluntary carbon market prices ($2 to $10 per tCO2 e), and 

the blue region highlights the estimated range in carbon price required to fulfill the Paris 

Agreement and limit global temperature increases to less than 2°C ($40 to $80 per tCO2 e). 



 

Fig. 4. Carbon price breakeven point estimated for multiple scenarios. (Bottom) Estimates 

of carbon price breakeven point are calculated over a 30-year period with revenues accrued every 

5 years, with a 5% nominal discount rate. Shading represents bins in which the additional ACD 

accumulation attributable to restoration is 0.1 to 0.5 (lightest green), 0.5 to 1.0, 1.0 to 2.0, 2.0 to 

3.0, 3.0 to 4.0, and 4.0 to 5.0 Mg ha-1 year-1 (dark green). Data from two case studies are 

superimposed relating to fire protection and native seedling planting in Uganda (red circle) (30), 

two approaches to restoration of planting tree islands (at a lower cost) and larger-scale 

restoration in Costa Rica (purple lines) (32), and this study (blue line). The vertical red and blue 

lines represent 95% CIs for predicted breakeven carbon price based on variation in ACD 



accumulation rates in response to restoration. (Top) Density plot of published restoration costs 

based on values indicated by the tick marks on the horizontal axis (see table S1 for data and 

details). 
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Materials and Methods 

Study Area 

The study area comprised a matrix of logged and unlogged tropical lowland dipterocarp 

forest in the Ulu Segama Forest Reserve (USFR) and Danum Valley Conservation Area (DVCA) 

in southern Sabah, Malaysia (Fig. 3) (41). At the Danum Valley Field Centre, which is 

embedded within the study area, mean annual temperature is 26.7° and annual average rainfall is 

2638 mm (42, 43). Northern Borneo experiences limited seasonal climatic variation, although 

droughts do occur infrequently, usually in association with El Niño-Southern Oscillation (ENSO) 

events (42, 44). The geology of the area is complex, but mostly comprises rocks of the Kuamut 

Formation, which includes young sedimentary and volcanic rocks with interbedded sandstone 

and mudstone (45-47). The resulting soils in the area are dominated by ultisols and are easily 

eroded (46, 48). The study area has an undulating hilly topography lying between 75 and 901 m 

above mean sea level. The primary vegetation of the study area is representative of the lowland 

mixed dipterocarp forests that formerly covered much of Borneo and continental Southeast Asia 

(49-51). It is characterised by a high density of species in the family Dipterocarpaceae, which 

dominates the above-ground biomass and provides a valuable source of timber (41). The DVCA 

contains 438 km2 of primary unlogged forest that is here assumed to represent the forests of the 

neighbouring USFR prior to logging in terms of structure, species composition, biomass and 

above-ground carbon density. The USFR comprises 1268 km2 of forested land divided into 

coupes that were each logged once, between 1972 and 1993, using techniques described in (41). 

Between 1999 and 2010 the majority of the surrounding USFR was then logged again except for 

the area of forest that includes our study plots (the INFRAPRO Forest Rehabilitation Project 

area, and the coupes that were logged in 1992 and 1993). Across the whole of the USFR the 

amount of timber extracted from each logging coupe varied but averaged 117 m3 ha-1 during the 



first logging phase, and residual unlogged forest still survives in patches such as steep slopes and 

riparian zones (41, 44, 52). 

Between 1993 and 2004, forest restoration treatments in the form of climber cutting and 

tree planting were implemented on patches of 83 to 1745 ha annually across the logging coupes 

within the USFR (Fig. S1). The restoration took place an average of nine years after logging 

when project funding for restoration was available. In principle, starting restoration treatments as 

early as possible after logging would be desirable in order to maximize site capture by young 

planted trees before lianas and pioneer trees become dominant. The greater accessibility of 

remote areas due to the residual infrastructure from logging operations (roads, bridges and field 

camps) would also enhance the financial feasibility of restoration interventions. At each location 

chosen for restoration, the following sequence of treatments was implemented: (1) six months 

prior to planting all climbers and lianas were cut across the entire area, (2) prior to planting, all 

vegetation was cleared to ground level within 2 m wide parallel lines cut through the logged 

forest with a spacing of 10 m between lines, (3) seedlings of native tree species (approximately 

50 cm height, with 10 leaves) were planted, where possible, every 3 m within the cleared lines, 

(4) open conditions were maintained within the lines by manual clearance up to four times per 

year for the three years after planting. The majority of the seedlings planted were 

Dipterocarpaceae (52 dipterocarp species and five other canopy species), although an additional 

16 species of native fruit trees were also included to enhance biodiversity. In very open sites 

pioneer trees (of three species) and fruit trees were planted. The seedlings had been grown for 4-

8 months from seeds collected locally and retained in nurseries where they were maintained 

under shade in pots of forest soil. Rock phosphate fertiliser was applied in each planting hole 

(100 g per plant). Up to 2016, 35% of the logged forest within our study area (Fig. 3) had been 



subjected to these restoration treatments, which included 196 of the 251 plots (Fig. S1) that had 

been installed to monitor forest recovery from the logging that took place in the period 1981 to 

1993 (see below). The remaining 65% of the logged forest within our study area did not receive 

restoration treatments and was sampled by the other 55 plots.  

The entire study area is surrounded by forest. In the north and east this is represented by 

logged forest in the Ulu Segama Malua Forest Reserve, and in the west and southwest the study 

area borders a reduced impact logging experiment and primary forest in the Danum Valley 

Conservation Area (DVCA). The mean distance to the closest boundary with the primary forest 

in the DVCA was 5.41 km (CI: 5.40 – 5.43) for plots in naturally regenerating forest and 4.0 km 

(CI: 3.99 – 4.01) for plots in the actively restored forest. This difference is not sufficient to 

confound the contrast in ACD recovery rate (e.g. due to proximity to seed sources) because 

dipterocarp fruits are dispersal limited and have maximum dispersal distances of a few tens of 

meters (Smith et al. 2015). The study area is permanently protected as ‘Class I Forest Reserve’ 

and this status prohibits any timber harvesting or conversion to agriculture, and following 

Verified Carbon Standard guidelines (53) this would be the case for new forest based carbon 

offset projects in Malaysia. Full details of the forest restoration treatments can be found in the 

Verified Carbon Standard (VCS) documents by Face the Future (54). 

 

Forest inventory datasets and tree measurements 

To determine the recovery of aboveground carbon density from logging, tree census data were 

obtained from a total of 257 plots representing 51803 individual tree measurements on 45.56 ha 

of forest (Fig S1). The data-set was compiled from three independent plot networks as follows: 



1. In 1996/7 the Developing Ground and Remotely Sensed Indicators of the Sustainability of 

Tropical Forest Exploitation Systems (INDFORSUS) project established 0.1 ha plots in areas 

logged between 1981 and 1993 and unlogged primary forest (55-57). In 2016, 20 of these plots 

were relocated and re-censused including six plots in primary forest. The plots have a radius of 

17.84 m and include all free-standing woody plants above 20 cm at 1.3 m height above-ground 

(DBH) measured for DBH, height and identity to the lowest possible taxonomic rank. Trees ≥10 

cm DBH and woody plants that reach 1.3 m height were also measured (as above) in nested 

concentric circles with radii of 12.61 m and 2 m respectively. 

2. Thirty-two square 0.08 ha plots were established in 1992, prior to logging, in forest that was 

logged the following year using conventional logging techniques (58). These plots were re-

censused in 1996 and 2005, i.e. up to 12 years after logging took place (59). Measurements of 

DBH and identity to the lowest possible taxonomic rank were recorded on all free-standing 

woody plants ≥ 20 cm DBH across the entire plot, and on trees 10-19 cm DBH, 5-9 cm DBH and 

1-5 cm DBH on nested plots of 400 m2, 100 m2 and 25 m2, respectively (58). The project is 

described further by Pinard & Putz (58) and Lincoln (59). 

3. Two hundred and five 0.2 ha plots were established in 2007 (15 years after the start of 

restoration) across the entire area of logged forest that is managed by the INnoprise FAce 

PROject INFAPRO project. These plots were re-censused in 2010, and seven were re-censused 

in 2015. In this case a plot is defined as the pooled sample of trees on four circles of 0.05 ha 

(radius 12.62 m) located at the points of a cross with their centers separated by 28 m. The DBH 

and identity to the lowest possible taxonomic rank of all free-standing woody plants ≥ 20 cm 

DBH was measured in all four circles, while trees 10-20 cm DBH were measured in one circle. 

Trees 5-10 cm DBH and >0.2 m height and <5 cm DBH were measured in circular plots of 5 m 



and 2 m radius, respectively, nested within the circles used to record trees 10-20 cm DBH. A full 

description of the project can be found in the Verified Carbon Standard (VCS) documents by 

Face the Future (54). 

 

Estimating tree carbon content 

The carbon content of trees on all plots was calculated assuming that carbon represented 47% of 

above-ground biomass (AGB) (60). AGB was estimated from allometric equations based on 

diameter at 1.3m height (DBH), tree height and wood density following (61): 

 

𝐴𝐺𝐵𝑒𝑠𝑡 = 0.0673 · (𝜌𝐷𝐵𝐻2𝐻)0.976 

(1) 

where DBH is in cm, H is in m, and 𝜌 is in g cm_3. Diameter was measured at 1.3 m height for 

all trees except when the point of measurement for diameter (DBHPOM) had to be raised to avoid 

buttress roots, in which case a taper model (62) was applied to estimate an equivalent stem 

diameter at 1.3 m aboveground (DBH): 

𝐷𝐵𝐻1.3𝑚 =
𝐷𝐵𝐻𝑃𝑂𝑀

exp (−0.029 · (𝑃𝑂𝑀 −  1.3))
 

(2) 

where DBHPOM is the stem diameter measurement taken at POM (in m aboveground). Tree 

height was either measured directly (5214 trees) or estimated (50646 tree measurements) using a 

data-set of diameter and height measurements of 14307 trees located either inside or within 50 

km of our study area (CDP, unpublished data) fitted to a three-parameter equation following the 

Weibull functional form: 



 

𝐻 = 89.53 · (1 − exp (−0.0225 𝐷𝐵𝐻0.7383)) 

(3) 

Trees within this data-set represented a wide diversity of species and families, and the full range 

of sizes observed on the census plots (1-200 cm DBH). The three-parameter Weibull model was 

selected from the 12 models tested by Ledo et al. (63) because because it displayed the lowest 

root mean square error (RMSE) and bias for large trees, supporting previous work (63). Wood 

density was obtained from the global wood density database (64, 65). Stems identified to species 

were assigned the species average, otherwise, the average value on the database for the nearest 

taxonomic unit was assigned. For the 20% of cases where no botanical information was available 

for the stem, the average wood density for the plot was assigned. The carbon contents of 

individual trees were then summed across all trees to estimate above-ground carbon density 

(ACD in Mg ha-1) per plot. The ACD values of small trees on nested plots were scaled and added 

to the main plot totals. 

 

Carbon recovery analysis 

For each plot, we compiled information on (1) years since logging, (2) logging method (tractor 

or high-lead) for each setup around the plot (a setup is an area logged by a small team of 

contractors with a mean size of 31 ha), and (3) whether the area was restored or not. Logging 

data (1 and 2) were compiled by Moura Costa & Karolus (52) from the original records of the 

logging contractors Pacific Hardwoods (Silam Forest Products) and Kennedy Bay Forest 

Products (see Fig. S1). For plots in the logged forest, we fit data on ACD to general linear 

mixed-effects models (LMMs) with fixed effects of years since logging, and a categorical term 



reflecting the presence or absence of restoration treatments, as well the interactions between 

these two main effects. It was only possible to test for a linear effect of time since logging as 

each plot was only measured twice or three times post logging. The intercepts were allowed to 

vary between inventory plots and the logging method (tractor or high-lead logging) within each 

coupe as normally distributed random effects (random intercept model). To estimate the mean 

ACD of the unlogged forest we fitted data on ACD from unlogged plots to a LMM with only an 

intercept and a random effect for each census. 

 

Independent estimation of above-ground carbon density from airborne LiDAR  

Above-ground carbon density was extracted for the study area at a spatial resolution of 30 m 

from Asner et al. (10), which presents a 2016 ACD map for the entire state of Sabah generated 

using a combination of airborne LiDAR, Landsat 8 apparent surface reflectance, topographic 

data from NASA’s Shuttle Radar Topography Mission, and VH and VV SAR response from 

Sentinel-1 (for further details see Asner et al. (10)). None of the forest plots used to calibrate 

ACD from LiDAR-derived forest structural metrics were included in the analyses of ACD 

recovery reported in this paper. Details of the data collection and processing methods used to 

derive the carbon map are given by Jucker et al. (21) and Asner et al. (10). We fit values of ACD 

from the carbon map to a LMM, with a categorical term reflecting the land use (either primary 

forest, natural regeneration, or active restoration). The average time since logging was 29.67 

years [95% CI: 29.65 – 29.68] for naturally regenerating areas, and 26.79 years [26.78 – 26.81] 

for actively restored areas (since the map covers areas that have been logged between 24 and 36 

years previously). The intercepts were allowed to vary between each logging coupe as normally 

distributed random effects.  



All analyses were carried out using R v. 3.3.3 (66). The LMMs were fitted using the lmer() 

function in version 1.1-13 of the lme4 package (67). The LMMs assume homogeneous variance 

and a normal error distribution, which was confirmed by plotting residuals against the fitted 

values and using Q-Q plots respectively. The 95% confidence intervals (CIs) of the parameter 

estimates were computed using a parametric bootstrap with 1000 iterations, implemented using 

the function bootMer() from the lme4 package. 

 

Calculation of break-even carbon price  

To estimate the economic feasibility of implementing tropical forest restoration treatments at 

other sites around the globe we calculated the price of carbon that would be required to exactly 

offset restoration costs (“break-even carbon price, CP”) where revenues from selling carbon 

credits are calculated as the lifetime Net Present Value, assuming a nominal discount rate, r, and 

that the restoration costs are assumed to be incurred as a single investment at the start of the 

project. We assume CP is a static value used in future years without forward inflation, meaning 

the carbon price in 2025 will be CP in 2025 dollars and the carbon price in 2030 will be CP in 

2030 dollars. Thus, discounted revenues accrue at five yearly intervals as the carbon credits are 

accounted. Under these assumptions the break-even carbon price CP is calculated as:  

 

𝐶𝑝 =  
𝑅

∑ 𝐶𝐶𝑛
1 (1 + 𝑟)−𝑛

  

(4) 

where R (in US$ ha-1) is the restoration cost incurred at the initial investment and the 

denominator represents the total discounted carbon credit (CC) revenue from credits released at 

five year intervals, computed as follows: 



 

∑ 𝐶𝐶

𝑛

1

 (1 + 𝑟)−𝑛 =  
3.67𝐴𝐶𝐷5

(1 + 𝑟)5
+  

3.67𝐴𝐶𝐷10

(1 + 𝑟)10
+ ⋯ +  

3.67𝐴𝐶𝐷30

(1 + 𝑟)30
  

(5) 

where ACDn (in Mg ha-1) is the measured additional ACD accumulated in response to restoration 

treatments during the five year interval up to year n (7.5 Mg ha-1, bounded by a 95% confidence 

interval of 2.0 – 13.0 Mg ha-1). The constant 3.67 is required to convert ACD in Mg ha-1 to per 

tCO2 e. Breakeven carbon prices were calculated for assumed restoration costs across the range 0 

to 4000 US$ ha-1. 

 

The carbon price on the voluntary market is highly variable, depending on project 

location and type, and 2016 prices varied in the range US$0.60 to US$11 per tCO2 e (13). The 

average price across all transactions was US$3.0 per tCO2 e (13) and we therefore highlight the 

range US$2 - US$10 per tCO2 e in Fig. 3. The costs of restoration treatments vary depending on 

the intensity of the intervention required. Planting tree seedlings into logged forests in Southeast 

Asia requires heavy investment in the infrastructure to collect and propagate seeds and tend 

seedlings in nurseries, maintain access to planting sites, and labour costs for initial clearance and 

subsequent maintenance of planting sites(68). The current cost of these operations, including 

climber cutting, vary in the range 1500 to 2500 US$ ha-1 in Sabah depending on whether the 

cutting is conducted once, twice or three times. We therefore calculate the breakeven carbon 

price (US$ per tCO2 e) for a range of possible restoration costs that encompass these values. 

 

  



 

Fig. S1. Estimated pre-logging timber volume in m3 (left panel) and estimated timber 

volume extracted in m3 (right panel). Left panel, timber volume estimated prior to logging for 

each setup in m3. Right panel, estimated timber volume extracted in m3. Where spatially-explicit 

data were not available, the average value for the logging-coupe was used. Black points indicate 

inventory plots. 
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Fig. S2. Aboveground Carbon Density as a function of time since logging. The recovery of 

ACD in naturally regenerating logged forest (in blue) and, forest with active restoration (in red) 

using climber-cutting and enrichment planting. Bold solid lines represent the mean recovery rate 

and dashed lines the 95 % CI. Each transparent line represents the recovery for an individual plot 

between measurement intervals. The panel on the far right displays the mean (±95 % CI) ACD of 

unlogged forest and therefore highlights the potential for ACD recovery. 

 

  



 

 
Fig. S3. Carbon price break-even point as a function of restoration costs for Ulu Segama 

Forest Reserve, Sabah, Malaysia 

Estimates of break-even carbon price assuming 1% (left) and 10% (right) nominal discount rates 

for the increase of 1.5 Mg ha-1 yr-1 (CI:0.4 – 2.6) in ACD recovery attributed to restoration over a 

30-year period with discounted revenues accrued at every five years. The envelope represents the 

possible range assuming the confidence intervals from the ACD recovery model. The break-even 

carbon price represents the threshold price required to offset restoration costs. Dark green lines 

highlight the typical range of enrichment planting costs in Malaysia at the present time. The red 

region within the confidence envelope highlights the current (2017-2019) range in the voluntary 

carbon market prices (US$2 – US$10  per tCO2 e), whereas the blue region highlights the 

estimated range in carbon price required to fulfil the Paris Agreement and limit global 

temperature increases to less than 2°C by 2020 (US$40 – US$80 per tCO2 e). 

 

  



Table S1. Details of data from published restoration costs. Data from a variety of forest types 

and locations. Restoration costs are in US$. These values were used for the density plot of 

restoration costs reported in the upper panel of Fig. 4 (30-32, 38, 69-74). 

(30-32, 38, 69-74) 

 

 

 

 

 

Region Country Location Forest	type Restoration	Cost	 Restoration	activity	/	aim ACD	growth	post- Reference

[Range	in	costs] restoration	(if	reported)

S.	America Brazil Tombetas	mine,	 tropical	rainforest	 $2500 	restoration	of	Tropical	Forests	 − Parrotta	&	Knowles	(1999)

Saraca ́-Taquera,	Pará	State on	Bauxite-Mined	Lands

S.	America Argentina Nahuel	Huapi, dry	forest $9695 establishing	native	forest	as	 − Birch	et	al. 	(2010)

Rio	Negro,	Neuquen alternative	to	livstock	grazing

S.	America Chile Quilpue, dry	forest $2067 −

Valparaiíso	region

C.	America Mexico Central	Veracruz,	Veracruz dry	forest $2158 −

C.	America Mexico El	Tablon,	Chiapas dry	forest $994 −

C.	America Costa	Rica Agua	Buena	&	Las	Cruces, premontane	rainforest	 $1100	 full	area	planting 2.48	Mg	ha
-1
	yr

-1
Holl	et	al. (2011);	

Coto	Brus	County [$900	-	$1300]

$297	 	planting	tree	Islands 1.17	Mg	ha
-1
	yr

-1
Holl	&	Zahawi	(2014)

[$243	-	$351]

Australia	 Australia	 Queensland,	multiple 	tropical	rainforest $6370 enhancing	existing	forest − Catterall	&	Harrison	(2006)

sites $17920 reinstating	rainforest −

Africa Uganda	 Kibale	National	Park, moist	evergreen	forest	 $1200 protection	from	fire	& 1.62	Mg	ha
-1
	yr

-1
Wheeler	et	al.	(2016)

SW	Uganda native	seedling	planting (CI:1.14-2.11)

SE	Asia Indonesia E.	Kalimantan,	Borneo dipterocarp	rainforest	 $943			-	$1395 enrichment	planting − Budiharta	et	al.	(2014)

montane	rainforest		 $1024	-	$1450 (higher	costs	for	more	 −

heath	rainforest $1231	-	$1964 degraded	areas) −

peat	swamp	rainforest $1047	-	$1518 −

freshwater	swamp	rainforest $1025	-	$1463 −

SE	Asia Indonesia Sari	Bumi	Kusuma, dipterocarp	rainforest	 $429 enrichment	planting − Ruslandi	et	al. 	(2017)

C.	Kalimantan

SE	Asia Malaysia INnoprise	FAce	PROject, dipterocarp	rainforest	 $2000	 enrichment	planting	&	climber 1.5		Mg	ha-1	yr-1	 This	study

Danum	Valley,	Sabah [$1500	-	$2500] 	cutting	in	logged	forest (CI:0.4	-	2.6)

SE	Asia Indonesia Indonesia,	circa 	17	sites multiple	forest	types:	 $3682	 various,	mostly	replanting	 − Nawir	et	al.	(2003)

	government [$43	-	$7320] of	degraded	forest

Indonesia,	circa 	7	sites donors $7794	 −

[$366	-	15221]

Indonesia,	circa 	10	sites private $4308 −

	[$115	-	$8500]


