
Vol.:(0123456789)

Public Transport
https://doi.org/10.1007/s12469-020-00249-7

1 3

ORIGINAL RESEARCH

Public transport network optimisation in PTV Visum using 
selection hyper‑heuristics

Philipp Heyken Soares1  · Leena Ahmed2 · Yong Mao3 · Christine L Mumford2

Accepted: 18 August 2020 
© The Author(s) 2020

Abstract
Despite the progress in the field of automatic public transport route optimisation 
in recent years, there exists a clear gap between the development of optimisation 
algorithms and their applications in real-world planning processes. In this study, we 
bridge this gap by developing an interface between the urban transit routing prob-
lem (UTRP) and the professional transport modelling software PTV Visum. The 
interface manages the differences in data requirements between the two worlds of 
research and allows the optimisation of public transport lines in Visum network 
models. This is demonstrated with the application of selection hyper-heuristics on 
two network models representing real-world urban areas. The optimisation objec-
tives include the passengers’ average travel time and operators’ costs. Furthermore, 
we show how our approach can be combined with a mode choice model to opti-
mise the use of public transport in relation to other modes. This feature is applied 
in a special optimisation experiment to reduce the number of private vehicles on a 
selected set of links in the network. The results demonstrate the successful imple-
mentation of our interface and the applied optimisation methods for a multi-modal 
public transport network.

Keywords Route optimisation · PTV Visum · Selection hyper-heuristics

 * Philipp Heyken Soares 
 philipp.heyken@nottingham.ac.uk

 Leena Ahmed 
 ahmedlh@cardiff.ac.uk

 Yong Mao 
 yong.mao@nottingham.ac.uk

 Christine L Mumford 
 MumfordCL@cardiff.ac.uk

1 Laboratory of Urban Sustainability, Nottingham University, Nottingham NG7 2RD, UK
2 School of Computer Science and Informatics, Cardiff University, Queen’s Buildings, The 

Parade, Cardiff, UK
3 School of Physics and Astronomy, Nottingham University, Nottingham NG7 2RD, UK

http://orcid.org/0000-0003-0017-3967
http://crossmark.crossref.org/dialog/?doi=10.1007/s12469-020-00249-7&domain=pdf


 P. Heyken Soares et al.

1 3

1 Introduction

Public transportation systems form an essential part of the infrastructure in urban 
areas. Their efficiency is vital to many stakeholders and, therefore, they require 
precise design and planning. The generation of efficient route networks for public 
transport systems is known in many studies as the urban transit routing problem 
(UTRP).1 This problem has been addressed in the literature by a considerable num-
ber of studies that vary in their application on different instances, objectives and 
solution methodologies.

Despite intensive research into the UTRP, there is a vast gap between the often 
purely academic studies and the application of their findings in real-world plan-
ning processes. The reasons for the gap have not been thoroughly researched so far 
(Walter 2010). However, one possible explanation could be the differences in data 
requirements between the algorithms used in UTRP research and the commonly 
used planning tools. Planning agencies usually base their decisions on simulations 
made with professional transport modelling software, such as PTV’s Visum (PTV 
AG 2018) or INRO’s Emme (INRO 2018). Models built with software packages 
such as these require detailed information about the street layout, transport infra-
structure, and travel demand, making them time-consuming to be implemented and 
calibrated. The resulting model, however, is very powerful and allows planners to 
study and simulate a variety of transport related phenomena. Researchers working 
on the UTRP on the other hand, apply their design algorithms to abstract models 
that simplify many aspects of real-world transport networks. A graph structure with 
interchange points as vertices and direct connections between them as undirected 
edges is the common model used by most previous studies.

In this work, we bridge the gap between the two worlds of theoretical research 
on the UTRP and real-world transportation planning. We focus here on Visum 
transportation modelling software and compare its transport network structure to a 
common UTRP model used previously by many researchers, pointing out the key 
differences between them. Based on these findings, we outline a process to trans-
late Visum network components into the UTRP graph structure and vice versa by 
implementing a middle layer interface through which the transport network informa-
tion passes between the models. Utilising this interface, selection hyper-heuristics 
are used to optimise Visum public transport routes while taking advantage of Visum 
analysis tools to evaluate a given candidate solution. The primary contributions of 
this study are:

1 The UTRP is, in fact, a sub-problem of a larger task to optimise public transport networks, which con-
sists of five phases: (1) route design, (2) vehicles frequency setting, (3) timetables development, (4) vehi-
cles scheduling and (5) crew scheduling (Ceder and Wilson 1986). As the phases are interconnected, the 
problem has very high complexity, and most studies only deal with subsets of these phases using simpli-
fications. In the case of the UTRP, which only considers the first stage, a fixed frequency on all routes is 
assumed, and other aspects such as the actual departure and arrival times of vehicles at stop points are 
not considered.
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– A comparative study of network structures used in the UTRP research and 
Visum, and a methodology for bridging between them.

– Novel interface procedures between Visum and the UTRP network models to 
facilitate transferring and translating data between them.

– Selection hyper-heuristic algorithm adapted to optimise Visum public transport 
routes utilising the interface procedures.

– The integration of Visum tools for the evaluation of candidate solutions.

The following sections are organised as follows: Sect. 2 outlines the historical back-
ground of the UTRP in planning applications and provides a brief introduction to 
PTV Visum and its applications; Sect. 3 describes the UTRP and Visum network 
models in more detail; Sect. 4 summarises the interface processes; Sect. 5 outlines 
the optimisation procedure using selection hyper-heuristics and the applied evalua-
tion tools. Finally, Sect. 6 presents our experimental results and Sect. 7 highlights 
the key findings and conclusion.

2  Background

2.1  A brief history of the UTRP

Attempts to automate the optimisation of urban public transport routes date back 
many decades using a variety of optimisation methodologies and algorithms. They 
generally fall into two categories: exact or heuristic-based methods. Exact mathe-
matical approaches (Bussieck 1998; Chien and Schonfeld 1997; Guan et al. 2006; 
van Oudheusden et al. 1987) have been tested in many studies. The major limitation 
of such methods is the difficulty of finding optimal solutions in large-sized networks 
given the combinatorial nature of the problem, and this has resulted in their failure 
to scale up to practical sized instances.

Because of these shortcomings, research on the UTRP then shifted towards 
adopting heuristic-based methods to solve the problem, due to their ability to tackle 
large-size problem instances. Some heuristic methods are based on heuristic con-
struction procedures, which attempt to build optimal public transport route sets 
from scratch. An example of such a method is the heuristic algorithm developed 
by Simonis (1981). This method starts by generating a route using the shortest path 
between the highest density demand points and then deletes the demand satisfied by 
this route. The process iterates to the next highest demand points until a maximal 
number of routes is reached. Other heuristic construction methods are described in 
(Baaj and Mahmassani 1995; Franz 1975; Silman 1974; Sonntag 1977).

The second group of heuristic methods attempts to improve a given input of route 
sets. These optimisation methods are usually based on meta-heuristic methods such 
as tabu search (e.g. Kılıç and Gök 2014; Pacheco et al. 2009), simulated annealing 
(e.g. Fan and Mumford 2010; Fan and Machemehl 2006) ant colony otimisation (e.g. 
Poorzahedy and Safari 2011; Yu et al. 2012), bee colony optimisation (e.g. Nikolić 
and Teodorović 2013, 2014), or genetic algorithms (GAs) (e.g. Heyken Soares et al. 
2019; John et al. 2014; Nayeem et al. 2014; Pternea et al. 2015). The initial route 
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sets are derived in some studies from the existing public transport network of the 
study areas. However, a heuristic construction procedure is often used to generate 
initial route sets. Examples of such a combination can be found in Ahmed et  al. 
(2019), Heyken Soares et al. (2019), Kılıç and Gök (2014), and Mumford (2013).

Despite the huge amount of research on computer-based solutions for the UTRP, 
only few studies have been actually used in real-world planning processes (Walter 
2010). One rare example is the work by Pacheco et al. (2009) which describes the 
optimisation of the bus network in Burgos, Spain, with regard to waiting times and 
trip duration. The solutions obtained improved significantly over those generated 
by planners of the city transport authorities using the same transit network data. 
Another example is a study 2012 by Cipriani et al. (2012) in cooperation with the 
mobility agency of Rome, Italy. It included the application of a genetic algorithm 
on an undirected graph representing the street network of Rome. The results show 
improvements over the existing bus route network in terms of waiting times, opera-
tor costs and unsatisfied demand. According to the authors, the mobility agency of 
Rome had started implementing their results in 2012. Many other studies compare 
their results against the real existing routes, showing that their methods can lead to 
improvements over an existing service (e.g. see Ahmed et  al. 2019; Bagloee and 
Ceder 2011; Bielli et al. 2002; Heyken Soares et al. 2019). However, the results of 
these studies have not been verified in real-world planning processes.

2.2  Interfacing UTRP algoirthms and transport modelling software

The key challenge for interfacing UTRP algorithms and macroscopic transport mod-
elling software such as Visum or Emme, is to handle the differences between the 
undirected connections used in UTRP algorithms and the directed connections used 
in urban scale macroscopic modelling (more on this in Sect. 3).

All UTRP studies which have so far interfaced their algorithms with macroscopic 
transport modelling software have bypassed these problems by only using network 
representations with undirected connections. One such case is the mentioned above 
study on Rome (Cipriani et al. 2012), where the applied algorithm is interfaced with 
Emme. Other examples Alt and Weidmann (2011), and Bagloee and Ceder (2011) 
used Visum and Emme, respectively, and included procedures to construct suitable 
network representations.

So far, the most general tool for automatic public transport network optimisation 
in transport modelling software is the line proposal algorithm for Visum developed 
by PTV itself in 2006 (Nökel 2006). This tool applies a heuristic algorithm to an 
existing Visum network model. The algorithm first generates a palette of candidate 
routes between pre-selected stops. These candidate routes are then individually eval-
uated in Visum and the route taking up the most demand is then permanently added 
to the network. This step can be repeated as often as required. The tool only requires 
a minimal interface as the algorithm simply controls the end points of routes and 
initiates their evaluation. All other aspects are handled by Visum and the algorithm 
does not modify the pre-existing routes. Although the algorithm has been success-
fully used in at least two academic studies (Marauli 2011; Walter 2010), it remained 
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a prototype and was never fully developed into an official Visum extension. Unfortu-
nately, it no longer works on recent versions of Visum.

2.3  Optimising public transport in Visum through selection hyper‑heuristics

The aim of this work is to create an interface between the UTRP network model 
and the macroscopic transport modelling software Visum, and utilise the interface 
to optimise Visum public transport routes using the general search methodology of 
selection hyper-heuristics.

Visum is a macroscopic transport modelling software package that combines both 
private (PrT) and public transport (PuT) into a single model and provides a rich 
suite of methodologies. It is a product of the PTV company based in Karlsruhe, Ger-
many, and has been available for commercial use since the late 90s (Friedrich et al. 
1999). It is used at present by transport planners and analysts throughout the world. 
The results presented in this paper have been produced using Visum 17, which was 
the latest released version at the start of this project.

In addition to the variety of analysis tools, one of the main reasons to use Visum 
for the present work is the ability to control it via Python scripts over the Visum 
COM-API (PTV AG 2014). This library provides a number of interface functions 
to control Visum via scripts and extract any required information. Such scripts form 
the basis of the present work.

Given the complexity of Visum software and its huge number of available fea-
tures and tools, we have to limit the descriptions of its structure and capabilities 
to those which are vital for the present work. We will discuss the relevant data 
structures of Visum network models in Sect.  3.2 and the analysis options we use 
in Sect. 5.5. For further details we refer the interested reader to the Visum Manual 
(PTV AG 2018).

Selection hyper-heuristics are search methodologies motivated by the idea of 
generalising search techniques to several problem domains with minimal adaption. 
They have been applied to solve the UTRP for the first time in Ahmed et al. (2019). 
In this work thirty selection hyper-heuristics combining different combinations of 
selection and move acceptance methods with varying characteristics are tested on 
a set of known benchmark instances. A series of experiments and statistical com-
parisons between the thirty methods revealed the success of an online selection 
method inspired by the hidden Markov model over other selection methods. Fur-
thermore, the best performing algorithm was successful in finding single solutions 
of high quality in very short run times compared to the best published solutions. The 
same winning approach was applied in Ahmed et al. (2019) on a set of benchmark 
instances representing urban areas, and proved that it can surpass the performance 
of the genetic algorithm, NSGAII.

There are many advantages of a selection hyper-heuristic framework that makes it 
a good candidate for application on this work. First, it is a single point based frame-
work, meaning it only requires a single initial solution. This allows us to extract 
the existing public transport network from a given Visum network model and use 
it as the initial solution. Second, maintaining a single solution while improving it 
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iteratively during the search, makes the interaction with Visum through the inter-
face procedures straightforward. Also the relatively short run time of hyper-heuristic 
methods significantly adds to their attractiveness. A further description of the selec-
tion hyper-heuristics framework is outlined in Sect. 5.

PuT : Refers to public transport.
PrT : Refers to private transport.
G: Graph of connected vertices and edges. Used to represent a UTRP graph.
v: Vertex of the UTRP graph belonging to the set of vertices V . Represents
a stop in a Visum network model. (The terms stop and vertex can be used
interchangeably in the UTRP graph.)
u: Terminal vertex (∈ V ), a vertex that route r is allowed to start and end
with.
A: Adjacency matrix defines the connectivity of graph G. Ai, j = 1 means a
direct connection exists between vertex i and vertex j. In the case of Ai, j = 0
the vertices are not directly connected.
r: Route in the UTRP graph as a path connecting a number of vertices. In
Visum the route corresponds to a line. It is assumed to be bi-directional.
s: Stop in Visum network. Represents a vertex in the UTRP Graph.
sp: Stop point in Visum network associated to exactly one stop. Can be used
to define the course of the line route.
l: PuT line in Visum. The spatial course of the line is defined by its line
routes.
lr: Line route in Visum. Belongs to exactly one line and specifies the spatial
course of this line for one travel direction. Line routes are defined by stop
points.

InfoBox 1: Summary of important concepts used in the following sections

3  Data structures

3.1  Defining the UTRP

Almost all previous approaches to the UTRP choose to represent the available street 
(or rail) network as a graph G = (V ,E) . The vertices V = {v1, v2,… , v|V|} represent 
access and interchange points, and the edges E = {e1, e2,… , e|E|} are direct connec-
tions between them. Using these definitions, a PuT route r (e.g. a bus line) can be 
represented by a list of directly connected vertices. The route is usually assumed to 
be bi-directional, meaning that vehicles after completing a journey in one direction, 
can turn around and make the same journey in the opposite direction. For this to be 
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possible in an urban setup it is important that all routes begin and end at designated 
terminal vertices U = {u1, u2,… , u|U|} ∈ V  to allow U-turns. Following these defi-
nitions, the PuT network of a certain transportation mode can be described as a set 
of connected routes R = {r1, r2,… , r|R|} , which represents a solution to the UTRP 
as an optimisation problem. This “route set” has to be connected, in such a way that 
each route has at least one vertex in common with one or more other routes in the 
route set.

In its simplest form, the structure of the graph G is given by an adjacency matrix 
A|V|×|V| . This matrix defines the connectivity of the graph as follows: If two nodes 
i and j are directly connected, the respective entry in the adjacency matrix equals 
Ai,j = 1 otherwise Ai,j = 0 . This matrix must be symmetrical following the rule that 
the routes are assumed bi-directional. The main advantage of such graphs for solv-
ing the UTRP is that they allow constraining routes to be made up of only directly 
connected vertices. This excludes many possible flawed solutions and thereby drasti-
cally reduces the search space.

Furthermore, information about the travel demand and the travel time between 
any two vertices in the graph is required for evaluation. This information is typi-
cally provided in the form of two-dimensional matrices: the travel time matrix, and 
the demand matrix. Both matrices are usually symmetrical. The travel time matrix 
gives the travel time between directly connected vertices. Differences in travel times 
between directions (e.g. resulting from one way streets) are usually not considered. 
The demand matrix determines the number of travellers between any two demand 
sources. In the vast majority of studies, the vertices V are used as demand sources. 
Only about one in five studies use a zone demand structure similar to the structure 
used in macroscopic transport modelling (described below) (Heyken Soares 2020a).

3.2  Visum data structure

The inputs to Visum transport models also include travel demand and the network 
model of the available transport infrastructure.

As a standard practice in macroscopic transport simulations, the travel demand 
in Visum is aggregated at the level of zones ( Z = {z1, z2,… , z|Z|} ) and given in the 
form of an origin-destination matrix. A demand matrix D|Z|x|Z| defines how many 
trips are originating from zone zi , and travelling to zone zj . The demand data is given 
as separate matrices for PuT and different modes of PrT (e.g. cars). However, it is 
possible to initially give the demand as one matrix aggregating all trips and then 
use a mode choice procedure to split the demand into separate matrices for different 
travel modes (more on this in Sect. 5.5.2).

The Visum network model is also based on a graph structure, though it is more 
detailed than the UTRP graph described above. Streets or rail segments are repre-
sented by links usable for specified modes of transport. Links are composed of two 
separate network objects, one for each travel direction. Each one of these objects can 
have different attribute values such as the allowed speed, and capacity in terms of 
the number of vehicles. One-way streets can be represented by blocking one direc-
tion of a link to all modes. Nodes at the beginning and end points of each link define 
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the positions of intersections and junctions in the network. Which turns are permit-
ted for which mode at the represented junctions can be defined in the properties of 
the nodes. Each zone ( z ∈ Z ) must be connected to at least one node by a connector, 
for exiting and entering the zone to the link network through this connection node.

The Visum network model further includes other elements to represent the avail-
able PuT lines and interchange points. PuT interchange points are defined in three 
layers. The “stop point” is the lowest layer indicating the actual stopping location of 
the vehicles (e.g. a segment of a train platform). Stop points can be placed either on 
nodes or links and can be used by all PuT lines traversing these network objects. A 
stop point placed on a link can either be accessible from both directions or can be 
restricted for use in a specific direction. The “stop area”, the middle layer, incorpo-
rates one or more stop points (e.g. a platform on a train station). All the stop points 
of the same stop area are considered instantly connected while transfers between 
stop areas require a certain walking time. Further, a node can be allocated to a stop 
point area to allow access to the wider network model, most importantly to connec-
tors connecting nodes to zones. The “stop”, the highest level, incorporates one or 
more connected stop areas (e.g. a train station) and is the level on which walking 
time between different stop areas is assigned. Stop areas do not play a major role in 
this work, and we will assume that stops and stop points are directly connected to 
simplify explanations.

PuT lines are also defined in several different layers. On the highest level is the 
“line”. Each line in Visum belongs to exactly one transport system. The spatial 
course of the line is defined by its line routes. A single line can aggregate several 
line routes that are defined by lists of stop points to be traversed in the given order.2 
Line routes are thereby directed and most lines will have at least two line routes, one 
for each direction of travel. A special case are ring lines defined by single line routes 
starting and ending at the same stop point. Each line route is given a “time profile” 
describing, among other attributes, the travel times between the single stop points. 
“Vehicle journeys” with concrete departure times can be added to the line routes to 
create detailed timetables that specify departure and arrival times at the individual 
stop points.

3.3  Interfacing between the UTRP and Visum data structures

Based on the comparison of the standard graph structure of the UTRP with the 
respective data structure of Visum, there are key questions to be answered before 
constructing an interface between them. First we need to specify whether the opti-
misation is going to be performed on the level of line routes or lines. Optimising the 
line routes individually can lead to significant deviations between the line routes that 
belong to the same line. This would not be desirable in practice. Therefore, we have 
chosen to perform the optimisation at the level of lines.

2 Technically the list defining a line route contains both stop points and nodes. However, it is sufficient 
to only provide the stop points as Visum can add the required nodes automatically via the shortest path 
search.



1 3

Public transport network optimisation in PTV Visum using…

The second question is whether the vertices of the UTRP graph should represent 
stops or stop points in the Visum network model. To answer this question we need 
to consider that some stop points in the Visum network model might be restricted 
for use in specific directions only. This would conflict with the fact that routes in 
the UTRP structure are assumed bi-directional. However, in the majority of such 

Fig. 1  a Schematic street 
network with one bus service 
(purple) and its stop locations 
(purple dots). b Representation 
of a as a Visum network model. 
Shown are links (black arrows) 
and nodes (blue dots), as well as 
stop points (triangles) and their 
stops (green circles) The stop 
points C and D are both part 
of stop 3. c UTRP graph with 
the stops in b as vertices and 
the possible direct connections 
between them as edges. d Sche-
matic display of two line routes 
in the same network model as 
b representing the bus service 
shown in (a). The path of a line 
route is only defined by the stop 
points, although routing takes 
place along the nodes and links 
of the underlying network model 
with all the restrictions defined 
on it. Together both line routes 
form one line. e The line routes 
from d as a bi-directional list of 
vertices in the UTRP graph

(a)

(b () c)

(d () e)
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cases,3 the stops which these directed stop points belong to also incorporate other 
stop points that are accessible from several directions (see Sect. 3.2 and Fig. 1). We, 
therefore, decided that the UTRP graph vertices should represent stops in the Visum 
network model rather than stop points.

Finally, it has to be decided which stops (i.e. vertices) should be considered as 
terminal vertices in the UTRP graph. It is recommended in PTV AG (2018) to 
exclusively use stop points that are placed on nodes as the beginning or end points 
of line routes. However, there are many existing line routes in the network models 
we used that do not follow this recommendation. We, therefore, select as terminal 
vertices, the stops which fulfil at least one of the following conditions:4 (a) Having 
at least one of their stop points placed on a node. (b) Having at least one of their stop 
points being the beginning or end of an existing line route.

4  The interface processes

Based on the discussion in Sect. 3.2, we can formulate two main interface processes 
to translate routing information between UTRP algorithms and Visum. The first is 
to extract the adjacency relations between stops to be used as the basis for route 
alterations during the optimisation. This process will be introduced in Sect. 4.1. The 
second is a process to convert the modified routes (i.e. undirected lists of stops) into 
pairs of line routes (i.e. directed lists of stop points) to allow the implementation 
in Visum for evaluation. This process will be outlined in Sect. 4.2. The outcomes 
of both interface procedures are mode-specific, as some links in a Visum network 
model may only be accessible to specific modes.

4.1  Extracting a UTRP graph from a Visum network model

The process to extract the adjacency relations between the stops for a PuT mode m 
from a given Visum network model is outlined in Algorithm 1. It begins by creating 
a stop point connectivity matrix Cm . This matrix has three types of entries: Cm

i,j
= 0 

indicates that there is no connection between the two stop points i and j, Cm
i,j
= 1 

means a direct connection between stop points i and j exists, and Cm
i,j
= 0.5 indicates 

that a connection exists but it is indirect (i.e. the connection goes over other stop 
points). Additionally, a distance matrix �m which records the travel time between 
each pair of stop points is also created in this process (its usage is described in 
Sect. 4.2).

3 There are cases where a stop can only be reached from one direction. However, in all the networks 
examined in this work, these cases were very few in number and did not seem to have a significant 
impact on the results. We, therefore, neglected them at the present stage of the work. For the future, we 
plan to implement additional procedures that adequately address this problem.
4 The conditions listed here were selected for the optimisation of bus lines described in Sect. 6. For other 
scenarios or in case of optimising other PuT modes it might be necessary to adapt these conditions. Also, 
a manual selection of terminal vertices is possible.
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Algorithm 1: Algorithm to generate the stop point connectivity matrix and
distance matrix for a mode m in a given Visum network.

Data: Visum Network
Result: Connectivity Matrix Cm, Distance Matrix ∆m

1 begin
2 for each Stop point i in Visum network do
3 for each Stop point j in Visum network do
4 Build test line route l of the mode m between i and j .
5 if l can be built then
6 ∆m

i, j ← travel time between i and j
7 n ← number of stop points in l
8 if n = 2 then
9 Cm

i, j = 1
10 else
11 Cm

i, j = 0.5

12 else
13 Cm

i, j = 0

14 return Cm, ∆m, Visum network back to initial state.

A python script utilising functions from Visum COM-API is used to extract the 
required information from the given Visum network model. This script is demon-
strated by Algorithm 1. For every possible combination of stop points i, j, the algo-
rithm attempts to build a test line route beginning at i and ending at j by finding the 
shortest path along the links open to mode m. The building is only successful if 
Visum manages to find a shortest path from i to j considering all the constraints of 
the given network model. All other stop points located on this path are automatically 
connected to the built line route. If the test line route contains more than two stop 
points (not only i and j), the connection between i and j is considered indirect and 
recorded in the connectivity matrix as Cm

i,j
= 0.5 . If no further stop points are con-

nected to the test line route, the connection is considered direct and recorded as 
Cm
i,j
= 1 . In either case, the travel time of the built line route is calculated by Visum, 

and recorded in the distance matrix as �m
i,j

 . If the process of finding the shortest path 
between i and j fails, these stop points are considered as not connected ( Cm

i,j
= 0 ). 

Once the algorithm has iterated through all stop point pairs, the Visum network 
model is returned to its initial state.

After the stop points connectivity matrix Cm is constructed, the adjacency matrix 
Am
|V|×|V| of the undirected UTRP graph is built using the following rules: two stops X 

and Y are considered connected ( Am
X,Y

= AY ,X = 1 ) if and only if at least one stop 
point x belonging to stop X is directly connected to at least one stop point y∗ belong-
ing to stop Y ( Cm

x,y∗
= 1 ), and at least one stop point y belonging to stop Y is indi-

rectly connected to at least one stop point x∗ belonging to stop X ( Cm
y,x∗

≥ 0.5 ). In any 
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other case, even if all stop points of the two stops X and Y are indirectly connected, 
X and Y are considered as not adjacent ( Am

X,Y
= Am

Y ,X
= 0).

4.2  Transforming UTRP routes to Visum line routes

During the optimisation process, the changed routes have to be implemented into 
Visum for evaluation. To do so, the lists of vertices (i.e. stops) in these routes need 
to be converted into two lists of stop points, one for each direction of travelling.5 
As described in Sect. 3, a single stop can have multiple stop points. Therefore, the 
correct combination of stop points that represent a specific combination of vertices 
has to be selected. This is done with the help of a conversion table � m . Its use is 
illustrated in Fig. 2.

Let us assume we have a route ri that contains the following set of vertices in 
this order: {1, 2, 3, 4, 5} and vertices 2 and 4 are associated with multiple stop points 
as illustrated in Fig. 2. To convert the route ri to a stop point list, we need to select 
the correct combination of stop points that represent a particular direction of travel 
through a vertex. For the vertices associated with a single stop point this selection is 
trivial. However, for the vertices associated with multiple stop points, the selection 
process depends on the adjacent vertices and the order of these vertices in the route. 
In the example given in Fig. 2, the stop point representing stop 2 can be either B (if 
the order is 1, 2, 3) or C (if the order is 3, 2, 1).

The conversion table � m used to select the correct stop points for every vertex 
is shown in Fig. 2. The first three columns give the possible triple set of connected 
vertices, one combination in each row. Every combination is considered twice, once 
for each travel direction. The fourth column specifies the stop point choice for the 

Fig. 2  Schematic street network with five stops (1–5) and seven stop points (A to G). A sixth stop is 
assumed along the street to the right. The UTRP route [1, 2, 3, 4, 5] is converted into two stop points lists 
using the conversion table on the right. The conversion table gives the correct stop point for a single stop 
using a combination of three stops (i.e. vertices) containing this stop and its adjacent stops. The resulting 
stop points lists are displayed in blue (from A, over B to D, E and G) and red (from G, E and D over C to 
A). For the terminal nodes, 1 and 5, a vertices triple with empty fields is given to be used at the begin-
ning and end of a route, respectively

5 Ring lines, where the first and last stops are identical require only one line route.
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middle vertex in the combination. For terminals, additional triple sets with empty 
fields are used to determine the stop points at the beginning and end of a line route.

With the conversion done, the stop point lists can be implemented in Visum, 
replacing the old line routes by using Visum COM-API (PTV AG 2014). To allow 
PuT assignments to be run for the evaluation (see Sect. 5.5), time profiles and vehi-
cle journeys can be generated as well.

The process to construct the conversion table � m is outlined in Algorithm 2. It 
builds on data produced during the generation of Am (Algorithm 1), specifically the 
connectivity matrix Cm and the distance matrix �m . For every vertex Y, the algorithm 
identifies the vertices K adjacent to it (line 3). With this, it is possible to define tri-
ples of connected vertices {X, Y, Z} where ( Am

X,Y
= Am

Y ,Z
= 1 ). The algorithm loops 

over every possible combination of the stops triple {X, Y, Z} (line 5) and extracts 
the corresponding stop point triple defined as { � ,�,� }, where � is a stop point of 
X, � a stop point of Y, and � a stop point of Z (line 6). If any of the stops {X, Y, Z} 
is associated with multiple stop points, several stop point triples are generated. The 
connection between the stop points for every extracted stop point triple { � ,�,� } is 
checked against the stop points connectivity matrix Cm . If according to Cm , these stop 
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points are connected ( Cm
� ,�

≥ 0.5,Cm
�,�

≥ 0.5 ) (line 14), the travel time is calculated 
and stored in a three-dimensional travel time matrix: q� ,�,� = �m

� ,�
+ �m

�,�
 (line 15). 

After calculating the travel times for every possible stop point triple of the stops 
{X, Y, Z}, the one with the minimum travel time is selected q�∗,�∗,�∗ = min(q� ,�,�) 
(line 16), where �∗ is the stop point that will represent the vertex Y ∈ {X, Y , Z} in 
the conversion table.

5  Optimisation

5.1  Selection hyper‑heuristics

Hyper-heuristics have emerged to raise the level of generality of search techniques 
for difficult computational problems. While heuristics work directly in the solution 
space, hyper-heuristics work at a higher level controlling a set of low-level heuristics 
which perform direct operations on the solution. This way, hyper-heuristics do not 
require direct knowledge of the underlying implementation of the solution domain, 
and this allows simple adaptation to different problem domains.

Hyper-heuristics are classified in Burke et al. (2019) according to the nature of 
the heuristic search space, into generation and selection hyper-heuristics. The for-
mer generates new heuristics from existing components of other heuristics, while 
the latter (i.e. the approach we use here) selects existing heuristics in their entirety 
from an existing set of heuristics. The selection hyper-heuristics operate as two com-
ponents: the selection and move acceptance components. At each decision point, the 
selection method selects a heuristic or sequence of heuristics from an existing repos-
itory of low-level heuristics and applies it to the solution at hand, to generate a new 
solution. Afterwards, an evaluation step decides whether to accept the new solution 
based on an acceptance criterion. The two components are iterated until a termina-
tion condition is met.

Selection hyper-heuristics can embed a non-learning or a learning mechanism 
depending on whether there is feedback received during the search. This feedback 
helps to improve the selection decisions made by the selection component.

In this work, we have tested two selection methods: a “simple random” (SR) 
selection with no learning and a “sequence-based selection hyper-heuristic” (SSHH) 
with online feedback. For both, we used the acceptance criterion “improve or equal” 
(IE) meaning that new solutions are only accepted if they are equal to or better than 
the current solution.

SR randomly selects a heuristic based on a uniform probability distribution. It 
is considered the simplest selection method and can be effectively used as a ref-
erence for more complex selection methods. SSHH resembles the Hidden-Markov 
model, where the low-level heuristics represent the hidden states of the model and 
the transition between these different states forms sequences of heuristics applied 
to the solution. The goal is to generate and learn good sequences of heuristics that 
are likely to improve the solution. In Ahmed et al. (2019) a series of experiments 
and comparisons through statistical methods proved that sequence-based selection 
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is more successful in solving the UTRP than other single-based heuristic selection 
mechanisms. We will briefly summarise this algorithm here and outline its applica-
tion for the optimisation of Visum PuT networks in the following sections. Further 
details for this algorithm can be found in Ahmed et al. (2019), Kheiri and Keedwell 
(2015), and Kheiri and Keedwell (2017).

Each low-level heuristic is associated with a number of scores, which are used to 
derive the probability of moving from this heuristic to another low-level heuristic in 
the sequence. Assuming we have the set of n low-level heuristics: [ llh0, llh1,… , llhn ], 
a “transition matrix” of size n × n stores these scores. Another matrix called the 
“sequence construction matrix” of size n × 2 associates each low-level heuristic with 
two states: “continue”, and “end” to determine whether the sequence should end or 
continue at this point. Both matrices initially start with equal scores.

A sequence of low-level heuristics is constructed with the guidance of the two matri-
ces. The sequence is initialised with a randomly selected heuristic. The probability for 
a heuristic to be selected next in the sequence increases with its score in the transition 
matrix (i.e. the higher the score, the higher the selection chance). Each time a new heu-
ristic enters the sequence, the sequence status is checked in the sequence construction 
matrix to determine whether to stop building the sequence or to add another heuristic.

The values in the matrices are updated if the new solution generated by applying a 
specific sequence proves to be superior to the current solution. Updating the scores in 
the matrices increases the chance of selecting this successful sequence in later steps. 
An example of this update is demonstrated in Fig. 3. Over the duration of the optimisa-
tion process, the update mechanism helps identifying successful sequences.

5.2  PuT line route optimisation using selection hyper‑heuristics

At the beginning of the optimisation process, a set of routes is initialised from the 
Visum network model by transforming Visum line routes into lists of stops (vertices) to 
construct an initial solution. The initial solution ( Sinit ) is introduced to the hyper-heuris-
tic as the current solution ( Scurr ) and the iterative optimisation process begins. One iter-
ation of the SSHH algorithm is illustrated in Fig. 4. Depending on the selection mecha-
nism, either a single heuristic is selected in case of the simple random selection (SR), 
or a heuristic sequence is constructed in case of the sequence-based selection (SSHH). 
The application of this heuristic/heuristics sequence to Scurr creates the new solution 
Snew , which is tested for its feasibility (see Sect. 5.4). If Snew is not feasible, it is rejected 
and a new heuristic/heuristics sequence is selected. Otherwise, Snew is converted into 
lists of stop points and implemented in the Visum network model (see Sect. 4.2) for 
evaluation (see Sect. 5.5). The evaluation automatically takes into account the interplay 
between different PuT modes. If configured accordingly, the impact of private transport 
modes can also be considered.

With the necessary information generated in Visum, the objective function f (Snew) 
is calculated. If f (Snew) ≤ f (Scurr) , Snew replaces Scurr and becomes the new basis for 
finding new solutions. Further, in the case of SSHH, the relevant values in the transi-
tion and the sequence construction matrices are updated. The hyper-heuristic iterates in 
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generating new solutions, building them into Visum and evaluating them until a prede-
termined termination condition is met.

As the adjacency matrix and conversion table have to be mode-specific, solutions 
can only include routes for one PuT mode. If multiple modes are to be optimised, the 
solutions for different route networks have to be evolved independently. Theoretically, 
this can happen either in alternation, by changing the mode to be optimised in each 
step, or sequentially in a hierarchical process. However, such an undertaking is beyond 
the scope of this paper.

(b)(a)

Fig. 3  Example of updating the values in the transition and sequence construction matrices: We assume 
the application of the sequence [ llh0, llh1, llh3 ] improved the best solution. The scores of these low-level 
heuristics in the “transition matrix” and the “sequence construction matrix” are updated. This update 
increases the probability of selecting this sequence in later steps

Fig. 4  Description of one iteration of the SSHH algorithm application in the global optimisation. Each 
iteration begins with box A: The generation of the sequence of heuristics (see Sect. 5.1) and applying it 
to the current route set (see Sect. 5.3) to create a new route set. The new route set is tested for its feasibil-
ity (see Sect. 5.4). If the new route set is not feasible, it is rejected and a new heuristic sequence is gener-
ated. Otherwise, the new route set is converted to stop point lists (Box B, see Sect. 4.2). The stop point 
lists are implemented in Visum as line routes and an assignment is executed to extract the information 
necessary for the evaluation (Box C, see Sect.  5.5). The evaluation includes combining the objectives 
of passenger and operator costs (Box D, see Sect. 5.5.1). If according to the evaluation, the new route 
set improves the current best route set, it replaces the latter and the transition and sequence construction 
matrices are updated (see Sect. 5.1)
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5.3  Low‑level heuristics

The hyper-heuristic algorithm manages a set of low-level heuristics to modify a 
given route set. All the low-level heuristics have been designed to follow the adja-
cency relations defined by the adjacency matrix A when performing operations. 
If applying the operation on the selected routes and positions would create inva-
lid connections, new routes and positions are selected instead. This increases the 
chance of generating feasible solutions.

We give here a full list of the low-level heuristics applied in this work (also 
illustrated in Fig. 5):

– llh0 (Add): Selects a random route and a random position in this route. A new 
vertex is selected and added in this position.

– llh1 (Delete): Selects a random route and random position and deletes the vertex in 
this position.

– llh2 (Swap inside route): Selects a random route and two random positions. The two 
vertices in these positions swap with each other.

– llh3 (Insert inside route): Selects a random route and two random positions. The ver-
tex in the first position is inserted in the second position.

– llh4 (Swap between routes): Selects two random routes and two random positions on 
each of them. The vertices in these positions swap with each other.

– llh5 (Insert between routes): Selects two random routes and two random positions 
on each of them. The vertex in the first position of the first route is inserted in the 
second position of the second route.

– llh6 (Replace): Selects a random route and a random position. The vertex in this 
position is replaced by another selected vertex.

– llh7 (Exchange): Selects two random routes and splits them at a common vertex. 
The parts of the two routes are exchanged to create two new routes. If the selected 
routes do not have a common vertex, a new pair of routes is selected.

– llh8 (Extend route): Selects a random route and adds vertices to the end of the route 
until reaching another terminal.

– llh9 (Reduce route): Selects a random route and deletes vertices starting from the 
last vertex in the route until reaching another terminal node.

5.4  Solution feasibility

Before implementing Snew into the Visum network model, a feasibility test is applied to 
ensure that the route set satisfies all defined constraints in order to avoid wasting time 
in generating and evaluating many infeasible solutions. The feasibility constraints are 
defined with respect to the specifications in the Visum network model, for instance, 
backtracks and cycles are tolerated in the Visum network setup, while it is commonly 
considered a violation in most UTRP models. The full list of constraints is as follows:

– The order of vertices on each route must follow the adjacency relations defined by 
the matrix A.
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– Routes must start and end at the defined terminal vertices.
– Ring routes are allowed, but must start and end on the same vertex.
– The length of each route is within specified limits defined as input parameters by 

the user.
– No routes should fully overlap (this includes one route being sub-part of another).
– Each zone must be connected to the route set: each zone in the Visum network 

model must have at least one connector that is connected to an active stop point (i.e. 
a stop point used by at least one PuT line).

Fig. 5  Low-level heuristics set description. Straight arcs are edges in the route or added after applying 
the heuristic, dashed arcs are edges removed after applying the heuristic, red nodes are nodes added after 
applying the heuristic
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5.5  Evaluation

Depending on the objectives of the study and the available data, there are differ-
ent ways to evaluate a route set. Transport modelling software packages like Visum 
come with a multitude of options to analyse the impact of changes in a transport net-
work which can be used to construct a vast array of evaluation functions. Most nota-
ble among Visum’s tools to model the impact of changes in a transport model are 
the assignment procedures used to calculate the flow of vehicles (PrT assignments) 
or PuT passengers (PuT assignments) through the network model. They provide out-
put such as zone-to-zone travel time matrices (used in Sect.  5.5.1) or the load of 
vehicles on links (used in Sect. 5.5.2).

Assignment procedures, in general, start by determining all possible paths 
through the network model between all pairs of zones and their impedance. For PrT 
assignments, a specific PrT mode (e.g. private cars) has to be selected and the pos-
sible paths calculated are constrained to the links which are open to this mode. PuT 
assignments determine the available paths on the network of all PuT lines. Possible 
interchanges between different PuT modes (e.g. between bus and train) are automati-
cally taken into account.

The impedance of a path includes all time costs6 associated with the traveller. For 
PrT, the impedance is defined by factors like the allowed speed on the links, turn 
penalties and time losses due to congestion effects. For PuT, the main factor of the 
path impedance is the perceived journey time, which is defined as weighted sum of 
several factors7, such as:

– Access time from origin zone to origin stop point (usually via the mode “walk-
ing”).

– Waiting time at origin stop point.
– Total in-vehicle travel time.
– Penalty for the number of transfers.
– Walking time between stop points at transfers.
– Waiting time at transfers.
– Access time from destination stop point to destination zone (usually via the mode 

“walking”).

Of particular importance are the transfer waiting times, which are the factors that 
distinguish between the two distinctive PuT assignment models used in this work: 
the headway-based and the timetable-based assignment. While the former assumes 
a fixed waiting time between vehicles for all routes, the latter derives the waiting 
times from a concrete timetable. Once all paths are determined, the assignment 

6 Other costs, such as monetary costs, can be defined as well. However, these do not play a role in the 
present study.
7 Other factors, such as boarding time, can also be added, but it does not play a role in the present study. 
The weightings of the different factors can be set freely. In this study we used Visum default configura-
tions where all time factors are weighted equally and the transfer penalty is set to 10 minutes per transfer.
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distributes8 the trips given in the demand matrix over the available paths based on 
their impedance. The resulting trips distribution allows us to estimate, for example, 
the number of vehicles that use a certain link (i.e. the link load).

The results of the assignments can be accessed in a number of different ways to 
generate evaluation functions. In the following, we introduce two evaluation meth-
ods: the global optimisation and the local optimisation. The former uses a travel 
time matrix generated from the perceived journey time. The latter accesses the vehi-
cle loads on selected links.

5.5.1  Global optimisation

Global optimisation is the method used by the vast majority of the UTRP studies: an 
objective function that aggregates information from the entirety of the system. We 
have chosen to use the sum of two relatively simple components for our objective 
function.

The first objective is to reduce the passenger cost (i.e. the average perceived jour-
ney time of passengers). It is given by the following equation:

where Di,j is the PuT travel demand from a zone i to a zone j, and |Z| is the total 
number of zones. �i,j is the shortest perceived journey time from zone i to zone j 
using the PuT network defined by the solution S. The matrix � can be generated dur-
ing the execution of the PuT assignment.

The second objective is the reduction of the operator costs. We have used a sim-
ple approximation for the operators expenditures given by the total sum of travel 
times for travelling all the line routes in the PuT network:

where �i is the total travel time of line route i and |lr| is the total number of line 
routes. The value of �i can be easily extracted from the network model using Visum 
COM-API.

The two objectives are combined into a single objective function in the form of a 
weighted normalised sum given by the following formula:

(1)CP(S) =

∑�Z�
i,j=1

Di,j ⋅ �i,j(S)

∑�Z�
i,j=1

Di,j

(2)CO(S) =

|lr|∑

i=1

�i(S)

(3)fglobal(S) = �
CP(S)

CP(S0)
+ �

CO(S)

CO(S0)

8 The used distribution models are one of the main differences between the available assignment pro-
cedures. More details of these procedures and their distribution models are explained in Visum manual 
(PTV AG 2018).
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where S0 is the initial solution. The two weighting factors � and � can be adjusted 
in relation to one another to generate solutions that are more favourable for either 
operators or passengers.

5.5.2  Local optimisation

For the local optimisation, we take advantage of two features in Visum. The first 
is that the assignment results can be easily accessed at a very localised level, e.g. 
the vehicle load of a particular transport mode on an individual link. The second 
is the ability to combine PuT and PrT assignments with a mode choice procedure. 
The mode choice procedure takes as input a demand matrix with all trips, and dis-
tributes them into PuT trips and PrT trips. The distribution9 is based on the imped-
ance of the possible paths in the respective modes (PTV AG 2018). The results are 
separated into PuT and PrT demand matrices which are then used by the respective 
assignment procedures to assign the trips to travel paths. This combined procedure 
sequence allows us to analyse the effects of changes in the infrastructure on different 
transportation modes.

For the local objective function, we select a group of links L (e.g. links in a spe-
cific neighbourhood), run the above-mentioned combined procedure sequence and 
sum up the load of private cars (i.e. PrT mode) on these links. The objective is to 
minimise the load of private cars on the selected links given by:

�i(S) is the load of private cars on link i ∈ L while the travellers in the network can 
choose between travelling via the public transport network defined by solution S, or 
by private cars. The link load is a standard output for most PrT assignments avail-
able in Visum 17 (PTV AG 2018).

However, optimising a single objective can lead to very extreme solutions that are 
undesirable from other perspectives10. In order to avoid this we have used the global 
objectives introduced in the previous section as bounding factors:

where S0 is the the initial solution and �P and �O are factors to determine how 
much of an increase in the global objectives of solution S over their initial values is 
deemed acceptable to consider solution S.

(4)CL(S) =

|L|∑

i=1

�i(S)

(5)flocal(S) =

{
CL(S)

CL(S0)
if CP(S) ≤ �P ⋅ CP(S0) and CO(S) ≤ �O ⋅ CO(S0)

∞ otherwise

9 For the experiment in Sect. 6.3 a nested logit distribution function was used. However, other distribu-
tion functions are available in Visum, including a gravity model. More details on them can be found in 
the Visum manual (PTV AG 2018).
10 For an example see the results from the passenger perspective presented Sect. 6.1 where the operator 
costs increase by a factor of 8.
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We have chosen a relatively simple measure to show the validity of the concept 
of local optimisation. However, it is straightforward to generalise this concept and 
apply it to other scenarios. For example, it is possible to estimate noise and air pol-
lution with the HBEFA extension module in Visum11 and access the results on link 
level similarly to the PrT load. This would extend our methods to design PuT net-
works that improve the situation in heavily polluted areas.

6  Empirical results

6.1  Test on a small instance

6.1.1  Setup

For the first set of experiments, we used the transport model from the Visum quick 
start tutorial. This network model was built in 2006 as a Visum training exercise, 
and is loosely based on the small town of Pfullingen, Germany, with around 18 thou-
sand inhabitants. The network model is relatively small, containing 652 nodes and 
1782 links, 81 zones, 35 stops and stop points, and only five bus lines. We slightly 
modified this network model to be able to test various aspects of the interface proce-
dure. It was, for example, necessary to create one stop with more then one stop point 
to test the use of the conversion table (see Sect. 4.2). A detailed description of these 
changes can be found in Appendix A.1.

The optimisation in these experiments is based on the global evaluation method 
(Sect. 5.5.1). To calculate the perceived journey time matrix � , we used the head-
way-based PuT assignment procedure. A fixed frequency of 10 min is defined for all 
lines. This assignment model does not require the generation of vehicle journeys for 
each changed line route, which improves the run time.

The termination condition on these experiments is defined by the number of suc-
cessful iterations. A successful iteration consists of generating a new feasible solu-
tion, implementing it in Visum and evaluating it. The number of successful itera-
tions before the hyper-heuristic terminates is set to 20,000.

6.1.2  Results

In the first set of experiments we tested the two selection methods SR and SSHH 
in three distinctive scenarios: the passenger perspective, the operator perspective, 
and the balanced perspective. Each of these scenarios is defined by a different set of 
parameters in Eq. 3: for the operator perspective, effectively only the operator cost 
was considered as we set � = 10−6 and � = 1 − 10−6 . The opposite in the passenger 
perspective, where the focus is set on the passenger cost by setting � = 1 − 10−6 and 

11 Unfortunately, such a scenario could not be included in this study, as the HBEFA module was not 
included in our academic license.



1 3

Public transport network optimisation in PTV Visum using…

� = 10−6 . In the balanced perspective, we create a balance between the two objec-
tives by setting both parameters to � = � = 0.5.

Figure 6 displays the change of the average passenger cost Cp(green line with rec-
tangles12), average operator cost CO (blue line with pentagons (see Footnote 12)), 
and the combined objective fglobal (black line with circles (see Footnote 12)) calcu-
lated by Eq. 3. For each of the three scenarios the passenger and operator costs have 
been normalised using their initial values for better interpretation of their perfor-
mance. The averages are calculated from the ten runs for each successful iteration.

From the figures, it is clear that, from either the passenger or the operator per-
spective, the objective that the optimisation is focusing on decreases rapidly from 
its initial value, while the other objective increases. This improvement starts to slow 
down at the 2000 iterations stage.

In the case of balancing the two objectives, both the passenger and operator costs 
show similar behaviour by dropping quickly at the beginning of the search and slow-
ing down after 2000 iterations. The SSHH selection method was more successful in 
this case in improving the operator cost, while both selection methods reduced the 
passenger cost at a similar rate.

Table  1 summarises the results of the passenger and operator costs for the ten 
runs normalised and averaged. The best results and the standard deviation are also 
recorded. From this table, the most notable improvement is in the passenger perspec-
tive with a reduction of 20% in the passenger cost from the initial values, although 
this was at the expense of significantly increasing the operator costs. The operator 
perspective runs reduced the operator cost on average by almost 7%, and the bal-
anced runs recorded an improvement of nearly 5% on the operator cost, while the 
passenger cost is also improved by 3%.

The performance difference between the two selection hyper-heuristics is very 
small as can be seen from the table, but two observations were made during the 
experiments: the SSHH selection method was able to improve more in fewer itera-
tions compared to simple selection, and this fact is critical for working with larger 
networks. Second, the SSHH recorded better individual results for the runs in 
many cases, especially from the operator perspective. Based on these facts we have 
selected the SSHH to be applied in the next set of experiments on a larger network 
model and to test the concept of local optimisation.

6.2  Application on city size network

6.2.1  Setup

In order to show the validity of the presented methods on a larger scale, another 
set of experiments has been performed on a network model originating from a real-
world planning process. It was generated in the 1990s for the city of Halle, Germany, 

12 The position of the markers (rectangle, pentagon and circle) have no meaning other than distinguish-
ing the lines.
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Fig. 6  Results of the global optimisation on a small network model for three scenarios: passenger per-
spective, operator perspective, and balancing the two objectives using two selection hyper-heuristics (SR 
and SSHH). Each figure displays the development of the normalised passenger objective CP averaged for 
ten runs (green with rectangles) the normalised averaged operator objective CO (blue with pentagons) 
and the averaged combined optimisation function fglobal (black with circles). The averages were calcu-
lated for every successful iteration from ten independent runs. The bars in the middle represent the stand-
ard deviation between the runs. Note: The position of the markers (rectangle, pentagon and circle) have 
no meaning other than distinguishing the lines
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with over 200 thousand inhabitants. The model is made up of 1934 nodes, 4832 
links, 81 zones, 288 stops and 313 stop points, and in total 41 PuT lines of which 18 
are bus lines. Since 1996, this model has formed the basis of many Visum training 
examples, and therefore it is currently included in all Visum installations. Although 
this model has been modified over time, its size and layout are sufficient to represent 
a real-world network model. We only made very small modifications for the purpose 
of this work which can be found in Appendix A.2.

The Halle network model includes several modes of public transport: bus, tram 
and train. The optimisation is only applied on the bus lines, leaving the lines of the 
other modes unchanged. The frequency of the bus lines is set to 10 min. In these 
experiments, we used the timetable-based PuT assignment, which bases the inter-
change waiting times on a timetable generated from departure and drive times. This 
way, the frequencies of the unchanged PuT lines are accurately reflected. However, 
the use of the timetable-based assignment requires adding vehicle journeys to the 
modified bus lines to define the bus timetable.

The termination condition for these experiments is set to run time rather than 
iterations, where each experiment is run for 16 h before it terminates. This was done 
for practical reasons and resulted in an average of 8919 successful iterations (i.e. on 
average 6.6 s per successful iteration13) for each run.

6.2.2  Results

Ten runs were applied on this transport network using the sequence-based selection 
with the balanced configuration. This configuration was chosen as an example of a 
planning process which requires a compromise between passengers and operators. 
Figure 7 shows the development of the average value of the passenger cost CP (green 
with rectangles (see Footnote 12)), the operator cost CO [blue with pentagons (see 
Footnote 12)], and the objective calculated by the combined optimisation function 

Table 1  Results from passenger, 
operator, and balanced 
configurations for the two 
selection hyper-heuristics

The results are normalised and averaged over the ten runs. The 
standard deviation and the best results are also recorded

Scenario Obj SR-IE SSHH-IE

Avg Std Min Avg Std Min

Passenger Cp 0.81 0.005 0.80 0.81 0.006 0.80
Co 6.96 1.07 5.12 7.49 1.55 6.46

Operator Cp 1.03 0.004 1.02 1.03 0.004 1.02
Co 0.96 0.014 0.93 0.96 0.014 0.93

Balanced Cp 0.98 0.003 0.97 0.96 0.008 0.96
Co 0.98 0.014 0.96 0.96 0.008 0.96

13 We used a desktop PC with an Intel i3-4150 3.50 GHz Dual Core CPU and 16 GB RAM for these 
experiments.
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fglobal (Eq. 3) [black with circles (see Footnote 12)] over time. The error bars show 
the standard deviation between the different runs.

For this network, it can be observed that at the early stages of the search, the pas-
senger objective steadily decreases, while the very early solutions show an increase 
in the operator cost. However, over the search time, the operator cost drops below 
its initial values but hovers around a value of 0.95, unlike the passenger cost which 
continues to drop until the end time of the search for most runs. After 16 h, the pas-
senger cost reaches on average a value of 0.877.

The right side bar in Fig. 7 displays the final values of CP (rectangles), CO (pen-
tagons), and the combined objective fglobal (circles) for each of the ten runs. The 

Fig. 7  Results for PuT line global optimisation with SSHH on a city  sized network. Displayed is the 
development of the normalised average passenger objective CP (green with rectangles), the operator 
objective CO (blue with pentagons) and the combined optimisation function fglobal (black with circles). 
The averages were calculated in steps of one minute from ten independent runs. The bars show the stand-
ard deviation between the runs. The markers at the right side bar show the distribution of the final values 
of the individual runs after 16 h of run time (also shown in Table 2). Each marker represents the final 
value of either fglobal (circles), CP (rectangles), or CO (pentagons) for each run. Each colour uniquely 
identifies one of the ten experiments. Note: The position of the markers (rectangle, pentagon and circle) 
have no meaning other than distinguishing the lines

Table 2  Final values of ten runs with global SSHH optimisation

Values normalised on initial values and minimal values are highlighted in bold

1 2 3 4 5 6 7 8 9 10 Avg

fglobal 0.912 0.917 0.914 0.911 0.919 0.914 0.909 0.908 0.921 0.920 0.915
CP 0.882 0.875 0.868 0.874 0.868 0.882 0.882 0.862 0.894 0.884 0.877
CO 0.942 0.959 0.961 0.949 0.969 0.945 0.936 0.955 0.948 0.956 0.952
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objective values belonging to one run are given the same marker colours. These val-
ues are also shown in Table 2. We see that while for the operator cost CO , the reduc-
tion is between 3.1 and 6.4%, for the passenger cost CP larger reductions between 
10.6 and 13.8% are achieved.

Interestingly, the two runs with the highest reduction in CO and CP , respectively, 
are also the two best runs in terms of combined reduction of both objectives. The 
run reducing CO by 6.4% reduced CP by 11.8%, and the run which reduced CP by 
13.8%, also reduced CO by 4.5%. This shows that improvements in both objectives 
are not mutually exclusive.

6.3  Application of local optimisation

6.3.1  Setup

For testing the local optimisation we used the transport model of the Visum 17 
example “Demand NestedLogit” which comes with an implemented mode choice 
procedure for the mode choice between the PrT and PuT modes. The network model 
is identical to the one used in Sect. 6.2 and was subjected to the same modifications.

The predefined assignment procedures are split to separate assignments for the 
morning and evening peak traffic using different demand matrices. However, only 
the output from the morning peak (with the settings unchanged) is used in our 
study, to keep the application of our methodology as simple as possible. The applied 
assignment procedure for PuT is the timetable-based assignment, and vehicle jour-
neys were set to start with an interval of 10 min.

As stated in Sect. 5.5.2, the target of the local optimisation is to reduce the load 
of private cars on a selected number of links. For this purpose, we selected the 
links with the ID-numbers 178, 186, and 4048, which represent the street Wörm-
litzer Straße in the city of Halle. This street is an important connector about 1 km 
south of the main city centre. As bounding factors, we have chosen �P = 1.05 and 
�O = 1.01.14 We again used the 16 h run time. However, due to the more complex 
sequence of procedures required for the evaluation, the average length of a suc-
cessful iteration during the experiments was 83.8 s, leading to an average number 
of successful iterations of 765.

6.3.2  Results

Ten independent runs were performed and the results are displayed in Fig. 8. The 
data lines show the time development of the average of the global passenger objec-
tive CP (green with rectangles), and the operator objective CO (blue with pentagons), 
respectively. The black line with circles shows the average of the local objective CL . 
The bars show the standard deviation between the different runs.

14 The values of �
P
 and �

O
 were chosen arbitrarily. They represent a maximal allowed increase of the 

operator cost of 1% and an increase of the perceived journey time of 5%.
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It can be seen from the figure that the main objective of these experiments, which 
is reducing the load of private cars on the selected links has been successfully 
achieved with an average reduction of CL to 50.7% from its initial value. We also 
see a broad spread of solutions as the standard deviation between the results starts 
to increase with the progression of search time. For the least successful run, CL was 
reduced by 30.3% while for the most successful one, the car load on the selected 
links is reduced by 70.8%, more than two thirds of the initial value (see Fig. 9).

Fig. 8  Results of PuT line local optimisation with SSHH to reduce the number of private cars using a 
specific street in a city size model. The elements of this figure are similar to the description of Fig. 7. 
Here the black line with circles shows the average reduction in the local objective CL . On the right side 
the circle markers show the final values of CL for the individual runs (also shown in Table 3)

Table 3  Final values of ten runs with local optimisation using SSHH

Values are normalised on initial values and the best results are highlighted in bold

1 2 3 4 5 6 7 8 9 10 Avg

CL 0.292 0.426 0.315 0.528 0.461 0.573 0.596 0.539 0.697 0.596 0.502
CP 0.998 0.860 0.936 0.847 1.049 0.836 0.837 0.848 0.839 0.833 0.888
CO 1.001 1.00 1.005 1.005 1.006 1.008 1.01 1.009 1.009 1.008 1.006
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Further, we see that the average value of CP drops at the beginning of the search, 
even more than that which occurred in the global optimisation in some cases. This 
suggests that the initial reductions of CL are the result of decreasing the average 
travel time in general for all passengers and in turn increasing the attractiveness of 
public transport, causing a reduction in the use of private cars. Further reductions 
of CL come at the cost of increases in CP , probably by creating a network that spe-
cifically favours passengers who otherwise would use private cars on paths over the 
selected links. After 16 hours CP is on average still 13% lower than its initial value. 
However, there are significant differences in the final values of CP between the runs. 
The runs with the most substantial reduction in CL show the highest final values in 
CP . This indicates that some runs developed highly specialised networks which, for 
this specific task, out-compete other networks with more global improvements. The 
values of CO are very similar in all the runs without any significant development. All 
runs end up with an increase in CO between a minimum of 0.003% and a maximum 
of 0.96%.

Fig. 9  Parts of the Halle network model before (left) and after (right) the most successful run of the local 
optimisation experiments. Links are displayed in black and the link loads are displayed by orange bars 
(PrT load in terms of number of vehicles) and green bars (PuT load in terms of number of passengers) 
along the links. The thickness of the bars indicates the relative volume of the load. The dashed blue cir-
cle marks the links selected for optimisation
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7  Conclusion and future work

In this work, we have compared a data structure used by many researchers on the 
urban transit route optimisation problem (UTRP), and the professional transporta-
tion modelling software PTV Visum. Hence, we developed an interface to translate 
network structures, and other important information between the two models. This 
interface procedure is then employed in the optimisation of Visum public transport 
lines using selection hyper-heuristics.

The optimisation was applied using two different optimisation modes: the 
global optimisation which aims to minimise the overall operator cost and the aver-
age passenger travel time, and the local optimisation which aims to reduce the load 
of private car users on selected street(s). The results of the global optimisation 
showed the validity of hyper-heuristics in a small as well as a city-sized example 
network. In both cases, high reduction rates in the passenger and operator costs 
are achieved simultaneously. Additionally, the local optimisation was tested on the 
city-size network, reducing the rate of private car users on the targeted streets by 
up to 70%.

This work shows the new opportunities arising for planners. The use of optimisa-
tion algorithms allows the design of near-optimal PuT networks which would not 
be discovered by more traditional planning methods. The described interface allows 
the simple application of such algorithms with existing network models and access-
ing the results in a familiar format. For academic researchers, this work shows the 
advantages of using professional transport modelling software like PTV Visum in 
UTRP research, as it allows easy access to a vast pool of powerful evaluation tools. 
Furthermore, the interface procedures described in this work can easily be used to 
run other UTRP algorithms using a similar data structure.15 Variations on the evalu-
ation functions used in this work can easily be implemented to suit specific planning 
or research scenarios.

For future work, the optimisation capabilities can be extended to include other 
phases of transit network optimisation (see Footnote 1), especially the setting of 
route frequencies. It would be worthwhile to explore and improve the process of 
optimising routes of multiple modes. Moreover, there are some design aspects 
in the interface procedures that can be further improved, such as the handling of 
isolated stop points on directed links. The hyper-heuristic performance can also 
be improved by adding new low-level heuristics; it would be expecially inter-
esting to include heuristics which add and delete routes,16 to allow for varying 
numbers of routes.

Although this work is merely a proof of concept, it demonstrates the potential of 
the full implementation of such an interface in real-world public transport planning. 

15 It should be noted that most UTRP algorithms do not use a zone-based demand structure, hindering 
their applicability on zone-based set ups such as the ones used here (see Sect. 3). However, a method to 
overcome such problems has recently been proposed in Heyken Soares (2020b).
16 One problem in designing route generation heuristics is to identify optimal beginning and end nodes. 
An approach to do this is presented in Heyken Soares (2020b). (Additional discussions on the integration 
in interfaces is presented here in Chp. 7 of Heyken Soares (2020a)).
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Given the anticipated impact of innovations like connected autonomous vehicles on 
the public transport landscape, we believe that tools like the one presented here can 
help planners in necessary adaptations of public transport networks. Therefore, we 
hope this work will be a stepping stone on the path to a widespread real-world appli-
cation of network design algorithms to public transportation.
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Network modifications

Small network

The Visum network model used for the experiments in Sect. 6.1 is a modified version 
of Visum Version file “430_VisumTutorial.ver”, used in the last stage of Visum17 
quick start tutorial (PTV AG 2017b). This network model, although loosely based 
on the small town of Pfullingen, Germany, was built as a pure training exercise. We 
have modified it to be able to test the different aspects of our interface procedures.

In the original version, all stops have exactly one stop area with one stop point, 
and there are no one-way streets for buses. In order to properly test if the conver-
sion table (see Sect. 4.2) works correctly, we needed to create a situation where one 
stop has two stop points, accessible from opposite directions. In order to achieve 
this we blocked the links representing the street “Friedrichstraße” in the town centre 
(link numbers: 53167233, 53167376, 53167410, 53167440, 53167475, 53167523, 
540910046 and 563879509) for bus travel in a southerly direction and the links 
representing its parallel street “Seitenstraße” (link numbers: 53167201, 53167240, 
53167275, 53167371, 53167383, 53167421, 53167524 and 78579745) for bus travel 
in a northerly direction. Further, we deleted the stop with the ID 106062573 on the 
“Friedrichstraße” and connected its stop area and stop point to the stop with the ID 
106071832 on the “Seitenstraße”. The transfer time between two stop points was set 
to 2.5 min. The only pre-existing line routes affected by these changes were those 
belonging to the line “Bus 5”. They were rerouted accordingly.

Additionally, we added some connectors to the network. In the original network, 
the connectors are placed in such way that all stop areas are necessary to keep all 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 P. Heyken Soares et al.

1 3

zones connected to the PuT network. As all stop areas have only one stop point, 
all these stop points are required by the PuT line network in order to have all zones 
connected to the PuT network. In order to test if the optimiser finds better solutions 
if it is able to leave out some stop points, we added additional connectors for the 
transport system “PUTW” (walking to PuT) between the following zone node pairs:

– Zone 16 and Node 106062573,
– Zone 17 and Node 106062529,
– Zone 24 and Node 106062529,
– Zone 32 and Node 106062573,
– Zone 33 and Node 106063464,
– Zone 37 and Node 106063464,
– Zone 52 and Node 106062293,
– Zone 62 and Node 106061623.

Halle network

The transport model we used for the experiments in Sects. 6.2 and 6.3, are based on 
two Visum 17 training examples (“3D_Visualization.ver” and “NestedDM_absolu-
teResult.ver”, respectively (PTV AG 2017a). Both use the same network model and 
differ only in the demand data they use and the predefined modelling procedures.

The network model is based on the city of Halle, Germany, with over 200 thou-
sand inhabitants. As our aim is to keep the experiments as close as possible to the 
real-world example, we only made minimal changes to this network: We added the 
transport system “Walk” (walking to PuT) to connectors between a zone and a node 
connected to a stop point area. This allows the respective 23 connectors to be used 
in PuT assignments in addition to PrT assignments. Further, we deleted the bus line 
“B33”, as it fully overlaps with the bus line “B38”. Finally, we changed the vehicle 
journeys of all bus services to depart at 10-min intervals. Vehicle journeys of other 
PuT modes were left unchanged.
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