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e In vitro data and computational models can assist with
calculating pro-arrhythmic risk
e We use patient health records and FDA Adverse Event
Reporting System reports
e Use of such datasets helps assess relative drug risk and
cardiac safety models
e We quantify how patient characteristics can affect arrhythmia

incidence
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In Brief

Davies et al. analyze patient health
records and FDA Adverse Event
Reporting System reports to demonstrate
how patient subtypes affect the incidence
of drug-related arrhythmia. Using such
real-world data to understand
background arrhythmia can further
validate cardiac risk models for
regulatory use and help stratify patients
when evaluating drug risk.
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SUMMARY

There is an increasing expectation that computational approaches may supplement existing human deci-
sion-making. Frontloading of models for cardiac safety prediction is no exception to this trend, and ongoing
regulatory initiatives propose use of high-throughput in vitro data combined with computational models for
calculating proarrhythmic risk. Evaluation of these models requires robust assessment of the outcomes.
Using FDA Adverse Event Reporting System reports and electronic healthcare claims data from the
Truven-MarketScan US claims database, we quantify the incidence rate of arrhythmia in patients and how
this changes depending on patient characteristics. First, we propose that such datasets are a complemen-
tary resource for determining relative drug risk and assessing the performance of cardiac safety models for
regulatory use. Second, the results suggest important determinants for appropriate stratification of patients
and evaluation of additional drug risk in prescribing and clinical support algorithms and for precision health.

INTRODUCTION

Over the past 10 years there has been an emphasis on use of in
silico approaches for cardiac risk assessment. Initially, these
computational tools were used to aid pharmaceutical industry
decision-making'~ and, more recently, by offering an interpreta-
tion of in vitro assay data for regulatory purposes.* There are
good reasons for doing so, most notably an increasing amount
(quality and throughput) of in vitro data,>® in silico tools,?*>"~'°
supporting research activities,”'®"'® and pressures to adapt an
imperfect but apparently successful pair of International Council
for Harmonisation of Technical Requirements for Pharmaceuti-
cals for Human Use (ICH) guidance documents, to motivate these
efforts.

These guidance documents were introduced in response to a
number of drugs being removed from the market in the 1990s
and 2000s'® and were implemented to require testing of com-
pounds for their ability to modulate the human Ether-a-go-go-
Related Gene (hERG) potassium channel currents (ICH S7B)
and to test compound effects on the QT interval measured
from the clinical body surface electrocardiogram (ECG) (ICH
E14). Although perceived to be successful in reducing
arrhythmia-related (specifically torsades de pointes) drug with-
drawal, there was concern that discarding promising therapies
on a perceived hERG risk negatively affected novel drug devel-
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opment because these screens result in false positives. To
counter this and to incorporate the improved understanding of
the mechanisms of proarrhythmia, the Comprehensive In Vitro
Proarrhythmia Assay (CiPA) initiative was tasked with defining
anew paradigm for cardiac risk assessment using a combination
of in vitro screening, stem cell-derived cardiomyocyte tests, and
in silico predictions.?%"

Some of the earlier in silico studies focused on supplementing
pre-clinical decisions; for instance, by replacing the need for iso-
lated animal-derived cardiomyocyte experiments.”*> Over time,
the output of in silico studies has been challenged to address
increasingly more ambitious goals; namely, correlation of simu-
lated cellular action potential biomarkers with the measure be-
tween Q wave and T wave (QT interval) in the body-surface
ECG from the clinical thorough QT (TQT) study® and proarrhyth-
mia.?>?* It is important to note that the underlying models have
not fundamentally changed in that time, but novel metrics that
integrate predictions from single-cell simulations are being
considered as surrogate indicators for proarrhythmia.?®?® The
ambition to extend single-cell simulations to a population-level
risk therefore necessitates a thorough evaluation of these
in silico tools as a key step toward understanding their utility to
predict arrhythmic risk. In a recent study, we showed how a
different selection of compounds can have a profound effect
on the evaluation score of these models;*® therefore, a more
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rigorous effort to establish a fixed and balanced compound set
for model evaluation should be considered. Two ongoing initia-
tives, CiPA and the Japanese induced Pluripotent Stem (iPS)
cellsCardiac Safety Assessment (JiCSA) initiative, are attempt-
ing to establish a set of in vitro data for model evaluation. Typi-
cally, selected evaluation compounds are scored using Credi-
bleMeds evaluation®’ or, in the case of CiPA, interpretation of
the CredibleMeds score, including expert assessment that also
accounts for clinical experience.

The classification schemes described above and others rele-
vant within the field (such as Redfern category?®) are designed
to simplify risk information, which is a quantitative continuous
measure, into a set of qualitative categories. Although this is a
valuable (and sometimes necessary) exercise for supporting de-
cision-making, it comes at the cost of losing information and
introducing subjectivity, particularly when new information or
new compounds are required to be evaluated. This concern is
well recognized in medicine, where a desire to dichotomize
continuous scales is also prevalent, such as “low” or “high”
cholesterol. It has been argued that such dichotomization leads
to reduced statistical power in detecting cause and effect.”® A
recent review by Wisniowska and Polak®® discusses a number
of issues that occur when attempting to compare cardiac risk
across different classification schemes. One such limitation is
how a ranking could be applied, e.g., to previously uncharacter-
ized drugs. The ability to rank compounds in terms of putative
risk would be advantageous for ongoing and continual model
performance assessment beyond the immediate needs of the
CiPA initiative.

To date, consideration of these regulation-led efforts for pro-
arrhythmic risk prediction has prioritized focus on reproducibility
and variability of the in vitro (i.e., input) data for the models. In this
study, we aim to complement those activities by focusing more
on the risk classification (i.e., output) scores in the evaluation da-
tasets, and we set out to take advantage of the considerable
post-marketing medical use of a broader set of evaluation drugs
to establish the frequency of adverse cardiac events. Use of
such post-market (i.e., real-world) data sources not only pro-
vides an estimate of the rate of adverse events that are observed
in a real-life population but, we hypothesize, will also provide a
more quantitative and continuous metric for assessing pro-
arrhythmic risk.

However, although post-market observational data sources
may be a valuable way of gaining insights into routine healthcare
practice, they are not without complexity and show variability in
patients and in the reporting practices inherent in the real world.
One limitation of the data from adverse event databases is that
the number of events is not normalized to the number of pre-
scriptions—what we call the denominator problem. In the US
Food and Drug Administration (FDA) Adverse Event Reporting
System (FAERS), a high incidence of adverse events for a given
drug may simply reflect highly prescribed drugs; therefore, sta-
tistical methods to identify clinically important adverse events
(i.e., when particular adverse events are seen more often than
expected) are invaluable for pharmacovigilance.®' For this study,
we used a disproportionality metric of empirical Bayes geometric
mean (EBGM)*? with a threshold of EBO5 > 2 as a positive signal
commonly used in pharmacovigilance.
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To additionally account for the denominator problem, the
Truven Health MarketScan® Research Databases were used,
which contain individual-level, de-identified healthcare claims in-
formation from employers, health plans, hospitals, and Medicare
and Medicaid programs. Since their creation in the early 1990s,
the MarketScan Databases have grown into one of the largest
collections of de-identified patient-level data in the United
States. These databases reflect real-world treatment patterns
and costs by tracking millions of patients as they travel through
the healthcare system, offering detailed information about all as-
pects of care. Data about individual patients are integrated from
all providers of care, maintaining all healthcare utilization and
cost record connections at the patient level. Used primarily for
research, these databases are fully compliant with United States
privacy laws and regulations (e.g., Health Insurance Portability
and Accountability Act (HIPAA)).

Until now, many of the existing in silico models were designed
and developed to give insights to cardiomyocyte electrophysi-
ology and cellular-level outcomes. Extrapolation to population
effects was never the primary design goal, and although ap-
proaches have been developed to allow surrogate markers to
be evaluated, validation of such markers needs careful consider-
ation. Blinded studies for in silico risk assessment, as performed
recently by Zhou et al.,*® are significantly more difficult when the
performance or outcomes of the drug effects are defined up
front, such as the CiPA classification or CredibleMeds, and a
more objective performance metric based on observational
data could be used instead.

We set out to test the utility of these so-called real-world data-
sets to provide insights into the categorization of compounds for
proarrhythmic potential to support or refute the clinician-led
understanding of risk. Coinciding with the recent General Princi-
ples for the Validation of Proarrhythmia Risk Prediction Models,**
the work was not intended to establish new cardiac safety metrics.
Instead, the work was motivated to be complementary and to
highlight datasets that should prove to be helpful when appraising
the existing metrics, assays, and computational models that
have been developed to allow early assessment of cardiac risk
potential, particularly in cases of discordance between metrics,
and also to stratify individual drug risk in patient subsets.

RESULTS

Cardiac Adverse Events per Year Analysis and Its
Regulatory Effect
It is perceived that the regulations in ICH documents S7B and
E14 mean that no new drugs have been associated with
increased risk of torsades de pointes (TdP) arrhythmias. This
study set out to query whether this statement is equivalent to
there being no new reports of TdP events. Indeed it would be
intuitive to expect that TdP (and other related ventricular condi-
tions) might be observed to have decreased since introduction of
these regulations. Therefore, an early aim was to assess TdP
incidence and update and extend a previous analysis by Stock-
bridge et al.,'"® who reviewed the annual number of reports
received by the FAERS.

The Pharmapendium (Elsevier) tool provides access for
querying FAERS reports of TdP events. To recognize that
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arrhythmia events may be recorded differently clinically than
TdP, we selected other heart-related adverse events in addition
to TdP, some as sibling Medical Dictionary for Regulatory Activ-
ities (MedDRA) terms to TdP (Figure S1) for the years 2000-2015.
It is worth noting that FAERS data provide outcomes for each
adverse event and that, for cases where “ventricular fibrillation”
is reported, approximately 45% result in a fatal outcome,
whereas fatality is associated with approximately 12% for re-
ports of TdP. A further significant finding is a reporting delay,
observed as a discrepancy between the occurrence date of
the adverse event and the reported date to the FDA. Of 56,682
unique cases, 15,931 do not report the event date, and of the re-
maining cases, only 16,376 (i.e., ~40%) are reported in the same
year as the event date, with 2,771 (i.e., ~7%) showing a delay of 5
years or more. Consequently, examining the incidence of car-
diac adverse events on a year-by-year basis (Figure 1A) reflects
the observation as a drop in the most recent years. For this
reason, we also present the data as events per submission
year (Figure 1B), where the perceived drop in events is not
observed.

The FAERS data, together with pharmacovigilance analysis,
enable the user to spot drug safety signals in a timely manner.
However, the database is not without limitations; FAERS does
not explicitly account for whether (or how) the drug caused the
adverse events or the volume of prescriptions, nor is it exhaus-
tive in covering all possible adverse events. In other words, drugs
that are more highly prescribed would be expected to show
higher total numbers of events than drugs with the same level
of risk that are prescribed less frequently. To partially account
for this limitation, a disproportionality metric using the EBGM
analysis was used to account for whether a cardiac adverse
event rate is disproportionately higher than these background
rates. The EBO5 is the lower bound of the 95% confidence inter-
val of the EBGM;>' EB05 values greater than 2 are considered to
show a signal and, therefore, a drug-induced risk increase.* Ta-
ble 1 shows the CiPA reference drugs ranked by EBO5 value and
the corresponding CiPA and CredibleMeds classifications
together with the frequently used safety margin built based on
the hERG half maximal inhibitory concentration (ICsqy/free high-
est concentration of a drug in the blood (Cmax ) ratio. It is impor-
tant to recognize that only 6 of 28 CiPA compounds have an
EBO5 value of less than a positive pharmacovigilance “signal”
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Figure 1. Adverse Cardiac Events Being Re-
ported over Time

Number of cardiac-related adverse events per year
of event or year of submitted report from FAERS
reports extracted from Pharmapendium (Elsevier).

threshold of 2, which indicates a set of
drugs showing a higher propensity for car-
diac disorders than other adverse events.
Interestingly, ranking of compounds
based on their EBO5 score (Table 1) shows
some discordance between different clas-
sification systems. For instance, vandeta-
nib has a low EB05 value but is classified
as high risk by CredibleMeds and CiPA. The inverse is also
seen with the anti-arrhythmic drug ranolazine, which has a high
EBOS5 value but is ranked “very low” by CiPA. Of the CiPA com-
pounds, it is striking that 8 of the drugs are indicated primarily as
anti-anginal or anti-arrhythmic drugs where it might reasonably
be expected to see a higher proportion of cardiac adverse
events because of patients’ comorbidities. For this reason, we
chose to investigate whether an expanded set of drugs (beyond
the CiPA list) would provide more drugs with a low EBO5 value
and cover a more diverse range of drug classes because repre-
senting negative drugs is also important for model evaluation.

Expanded Compound Set for Data Visualizations

To ensure consistency and overlap with previous work, a search
was conducted for studies that had already compiled lists of
compounds relevant for cardiac risk assessment and model vali-
dation.”*>°°® The motivation was to minimize introduction of
novel compounds, consolidate prior work, and promote
consistency across studies, as discussed recently.?® Ideally,
compounds that have information on ion channel effects, cardi-
omyocyte action potentials, and ECG effects are most suited for
understanding the predictive capacity of pro-arrhythmia models
to most reasonably assess their translational capacity.

We composed an initial list of 149 drugs that have a broad
range of molecular and in vivo effects. The drugs in our set are
comprised of those under study by the JICSA and CiPA initia-
tives,”"**? in a recent in vitro assay study® and by three other
in vitro/in silico combination studies®*® and, finally, an unpub-
lished list of 66 reference drugs we judged to give a balance of
positive and, critically, negative effects in cardiac ion channel as-
says. The full list of drugs is given in Data S3, but a number of
interesting findings were uncovered in this exercise. Most
notably, the overlap between the different studies was low,
with no drugs being studied in all of the prior studies; only 4 drugs
(quinidine, dofetilide, cisapride, and terfenadine) were studied in
6 of the 7 studies. Furthermore, 89 of the total list of 149 drugs
are unique to a single study, meaning that a cross-comparison
of different in silico tools is currently difficult to interpret when
different sets of compounds are used for evaluation; see, for
example, Figure 4 from Davies et al.?® Therefore, the consensus
list of 149 compounds was used as the basis for onward anal-
ysis, recognizing that not all of the compounds on this list are
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Table 1. Ranking of CiPA Drugs by Disproportionality (EBO5) for Cardiac Adverse Events

Generic CiPA CredibleMeds hERG ICso/Free
Drug Name EBO5 TdP EBO5VT EBO5VA Classification Classification Cmax Ratio Drug Class
Ibutilide 218.45 101.022 2.901 high risk of TdP 3.37 anti-arrhythmic
Azimilide 94.351 1.381 NC high NC 11.50 anti-arrhythmic
Bepridil 81.663 38.276 5.155 high risk of TdP 1.42 anti-anginal
Sotalol 70.355 18.029 14.276 high risk of TdP 17.2 anti-arrhythmic
Methadone 36.408 3.998 1.87 high risk of TdP 4.90 opiate
Quinidine 35.667 12.296 2.768 high risk of TdP 0.92 anti-arrhythmic
Cisapride 30.654 21.801 5.117 intermediate risk of TdP 8.25 gastro-intestinal stimulant
Terfenadine 24.417 9.397 3.085 intermediate risk of TdP 0.41 antihistamine
Flecainide 23.364 20.567 4.123 very low risk of TdP 59.01 anti-arrhythmic
Ranolazine 22.444 4.375 0.205 very low conditional risk of TdP  2.69 anti-anginal
Dofetilide 20.983 14.397 6.235 high risk of TdP 4.36 anti-arrhythmic
Droperidol 19.454 4.564 2.899 intermediate risk of TdP 11.46 anti-psychotic/anti-emetic
Domperidone 18.85 1.468 1.455 intermediate risk of TdP 810.98 anti-emetic
Astemizole 18.549 15.499 1.965 intermediate risk of TdP 24.55 antihistamine
Pimozide 17.093 2.332 0.25 intermediate risk of TdP 16.60 anti-psychotic
Ondansetron 15.333 6.395 1.281 intermediate risk of TdP 62.62 anti-emetic
Clarithromycin 7.69 3.016 1.898 intermediate risk of TdP 77.41 antibiotic
Chlorpromazine 5483 1.78 0.679 intermediate risk of TdP 64.71 anti-psychotic/anti-emetic
Loratadine 4.873 3.043 0.583 very low NC 11111.11 antihistamine
Verapamil 3.426 2.381 2.104 very low NC 7.35 anti-hypertensive
Metoprolol 3.176 3.318 1.955 very low NC 326.06 adrenoceptor antagonist
Mexiletine 2.649 10.083 3.986 very low NC 130.11 neuromuscular

blocking agent
Diltiazem 2.62 1.443 0.925 very low NC 210.42 anti-arrhythmic
Risperidone 1.257 0.706 0.543 intermediate possible risk of TdP 176.99 anti-psychotic, atypical
Nitrendipine 0.618 0.228 NC very low NC 50345 anti-hypertensive
Vandetanib 0.546 NC NC high risk of TdP 2.45 anti-cancer
Nifedipine 0.391 0.42 0.76 very low NC 1754.4 anti-hypertensive
Clozapine 0.191 0.291 0.372 intermediate possible risk of TdP 7.06 anti-psychotic, atypical
Tamoxifen 0.077 0.172 0.06 very low possible risk of TdP 284.1 anti-cancer

NC, not classified. The hERG IC5s¢/free Cmax ratio is derived from experimental hERG data and supplemented with prior published values;

5,36—39’ see

Data S3 for full details. Typically, a threshold of 30 is regarded as a cutoff between high- and low-risk drugs.”® Abbreviations for EBO5 values are as
follows: TdP, torsades de pointes; VT, ventricular tachycardia; VA, ventricular arrhythmia. CredibleMeds classification and drug classification were
correct as of the date of last access (May 22, 2018; http://crediblemeds.org/index.php/login/dicheck).

approved for clinical use and so would not be identifiable in post-
market observational databases.

We now examine how the propensity of cardiac disorders in
FAERS reports is distributed in this expanded set of com-
pounds. Figure 2 shows the distribution of EB05 values for
TdP and ventricular tachycardia (a sibling MedDRA term for
TdP). 28 CiPA compounds are highlighted on the plot according
to their risk classification. Again, many of them are presented in
the top right quadrant of the EBOS5 plot, indicating that this set of
compounds is unevenly distributed toward more active com-
pounds. We propose that including additional compounds
(shown in Figure 2 as non-colored compounds) will facilitate
improved evaluation of positive and (equally important) nega-
tive signals. In Figure 1, we can see that ventricular tachycardia
(VT) is more frequently reported than TdP. Because we see a
strong correlation between TdP and VT, VT and similar adverse

4 Cell Reports Medicine 7, 100076, August 25, 2020

events (i.e., MedDRA sibling terms to TdP) could potentially be
included as part of the overall cardiac risk assessment of a
given drug. Broadening the range of terms considered (as
done for CredibleMeds) would improve risk sensitivity. This is
exemplified by mexiletine, which is classified as low risk by
CiPA, and is supported by the marginal EB05 value (EBO5 =
2.6) and yet appears to be of higher risk for VT (EB05 = 10.1)
or ventricular arrhythmia (EBO5 = 4.0). Recognizing that this
correlation may simply be representative of co-reporting of
the adverse event, we investigated the underlying co-occur-
rence rate. It was found that the number of VT reports that
also co-reported TdP was only approximately 10% (i.e., 1,525
of 15,041). This demonstrates that, typically, cardiac adverse
events are reported as one term or another and emphasizes a
need to consider a broader scope of adverse outcomes beyond
TdP; e.g., VT and ventricular tachyarrhythmia.*"*?
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Figure 2. Distribution of the Extended Compound Set for TdP and VT
FAERS Reports (Empirica-Derived Data)

(A and B) The axes show EBO05 values for the indicated MedDRA code, and
each spot represents one of the selected compounds. Horizontal and vertical
red lines show EBO5 threshold = 2. The same data are shown in both plots with
different highlighting that represents (A) CiPA classification and (B) hERG
ICso/free Cmax. Arrows indicate drugs showing concordance (Con), discor-
dance (Dis), or unknown (Un) between, e.g., hERG ICs¢/free Cmax ratio, CiPA,
and the EBGM score (also presented in Table 1). A full list of drugs labeled in
the order of Data S3 is presented in Figure S2.

See also Data S1.

We analyzed each drug for FAERS reports and also used the
MarketScan database (data were collected for the period of
January 1, 2009, through December 31, 2014). Because data
from healthcare claims are recorded longitudinally along with
prescription use, it is possible to normalize events based on
drug use (i.e., providing an incidence rate).

Using Electronic Claims Data to Inform Different
Outcomes

An optimal strategy for evaluating safety model performance
would be to compare against a continuous and objective metric
that can be readily calculated for an extended set of compounds.

¢ CellP’ress
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For this purpose, we queried how translation of prior metrics (e.g.,
hERG ICso/free Cmax ratio and a prior categorization [CiPA risk
category]) compares with results from insurance claims records.

The claims data in Figure 3 show a clear trend between total
exposure (in patient years) and the incidence of cardiac
dysrhythmia, indicating a previously unreported underlying
background rate of cardiac dysrhythmia. Color indicates the
CiPA score and hERG ICso/Free Cmax ratio. Although
some higher-classification drugs (e.g., a CiPA value of high or
ratio < 30) appear to stand out above the main cluster, others
cannot be readily differentiated from the group.

To examine whether measured hERG IC5¢/free Cmax ratios are
concordant with the safety risk, as indicated by the EB05 param-
eter (from the FAERS database) or the normalized incidence rates
(gauged from the MarketScan database), we combined two of
these parameters at a time in a conjoint visualization (Figure 4).
We use the log-transformed hERG IC5y/free Cmax ratio in this
case to achieve the effect that higher numerical values represent
a higher risk for TdP, which is our targeted endpoint. Based on
these graphs, it becomes clear that the hERG measurements
coarsely reflect the trend in safety risks signaled by either of
the other data sources (FAERS EBO5 or MarketScan incidence
rate), and although the overall correlation is not very strong (the
coefficient of determination R? = 0.1155 for EB05 and R? =
0.0573 for the incidence rate), the trends are still significant
because of the large number of observations (*p = 0.0016 for
EBO05 and *p = 0.04 for the incidence rate). The prediction interval
from a line of best fit shows how hERG measurements actually
scatter very widely around this overall trend, which raises con-
cerns regarding use of fixed thresholds on hERG ICsq/free
Cmax values to stratify compounds with regard to their expected
risk of causing TdP events.

The Importance of Patient Sub-grouping

The striking correlation of exposure to incidence motivated a
need to investigate whether drugs with higher incidence are
observed in all patient types or whether it is skewed by only a
few subtypes. Therefore, a further derivation of the aggregated
data and the benefit of working with observational claims data
are to explore how patient subtypes affect the rate of cardiac
dysrhythmia. For this purpose, we separated each drug into up
to 32 individual subtypes based on gender, age (less than 18,
between 18 and 44, 45-64, and older 65 years), and degree of
comorbidities. Comorbidities were evaluated using the Charlson
index, which accounts for a patient’s pre-existing conditions
and, accordingly, provides a weighted analysis, and binned
into 4 groups (score = 0, 1, 2, or >3)*°, It is worthwhile to note
that not all drugs showed the full range of these combinations,
reflecting that not all drugs are prescribed for all subtypes;
e.g., vandetanib, an anti-cancer agent, is unlikely to have been
prescribed for lower Charlson index patient subgroups. This
rich dataset provides the previously unexplored ability to query
our pre-existing assumptions about the correlation with drug
risk classification and observed levels of pro-arrhythmia. This
is critical to ensure that we allow unknown influences in addition
to ion channel inhibition as factors predicting pro-arrhythmic po-
tential. Identified factors such as age and comorbidities could be
subsequently incorporated more explicitly into mathematical
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Figure 3. Translation of Different Ranking Strategies of the
Observed Claims Data (from MarketScan)

(A and B) Individual drugs (spots) are overlaid with color for the following
reference markers: (A) CiPA ranking and (B) hERG ICs¢/free Cmax ratio. Drugs
with a total patient exposure of less than 100 patient years were excluded from
the analysis.

See also Data S2 and S3.

models or implicitly via a population-type approach, as sug-
gested previously.” %44

Exploring the different subsets also enabled us to make an es-
timate of the background rate of cardiac dysrhythmia within each
of the different subgroups. This is important for understanding
the patient context of intended drug risk because not all drugs
elicit an adverse response in all patient subtypes. Therefore, an
understanding of the expected rate of cardiac dysrhythmia
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(CD) in each different patient subtype should offer an alternative
mechanism for categorizing drug risk, given the variable baseline
of incidence, and, hence, allow more stratified treatment op-
tions. To carry out this analysis, we excluded drugs where total
use was less than 100 patient years (as this tends to skew the
incidence rate and is not sufficiently representative). From this,
the average incidence rate across drugs for each age group
and comorbidity group was calculated (Table S2). In general,
we observe that older patient subgroups and those in which
the Charlson comorbidity score was greater than 3 tend to
show the highest incidence rates compared with subgroups
where no comorbidities were identified.

Drugs could be broadly be categorized into 3 distinct types of
profiles: those that showed an elevated incidence of proarrhyth-
mia regardless of patient subgroup, those showing a normal (or
lower) incidence of CD regardless of subgroup, and those that
show a differential response between patient subgroups. Three
exemplar drugs—the antiarrhythmic flecainide, the antibiotic
moxifloxacin, and the antidepressant desvenlafaxine—are
shown in Figure 5. In the case of flecainide, for each patient sub-
group, a higher rate of CD incidence was observed than the
aggregated value of 23.0. For moxifloxacin, the subgroups are
highly variable for incidence rate, whereas for desvenlafaxine,
the majority of subgroups are near or below this background
rate. It is interesting to note that the EB05 values for these drugs
(flecainide, 23.36; moxifloxacin, 6.6; desvenlafaxine, 0.13) corre-
late well with the observed claims data and indicate that EB05
may have merit as a useful metric for quantifying proarrhythmia,
particularly when other classifications schemes are missing, as
in the case of desvenlafaxine.

A further observation with moxifloxacin and flecainide was
how the subgroup incidence rate was highly correlated with
the age of the patient (inversely for flecainide), and we chose
to investigate whether this was related to isolated drugs or a
more general finding. Interestingly, for other antiarrhythmics
(amiodarone, disopyramide, dofetilide, dronedarone, quinidine,
and sotalol) and antibiotics (azithromycin, ciprofloxacin, clari-
thromycin, erythromycin, metronidazole, and pentamidine) in
the evaluation set, a very similar pattern of age dependency
was observed. This observation indicates that it could be related
to the class of drugs or even the underlying medical condition*®
for which the drugs are being rather than a specific action of the
drug. This could have implications for how drugs are classified
for cardiac risk; patient age could be a strong predictor for risk
classification. This also suggests how appropriate stratification
of patient subsets could be useful in prescribing and clinical sup-
port algorithms (i.e., to avoid prescribing to subtypes most at
risk).

Future Metrics for Classifying Drug Risk

In this study, we considered how post-market datasets may
complement and augment our current assumptions regarding
drug-induced cardiac risk. When considering a far wider selec-
tion of drugs than previous studies, together with a wider portfo-
lio of complementary data sources, we can challenge or confirm
our empirical assessment of cardiac risk, which can potentially
lead to an improvement in our evaluation of in silico and/or
in vitro models. However, it is apparent that no single marker
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(legend continued on next page)
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Figure 5. Stratification of Patient Subtypes Shows Differences in the
Incidence of CD

A scatterplot of CD rates shows incidence rate differences between patient
subgroups (split into up to 32 individual subtypes based on age, gender, and
comorbidity index) for 3 exemplar drugs of high incidence, mixed incidence,
and low incidence, derived from the MarketScan claims database. Colors
represent different age groups for patients: green, patients younger than
18 years; yellow, between 18 and 45 years; orange, between 45 and 65 years;
red, over 65 years. Dashed lines represent the mean incidence rates across all
drugs for these age groups together with the overall mean incidence rate
(black dashed line), as seen in Table S2.

(i.e., the hERG IC5¢/free Cmax ratio), will successfully categorize
each drug. Table 2 shows a selection of drugs for which different
classifications overlaid with claims data from MarketScan
demonstrate concordance or discordance between classifica-
tion systems and also where opportunities for classifying
unknown drugs can be used. This is well recognized by the
Arizona Center for Education and Research on Therapeutics
(AZCERT) group, which has developed a method (adverse
drug event causality analysis [ADECA]) for stratifying risk based
on multiple inputs, including FAERS, clinical evidence of TdP and
hERG inhibition, and the QTDrugs list. The ADECA process per-
forms this well by considering multiple data points from 4
different sources, including biomedical literature, drug labels,
and adverse event reports, when classifying a risk score.*® How-
ever, the list is limited in its utility for validation and benchmarking
because lack of categorization of a drug cannot be used as an
equivalent to “no risk,” and many drugs remain uncategorized,
partially because of incomplete data or a lag in the report times

Cell Reports Medicine

of FAERS reports or literature evidence. There remains a need for
a systematic, transparent, and (preferably) automated approach
to quantify cardiac risk for a chemical. This would ideally build on
and develop work already done to provide transparent and avail-
able models for cardiac risk assessment; e.g., by the FDA
(https://github.com/FDA/CIPA) and also open-source platform
AP-Portal, a cardiac electrophysiology simulator based on the
published interface developed by Williams and Mirams®. We
propose that electronic health care records should be consid-
ered together with other risk factors, such as patient comorbid-
ities, co-medications, and lifestyle factors (among others), in line
with the current healthcare digitalization trend within the next
decade.

DISCUSSION

The purpose of our study was to highlight that cardiac risk deci-
sion-making requires us to not only use empirical knowledge of
drug use but also to augment it with larger observational
post-market data (e.g., FAERS, health insurance claims, and elec-
tronic patient healthcare records) that are able to support or refute
the clinician-led understanding of risk. To the same extent that
high quality input data are a necessity for meaningful training of
in silico models (e.g., the model parameters), so too must high-
quality outcome data be considered for the models’ credibility or
for model validation exercises. Consideration of the outcome
data is critical for the model validation exercise to ensure a model
that is best in class for arrhythmia prediction and compound strat-
ification.”” Similar challenges have been reported before; for
instance, for classification of hepatotoxicity*® or prediction of can-
cer driver genes, where the gold standard or truth is unknown.*® A
potential consequence of failing to consider outcomes is that false
confidence can be attributed to the selected model and, therefore,
subsequent predictions of novel compounds.

In this study, we chose to supplement and review the existing
standard approaches (e.g., hERG IC5¢/free Cmax safety margin
ratio and CiPA classification ranking) by considering how data-
sets that account for the incidence of proarrhythmia derived
from the real-world setting can be used to support ongoing
evaluation of proarrhythmic risk and offer an opportunity to test
our prior assumptions regarding cardiac safety outcomes in
patients.

An important motivation for this study was to better under-
stand the possible limitations of the current models to help shape
the direction of future development. Whether this means
including additional biological details to better represent patient
variability or using more empirical models should be an ongoing
challenge for the computational biology community, who are
likely to be beneficiaries from the extensive datasets being
generated within the CiPA and JiCSA initiatives to support these
efforts. An important aspect of CiPA and similar initiatives is to
consider how to perform an ongoing evaluation of models as

(B) logarithmic plots of hERG ICs¢/free Cmax and normalized incidence rate for CD (obtained from MarketScan). Compounds were sorted by normalized inci-

dence rate from large to small.

(A) and (B) Points are color coded by CiPA classification; compounds that were not included in the CiPA list are colored in gray. Note that —log function was applied
for the safety margin ratio transformation to account for the compound sorting. A linear regression of hERG IC5s¢/free Cmax values by compound rank (as ordered
by the respective other variable) is indicated with a red line and the corresponding 95% prediction interval with a shaded area.
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Table 2. Selected Drugs Exhibiting Concordance or Discordance across Different Risk Classification Schemes or Drugs that Are
Currently Uncategorized and where Novel Quantitative Metrics Could Be Supportive

Incidence Delta from hERG
CD Rate per Background CiPA ICs0/Free
Drug incidence 1,000 Years Rate Classification CredibleMeds =~ Cmax Ratio EBO5 Drug Class
Concordant Drugs
Dofetilide 2,749 157.58 134.58 high risk of TdP 4.36 20.98 anti-arrhythmic
Loratadine 2,016 13.07 —-9.93 very low N/A 11,1111 4.87 antihistamine
Nifedipine 8,563 20.27 —2.73 very low N/A 1,754.4 0.39 calcium channel
blocker
Quinidine 421 87.75 64.75 high risk of TdP 0.92 35.67  anti-arrhythmic
Sotalol 13,186 124.65 101.65 high risk of TdP 17.2 70.36 anti-arrhythmic
Discordant Drugs
Amiodarone 21,788 162.2 139.2 N/A risk of TdP 737.1 21.35  anti-arrhythmic
Methadone 1,662 19.73 -3.27 high risk of TdP 4.9 36.41 opiate
Mexiletine 1,250 280.45 257.45 very low N/A 130.11 2.65 anti-arrhythmic
Paliperidone 119 10.13 —12.87 N/A possible risk 87.0 0.57 anti-psychotic
of TdP
Risperidone 4,066 18.47 —4.53 intermediate possible risk 176.99 1.26 anti-psychotic
of TdP
Unclassified Compounds
Desvenlafaxine 2,222 8.26 —14.74 N/A N/A N/A 0.13 antidepressants
Propafenone® 6,643 135.17 112.17 N/A N/A N/A 3.38 anti-arrhythmic

@Propafenone was added (March 1, 2018) to the CredibleMeds listing as having a conditional risk for TdP.

new data emerges; e.g., post-market safety signals. In this
study, we suggest the types of datasets and possible metrics
that would support this effort. Therefore, it was important to
carefully consider the data source for its appropriateness for vali-
dation of in silico predictions. | It is equally essential that we
recognize that lack of a strong signal in the post-market and in-
surance claims data for drugs with a previously identified risk of
pro-arrhythmic potential should challenge us to re-evaluate our
risk categorizations.

Observational claims data sources offer great potential for be-
ing able to supplement our existing data resources, such as
biomedical literature or clinical trial data repositories (e.g.,
https://clinicalstudydatarequest.com/). However, there are still
a number of limitations of these data sources that should be
overcome to improve the relevance; these are discussed briefly
here. For instance, for this study, we include an incidence rate for
“drug-burdened” patients; i.e., we can only include patients who
have visited their medical professional, and the calculation of a
background rate in healthy patients is typically not collected.
However, the opportunity of mobile health (e.g., the AliveCor
device®®) may allow improved understanding of the true back-
ground in an otherwise healthy population. In a recent study, Hin-
gorani et al.°’ estimate that 13 healthy volunteers in 1,000 (1.3%)
would be expected to show non-sustained VT (NSVT) over a
24-h ECG recording period. Solomon et al.>” look at arrhythmia
detection beyond 24 h and conclude that the incidence of back-
ground arrhythmia could be higher still, with 18.3% incidence of
NSVT in 128,401 continuously monitored patients over 14 days.

Interoperability across the different post-market datasets
(e.g., between FAERS and claims data) is hampered by the

different clinical coding dictionaries that are used to identify a
medical event. For FAERS, events are represented by the
MedDRA dictionary, whereas claims data use the International
Classification of Diseases, Ninth Revision, Clinical Modification
(ICD-9-CM) vocabulary. This means that, for a given event of
TdP, although this can be represented as such in FAERS, an
equivalent term is not available in the ICD-9-CM vocabulary
and, hence, would be recorded elsewhere. For the purpose of
this study, we made the assumption that CD in ICD-9-CM would
be an approximation of cases of TdP (and related arrhythmias)
but would also encompass other events. However, because
focusing solely on whether a drug has caused a TdP event might
limit our understanding of a more complete cardiac safety
concern, the broader term CD may be a more suitable outcome
measure.”®

Comedications (sometimes referred to as polypharmacy) are a
frequent issue and another confounding factor with adverse
event reports. Recently, a study investigated the role of multi-
ple-ion-channel testing in determining the mechanistic reasons
of loperamide’s proarrhythmic potential in overdose situations.>*
Many of the reported overdoses cases, however, also exhibited
polypharmacy, including drugs classified by CredibleMeds in
many of the subjects in which loperamide was a cause.’® This
polypharmacy observation is further supported by our analysis
of FAERS reports in which loperamide is rarely a primary
causative drug taken in isolation. This can make it particularly
challenging with regard to identifying the primary drug and/or un-
derlying genetic mutations responsible for the adverse event and
identifying the contributing effects of these comedications (and
comorbidities). Because this is the case, improvements in how
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we assess drug risk in the context of typical comedications
(particularly, e.g., Cytochrome P450 (CYP) inhibitors and other
ion channel inhibitors) would be worthwhile and further support
a need for in silico or clinical decision support systems such as
CredibleMeds.

Ideally, an understanding of drug-induced proarrhythmia
cases rather than drug-associated cases would provide the ideal
calibration for computational modeling based on ion channel
screening data and in silico predictions. This has been advo-
cated previously by other reporters; for example, Mason®®
recently proposed a need for formal validation with patient out-
comes to move away from the current “surrogate” (e.g., hERG
inhibition or QTc prolongation) model of cardiac risk. However,
studies tackling the epidemiology of drug-induced arrhythmia
are limited in the number of patients and cases studied; the Ber-
lin Pharmacovigilance Center (PVZ-FAKOS)®’ and the Drug-
induced Arrhythmia Risk Evaluation (DARE)®® studies are recent
examples. Despite their small size (130 cases in DARE and 58 in
the PVZ-FAKOS study), there is useful understanding resulting
from these studies, notably identification of drugs with no previ-
ous classification risk of QTc prolongation or TdP, such as prop-
afenone. This observation clearly shows how existing classifica-
tions (CredibleMeds in this case) can be misleading for our
assumptions regarding proarrhythmic potential; a case of “the
unknown unknowns” (i.e., a negative CredibleMeds classifica-
tion) is not equivalent to no-risk. These studies point to further
improving our view of drug-induced arrhythmias. However,
these studies are difficult and costly to conduct; therefore, the
observational datasets (e.g., based on claims data) offer an
excellent bridging study.

Reporting dynamics and quality should be considered. A
pharmacovigilance signal that partly informs the CredibleMeds
classification can and does change over time, particularly for
newer-to-market drugs, as novel observations are made with
increasing clinical use. Hence, the stability and appropriateness
of these rankings will affect in silico model selection and
validation exercises; i.e., the optimum model may succeed at a
later time for no reason other than a change in risk evaluation of
one or more of the validation study drugs. The FAERS
datasets, for instance, are predominantly based on United
States reports (approximately 70% in 2014) and underreporting
of adverse events (e.g., 80% underreporting of serious adverse
drug reactions) has been reported previously.” The reporters to
FAERS are also highly mixed. When we considered 6,470
individual TdP events, 34% did not give a primary reporter occupa-
tion, and only 28% were from a physician. This implies that more
than two-thirds of TdP reports are reported by individuals other
than a physician; this motivated us to consider insurance claims
data to reduce bias as a result of the reporter. In addition, FAERS
reports, perhaps linked to the reporter, can be influenced signifi-
cantly by external events, such as safety alerts and labeling of
the product with indications of cardiac events. In our sample set,
we identified 55 drugs with a product label containing a cardiac
warning (data obtained from CredibleMeds). The median EB05
value (for TdP) for drugs with a label warning for TdP was 7.84,
whereas drugs that did not specifically mention TdP was 1.48.
Although a product label can result in overreporting and underre-
porting of events, it is nevertheless consistent with the hypothesis
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that drug warning labels for TdP can cause tendency in the health-
care community for overreporting events. A number of drugs are
highly reported for cardiac adverse events within a short period
of time and can potentially skew the data.®® We therefore recog-
nized a need for augmenting any reporter-led datasets because
of these biases, which would equally apply to FAERS, World
Health Organization, and European Medicines Agency adverse
events with insurance claims datasets.

Full coverage across datasets (e.g., data missing for hERG
ICs0, drug Cmax, CredibleMeds analysis) or prior classifications
makes comprehensive cross-comparison more difficult and
limits the number of drugs for which comparisons can be
made. However, even with these limitations, this study captures
a number of drugs for which data across the different categories
are present; 57 drugs, for example, have information from claims
(MarketScan) data, hERG ICsq data, or EBO5 (FAERS pharmaco-
vigilance) data, of which only 36 have a corresponding Credible-
Meds classification. We advocate for continual assessment and
experiments that help improve this set of 57 drugs, and this
should be a priority for further studies and developments in
this area. One outcome of the ongoing regulatory initiatives is
that multiple experimental values, rather than single ICsq re-
cords, will be generated and, therefore, will provide an under-
standing of experimental variation that can be subsequently
modeled to better represent experimental uncertainty.®’

It has to be noted that it is not possible at this stage to gauge
the biases that are present in either data source, so a weak cor-
relation between different measures just reiterates a general
concern regarding blindly trusting the available data. The finding
does not challenge any specific parameter, so in practice, it
would be up to the prior assumptions of the researcher to prop-
erly weight the sources of evidence. One could, for example,
assume that a set of hERG channel binding values obtained un-
der constant conditions in one lab is much harder to question
than any observational dataset that comes with plenty of poten-
tial biases. From Figure 4, it can also be inferred that the CiPA
classification of compounds is backed by other measures,
mostly for the high-risk category, whereas separation between
amedium- and low-risk class is much harder to justify, especially
when looking at the reported incidence rates. If real, then this
finding would have notable implications for construction of
mathematical prediction models hinging on those labels.

An emergent outcome of this study is to demonstrate the po-
tential for a more general utility of post-market datasets for
modeling and simulation as a result of improving data access
and availability to more generally support systems pharma-
cology/biology model calibration and evaluation. Finally, the
data from post-market sources offer an opportunity to attribute
drug risk to many of the drugs uncategorized by CiPA, Credible-
Meds, or Redfern. As an example, propafenone (indicated in Fig-
ure 4) has recently been described as causing 3 proarrhythmia
cases;’® this was subsequently added (March 1, 2018) to the
CredibleMeds listing as having a conditional risk for TdP. The
disproportionality index calculated on FAERS data shows a
value of more than 2.0, and using the incidence data from
MarketScan data in Figure 4 also indicates that the drug resides
on the upper portion of the scatterplot, consistent with the signal
from FAERS. We anticipate that this work can also be valuable
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for drug repurposing and repositioning, particularly when the
benefit/risk is changed significantly for the new proposed indica-
tion. As a method for providing quantitative, transparent
proarrhythmic risk, these datasets are additional tools to support
clinical decision-making and risk/benefit analysis.

These datasets are still somewhat nascent in their utility to
support the field of quantitative systems pharmacology, but by
developing methods to show how they can be used, we also
show how future collection of real-world health datasets can
be aligned with supporting risk management. We hope this will
encourage experimentalists, data scientists, and clinicians to
work together to develop a transparent model-driven approach
based on FAIR (findable, accessible, interoperable, and reus-
able) data standards. The framework should enable scientists,
sponsors, and decision-makers to quantitatively evaluate the
probability of success of new medicines in a better computer-
augmented and human-rendered way that can support more
nuanced and patient-specific prescribing.

Limitations of Study

As discussed above, this work is not without limitations, the
most significant being the difference of correlation versus causa-
tion of drug-induced pro-arrhythmia. Being able to definitively
state that an arrhythmic event is the sole result of a prescribed
drug is hard, and we typically use surrogates such as prolonged
QTc. 2 recent studies, PVZ-FAKOS®’ and DARE,*® have suc-
cessfully addressed this issue but are limited in size of patient
population. In our study, we looked at a fixed time period with
patient health records following commencement of a new drug
prescription to minimize the risk of confounders. Additionally,
there was a lack of consistency across the different post-market
datasets; i.e., between the FAERS and MarketScan data for
arrhythmia events because of differences in coding dictionaries
(Table S1). We therefore used CD from ICD-9 as a surrogate
for the MedDRA-coded events in FAERS; e.g., VT or TdP. The
intent of this study is to demonstrate what can be achieved
with current datasets.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

CaCl, Acros AC349615000; CAS Number 10043-52-4
EGTA Sigma-Aldrich 0396; CAS Number 67-42-5

HEPES Applichem A1069,0500; CAS Number 7365-45-9
KClI Acros 193780010; CAS Number 7447-40-7
KF Acros 449148; CAS Number 7789-23-3
KOH Sigma-Aldrich 417661; CAS Number 1310-58-3
NaCl Merck 106404; CAS Number 7647-14-5
NaOH Sigma-Aldrich 72068; CAS Number: 1310-73-2
MgCl, Sigma-Aldrich 442611; CAS Number 7791-18-6
ALPRAZOLAM TRC A575650; CAS Number 125316-83-8
AMIODARONE Sigma-Aldrich A-8423; CAS Number 19774-82-4
ASTEMIZOLE Sigma-Aldrich A-6424; CAS Number 68844-77-9
AZIMILIDE TRC Canada A926950; CAS Number149888-94-8
BEPRIDIL Sigma-Aldrich B-5016; CAS Number 74764-40-2
CAPTOPRIL Sigma-Aldrich 21751; CAS Number 62571-86-2
CHLORPROMAZINE AKSCi J11680; CAS Number 69-09-0
CIPROFLOXACIN LKT Labs C3262; CAS Number 85721-33-1
CISAPRIDE Tocris 1695; CAS Number 81098-60-4
CITALOPRAM USP 1134233; CAS Number 59729-32-7
CLARITHROMYCIN LKT Labs C4502; CAS Number 81103-11-9
CLOZAPINE Sigma-Aldrich C6305; CAS Number 5786-21-0
DASATINIB Cayman Chemical 11498; CAS Number 302962-49-8
DILTIAZEM Sigma-Aldrich D2521; CAS Number 33286-22-5
DOFETILIDE Cayman Chemical Cayman/15045; CAS Number 115256-11-6
DOXORUBICIN Cayman Chemical 15007; CAS Number 25316-40-9
DULOXETINE Roche RO4500720-000-001

ERLOTINIB Cayman Chemical 10483; CAS Number 183321-74-6
ERYTHROMYCIN ICN Biomedicals 1890197; CAS Number 114-07-8
FLECAINIDE Sigma-Aldrich F-6777; CAS Number 54143-56-5
FLUOXETINE USP 1279804; CAS Number 56296-78-7
GREPAFLOXACIN Roche RO0661290-000-001

HALOPERIDOL Sigma-Aldrich H1512; CAS Number 52-86-8
IBUPROFEN Euro Pharma 10020000; CAS Number 15687-27-1
IBUTILIDE TargetMol T6541; CAS 122647-32-9

IMATINIB Sigma-Aldrich SML1027; CAS Number 220127-57-1
LORATADINE Fluka PHR1376; CAS Number 79794-75-5
METHADONE Roche RO0021631-000-001

METOPROLOL Fluka 80337; CAS Number 56392-17-7
MEXILETINE Sigma-Aldrich M2727; CAS Number 5370-01-4
MOXIFLOXACIN Oakwood Products 079434; CAS Number 186826-86-8
NIFEDIPINE Calbiochem 481981; CAS Number 21829-25-4
NITRENDIPINE Sigma-Aldrich N144; CAS Number 39562-70-4
OLANZAPINE TRC Canada 0253750; CAS Number 132539-06-1
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REAGENT or RESOURCE SOURCE IDENTIFIER

ONDANSETRON Roche RO0418459-000-001
PENTAMIDINE Sigma-Aldrich P0547; CAS Number 140-64-7
PHENYLEPHRINE Sigma-Aldrich P6126; CAS Number 61-76-7
PIMOZIDE Sigma-Aldrich P1793; CAS Number 2062-78-4
QUINIDINE Sigma-Aldrich Q-0750; CAS Number 6151-40-2
RANOLAZINE Kemprotec Limited CAS Number 95635-55-5
RISPERIDONE USP 1604654; CAS Number 106266-06-2
SPARFLOXACIN Fluka 56968; CAS Number 110871-86-8
TAMOXIFEN Sigma-Aldrich T5648; CAS Number 10540-29-1
TERFENADINE Sigma-Aldrich T9652; CAS Number 50679-08-8
THIORIDAZINE Sigma-Aldrich T9025; CAS Number 130-61-0
VANDETANIB LC Laboratories V-9402; CAS Number 443913-73-3
VERAPAMIL Sigma-Aldrich V4629; CAS Number 152-11-4
ZIPRASIDONE Roche RO0724012-000-001

Experimental Models: Cell Lines

Hamster: CHO cells ATCC PTA-6812

Software and Algorithms

Empirica Signal version 8.1
MedDRA version 18.0

MarketScan® Commercial Claims and
Encounters and Medicare Supplemental
and Coordination of Benefits

R statistical software
SAS®

Oracle ® Health Sciences

ICH

Truven Health Analytics

R Development Core Team

SAS

https://docs.oracle.com/cd/E60407_01/index.htm

https://www.meddra.org/how-to-use/support-
documentation/english/welcome

https://www.ibm.com/watson-health/about/
truven-health-analytics

https://www.r-project.org/

https://www.sas.com/en_us/company-information/
profile.html#

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Liudmila Polonchuk

(liudmila.polonchuk@roche.com)

Materials Availability

This study did not generate any unique reagents/materials

Data and Code Availability

The published article includes all datasets generated during this study

EXPERIMENTAL MODEL AND SUBJECT DETAILS

hERG testing

To improve consistency and minimize lab-to-lab variance we chose to profile the electrophysiological effects of compounds against
hERG ourselves and collect free Cmax concentrations of drugs using, where possible a primarily single source. Assessment of pro-
arrhythmia algorithms will be most efficient if the compound set includes both positive and negative response compounds in order to
ensure an adequate assessment of a model’s positive and negative predictive values.

Compounds

Reference drugs were purchased from commercial vendors. Selection of test concentrations for each compound was done based on
the hERG potency data and the solubility in the extracellular solution. Stock solutions of compounds were freshly prepared in DMSO.
Test solutions were made such that solvent concentrations were kept constant throughout the experiment (0.1%).
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Cell culture

The CHO crelox hERG cell line (ATCC reference Nr. PTA-6812, female Chinese hamster cells) was generated and validated at
Roche.®” Ready-to-use frozen instant CHO-hERG cells are cryopreserved at Evotec (Germany). For the experimental use, the vials
with cryopreserved cells are thawed at 37°C, washed with the pre-warmed IMDM cell culture medium (GIBCO Life Technologies,
USA) and re-suspended in the extracellular solution.

Solutions

The extracellular solution contains (in mM): NaCl 150; KCI 4; CaCI2 1; MgCI2 1; HEPES 10; pH 7.2-7.4 with NaOH, osmolarity 290-330
mOsm. The internal solution contains (in mM): KCI, 10; KF, 100; NaCl, 10; HEPES, 10; EGTA, 20; pH = 7.0-7.4 with KOH, osmolarity
260-300 mOsm.

Electrophysiology
The hERG test is performed using automated patch clamp system SynchroPatch® 384 (Nanion Technologies GmbH, Germany) at
35-37°C following the experimental procedure described previously.®®

Subjects

Patients were selected by exposure to either of a list of drug compounds (from NDC codes) used for this study from 2009 —2014. In
total, the cohort included 49,421,340 patients, of which 43.6% were male (mean age 36.74 years) and 56.4% female (mean age 38.05
years). All enrolment records and inpatient, outpatient, ancillary, and drug claims were collected.

QUANTIFICATION AND STATISTICAL ANALYSIS

Datasets used in this study
The two post market datasets used in this study show different strengths and limitations and hence were both necessary for the pur-
pose of the included work, a summary of the major differences is provided in Table S1.

FAERS

The FDA Adverse Event Reporting System database (FAERS) is based upon voluntary reports of post marketed drug safety. It is a
useful resource for pharmacovigilance and monitoring of potential signals that can be apparent only when larger numbers of
patients are exposed to a drug, particularly for rare events such as ventricular arrhythmias. Data for this study was from FAERS
(since Nov 1997) up to March 31, 2015. EBO5 values were calculated from the FAERS data using the Empirica Signal version 8.1
from Oracle. The cumulative gamma distribution function can be used to obtain percentiles of the posterior distribution of . The
equation was as follows: EBO5ij = Solution to: Prob(: < EBO5 | Nij, 6) = 0.05; where | and j represent the drug and event under study.
Duplicate reports as identified by Oracle were excluded from the analysis. MedDRA version 18.0 was used for the purpose of this
study.

Truven Health MarketScan® Commercial and Medicare Supplemental Database

Data used for the analysis were derived from the Truven Health MarketScan® Commercial Claims and Encounters and Medicare
Supplemental and Coordination of Benefits research data bases (Truven Health Analytics, Ann Arbor, Mich.) for the period January 1,
2009, through to December 31, 2014. These databases represent the health services of approximately 170million employees,
dependents, and retirees in the United States with primary or Medicare supplemental coverage through privately insured fee-for-ser-
vice, point-of-service, or capitated health plans.

Index Date
The index date for patients was the date they met the criteria of exposure to selected treatments according to the inclusion
criteria.

Exposure period (time at risk)

Claims supply days were used to determine exposure; if a claim had a missing or zero day supply the median day supply was as-
signed corresponding to the drug name and route of administration. Exposure was defined as the time from the first treatment claim
until the last treatment claim + median supply in the enrolment period. If two consecutive treatment claims in the exposure period
were more than two times the median supply days apart, this was considered a gap and treatment exposure was stopped at the
last treatment claim prior the gap + median supply days.

Outcomes

The present study assessed the incidence of Cardiac dysrhythmia from inpatient and outpatient claims using ICD-9 diagnosis
codes.
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Statistical Analysis

The incidence rates (per 1000 person-years, with 95% confidence intervals [Cls] calculated using the Poisson regression) of any
event were computed as the number of patients with > 1 event of interest divided by the sum of the person-time at risk until the first
event, or total exposure if no event occurred. The follow-up data were censored at either the date of the first occurrence of the cardiac
event for patients with the event of interest or the date corresponding to the end of their follow-up period (disenrollment or end of
exposure period).
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Figure S1. List of cardiac adverse event terms used for querying FAERS database using
Pharmapendium system (Elsevier), Related to Figure 1

1. System Organ Class: Cardiac Disorders

2. High Level Group Term: Cardiac arrhythmias

3. High Level Term: Ventricular arrhythmias and cardiac arrest

[—

4. Preferred Term: Accelerated idioventricular rhythm
Cardiac arrest
Cardiac arrest neonatal
Cardiac death
Cardio-respiratory arrest
Cardio-respiratory arrest necnatal
Pulseless electrical activity
Rhythm idioventricular
Sudden cardiac death
Sudden death
Torsade de pointes
Ventricular arrhythmia
Ventricular asystole
Ventricular extrasystoles
Ventricular fibrillation
Ventricular flutter
Ventricular parasystole
Ventricular pre-excitation
Ventricular tachyarrhythmia
Ventricular tachycardia i

™  Sibling terms

Ventricular tachycardia, Ventricular fibrillation, Ventricular arrhythmia, Torsade de Pointes,
Cardiac fibrillation, Cardiac Investigations including (Electrocardiogram QT corrected
interval, Electrocardiogram QT corrected interval prolonged, Electrocardiogram QT
corrected interval shortened, Electrocardiogram QT interval, Electrocardiogram QT interval

abnormal, Electrocardiogram QT prolonged, Electrocardiogram QT shortened).



Figure shows the MedDRA tree (v19.1) for sibling terms to Torsade de Pointes (underlined)
and also demonstrating the hierarchical structure of MedDRA. For the purpose of
completeness, a further ‘Lower Level Term’ exists below the Preferred Term, for instance,
LLTs for Torsade de Pointes include: Helicoidal ventricular tachycardia, TdP ventricular

tachycardia, Torsade de pointes & Torsades de pointes.



Figure S2. Full list of drugs plotted by EBO5 values of ventricular tachycardia and Torsades
de Pointes (labelled by the order of supplementary File S3), Related to Figure 2.
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Figure S3. Full list of drugs plotted by EBO5 values of ventricular tachycardia and Torsades
de Pointes (labelled by the order of TdP-EBO5 value), Related to Figure 2.
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1-1butilide; 2-Azimilide; 3-Bepridil; 4-Sotalol; 5-Disopyramide; 6-Methadone; 7-Quinidine;
8-Cisapride; 9-Halofantrine; 10-Erythromycin; 11-Terfenadine; 12-Flecainide; 13-
Ranolazine; 14-Amiodarone; 15-Dofetilide; 16-Chloroquine; 17-Procainamide; 18-
Droperidol; 19-Domperidone; 20-Astemizole; 21-Pentamidine; 22-Dronedarone; 23-
Pimozide; 24-Ondansetron; 25-Haloperidol; 26-Citalopram; 27-Bisoprolol; 28-
Clarithromycin; 29-Moxifloxacin; 30-Voriconazole; 31-Ziprasidone; 32-Ciprofloxacin; 33-
Chlorpromazine; 34-Thioridazine; 35-Digitoxin; 36-Amitriptyline; 37-Azithromycin; 38-
Digoxin; 39-Loratadine; 40-Sparfloxacin; 41-Mibefradil; 42-Fluoxetine; 43-Donepezil; 44-
Verapamil; 45-Propafenone; 46-Metoprolol; 47-Metronidazole; 48-Mexiletine; 49-Diltiazem;
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50-Quinine; 51-Mitoxantrone; 52-Cilostazol; 53- Arsenic; 54-Nelfinavir; 55-Silodosin; 56-
Chlorphenamine; 57-Famotidine; 58-Nebivolol; 59-Alfuzosin; 60-Olanzapine; 61-Lidocaine;
62-Amantadine; 63-Ritonavir; 64-Risperidone; 65-Alprazolam; 66-Cytarabine; 67-
Lamivudine; 68-Solifenacin; 69-Linezolid; 70-Raltegravir; 71-Ceftriaxone; 72-Paroxetine;
73-Levocetirizine; 74-Diphenhydramine; 75-Sertindole; 76-Nitrendipine; 77-Cibenzoline;
78-Aliskiren; 79-Lamotrigine; 80-Lopinavir; 81-Diazepam; 82-Grepafloxacin; 83-
Paliperidone; 84-Aspirin; 85-Nilotinib; 86-Vandetanib; 87-Darunavir; 88-Dolasetron; 89-
Clemastine; 90-Nifedipine; 91-Phenytoin; 92-Doxorubicin; 93-Doripenem; 94-Palonosetron;
95-Saquinavir; 96-Maraviroc; 97-Etravirine; 98-Amoxicillin; 99-Toremifene; 100-Clozapine;
101-1buprofen; 102-Erlotinib; 103-Phenylephrine; 104-Desvenlafaxine; 105-Lacosamide;
106-Tolterodine; 107-Imatinib; 108-Ribavirin; 109-Tamoxifen; 110-Sitagliptin; 111-
Captopril; 112-Dasatinib; 113-Sunitinib; 114-Sildenafil; 115-Lapatinib; 116-Everolimus;
117-Deferasirox; 118-Duloxetine; 119-Ambrisentan.



Table S1 Related to Table 1

Comparison of the two post market datasets used in this study

Criteria FAERS MarketScan
Scope Safety reporting Observational database
Provision of No Yes

longitudinal data

Clinical coding MedDRA ICD9-CM
Geographical coverage ~ Worldwide (67% US) US only
Method for data Voluntary report led Insurance claims
disposition submission database
Normalisation for No Yes

prescription

Accessibility Public Commercial
Demographic data No Yes
Drug coding system Anatomical National Drug Codes
Therapeutic Chemical (NDC)
(ATC)




Table S2 Related to Figure 5

Comorbidity index
Age Group |0 1 2 3+ Totals
<18 7.5 12.1 23.7 37.6 8.8
18-44 9.1 14.6 20.6 24.3 11.0
45-64 13.9 18.7 24.2 34.3 18.8
>65 33.2 39.0 46.4 66.8 48.9
Totals 14.2 21.8 31.1 49.9 23.0

Average incidence rates (cases per 1000 patient years) for cardiac dysrhythmia, for
different patient subgroups across all drugs (excluding drugs where total patient exposure
is less than 100 years). Incidence rate tables for each of the individual drugs can be found

in a supplemental file 2
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