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Technical Note

1. INTRODUCTION

Source reconstruction of magnetoencephalography (MEG) 
data is used to generate 3D images showing the estimated 
spatial origins of electrophysiological signals throughout 
the brain. Usually, this requires an anatomical MRI scan of 
the subject’s head, alongside accurate knowledge of MEG 
sensor locations and orientations relative to brain anatomy 
(from the MRI). These data are combined to generate a 
volume conductor model, from which a mathematical 
description of the magnetic fields generated by the brain 

(known as the forward model) is derived. This forward 
model is then combined with the MEG data to produce 
source images, and the MRI scan also allows those func-
tional images to be overlaid onto anatomical structure. 
This technique is commonplace, however, in many studies 
the acquisition of an MRI scan can be challenging due to 
the unnatural, noisy, and claustrophobic scanning environ-
ment, which is not always well tolerated, particularly by 
children. Other important considerations include the avail-
ability (and cost) of MRI ( Holliday  et al.,  2003) and remnant 
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magnetisation (post- MRI) producing magnetic interference 
in MEG scans ( Hutchinson  et al.,  2019;  Kirschvink  et al., 
 1992). For these reasons, the development of methods 
that avoid MRI is attractive.

The importance of avoiding MRI scanning is amplified 
further in wearable MEG. Nascent MEG systems com-
prising arrays of optically pumped magnetometers 
(OPMs; see  Brookes  et al.,  2022;  Schofield  et al.,  2022; 
 Tierney  et  al.,  2019 for reviews) enable acquisition of 
MEG data from subjects who can move freely ( Boto  et al., 
 2018), even walk around a room ( Holmes  et  al.,  2023; 
 Seymour  et al.,  2021). This has allowed data collection 
from an increased range of demographics, many of whom 
cannot tolerate conventional MEG systems, for example, 
children ( Boto  et  al.,  2022;  Corvilain  et  al.,  2024;  Feys 
 et  al.,  2022,  2023;  Hill  et  al.,  2019;  Rier  et  al.,  2024; 
 Vandewouw  et al.,  2024). While these participants could 
in principle be sedated for a structural MRI, this is unsuit-
able for scanning healthy participants in neuroscientific 
studies. There is, therefore, a risk that one of the major 
benefits of OPM- MEG— the ability to scan challenging 
cohorts— could be negated by the requirement for an 
anatomical MRI scan.

Template MRIs offer a potential solution. Recent years 
have seen the introduction of large databases of “stan-
dard” MRIs ( Fillmore  et al.,  2015;  Richards  et al.,  2016; 
 Sanchez  et al.,  2012a,  2012b), which can ostensibly be 
used as approximations for individual anatomy. The use 
of template MRIs in source modelling using conventional 
MEG is common, with methods typically falling into four 
categories: (1) A single template is used for all partici-
pants in a study ( Douw  et  al.,  2018); (2) a template is 
selected via demographic matching (e.g., by age and/or 
sex, for example,  López  et al.,  2014); (3) the “best- fitting” 
MRI is selected from a database, by matching the head 
shape derived from a template MRI to a 3D digitisation of 
the actual participant’s head ( Holliday  et  al.,  2003; 
 Seymour,  2018); (4) a pseudo- MRI is designed for each 
participant by warping a template MRI to a 3D digitisation 
of the scalp ( Jaiswal  et al.,  2025;  Tadel  et al.,  2011). These 
methods have proved successful in conventional MEG, 
and several software packages for MEG analysis have 
implemented template warping methods. For example, 
Brainstorm ( Tadel  et al.,  2011) and MNE- Python ( Gramfort 
 et al.,  2013) both offer template- based head models that 
allow warping of standard MRIs to digitised scalp sur-
faces. Most recently,  Jaiswal  et  al.  (2025) introduced a 
method that leverages statistical shape modelling to gen-
erate pseudo- MRIs from a template.

Unlike the sensors used in conventional MEG, which 
are placed distal to the scalp due to cryogenic con-
straints, OPMs can be placed directly on the scalp, 
reducing signal attenuation with distance and (in theory) 

improving sensitivity and spatial resolution ( Boto  et  al., 
 2016;  Hill  et al.,  2024;  Iivanainen  et al.,  2017). This osten-
sibly enhances neuromagnetic measurements, but in 
doing so increases the sensitivity of source localisation to 
errors in the forward model ( Yeo  et al.,  2023). Additionally, 
OPMs measure neuromagnetic fields along multiple axes 
( Boto  et al.,  2022), capturing more information than cryo-
genic sensors (which typically measure only the radial 
component of magnetic field). The addition of these tan-
gential fields is advantageous— particularly for differenti-
ating fields generated by the brain from interference, and 
enabling uniform brain coverage in infants ( Boto  et  al., 
 2022;  Brookes  et al.,  2021). However, tangential fields are 
also more influenced by currents that flow in the extra- 
cellular space (volume currents) making them harder to 
model ( Iivanainen  et al.,  2017). In sum, any approach that 
uses template MRI’s with OPM- MEG needs careful vali-
dation, prior to deployment.

Here we describe a template warping method for use 
with OPM- MEG data. Our method builds upon current 
techniques by using 3D structured- light scanning ( Rocchini 
 et al.,  2001)— a method of 3D- image acquisition— to pro-
vide a high- resolution estimate of the subject’s head 
shape. Our method then takes age- matched template 
anatomical MRIs from an open- source database and 
warps them to the 3D head shape of the individual subject 
to generate a personalised “pseudo- MRI”. To test our 
approach, we acquire OPM- MEG data in a cohort of 20 
healthy adult volunteers (all of whom have a real MRI 
scan— henceforth termed the “individual MRI”) and we 
undertake MEG analyses using equivalent pipelines but 
with the forward model informed either by the pseudo- MRI 
or the individual MRI. We test a hypothesis that our 
pseudo- MRI approach will produce source space data 
that are highly correlated with the individual MRI approach.

2. METHODS

2.1. Pseudo- MRI generation

We used a 3D structured- light scanner (EinScan, H, Shin-
ing 3D, China) to estimate the size and shape of the par-
ticipant’s head ( Zetter  et al.,  2019). Briefly, the scanner 
projects a known pattern of light which is scattered by 
nearby objects and detected by a camera placed a 
known distance from the projector. As the structured light 
strikes a surface, any bumps or depressions in that sur-
face cause a distortion of the reflected pattern recorded 
by the camera. The camera captures many such frames 
of data per second, showing how different patterns of 
light are distorted, and by analysing these data it con-
structs point clouds depicting the 3D surface of the 
object being scanned. Structured- light scanners have 
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been commercialised and optimised for face and body 
scanning, meaning accurate 3D digitisation can be 
acquired rapidly (in less than a minute) and comfortably. 
This technique is, therefore, suitable for use with partici-
pants who struggle to remain still and is considerably 
more practical (and cheaper) than MRI.

The method used to create a pseudo- MRI is sum-
marised in Figure 1a. First, a 3D structured- light scan is 
acquired while the participants are wearing elastic caps 
to flatten their hair to the scalp surface; this enables an 
estimate of their head size and shape without hair getting 
in the way (Fig.  1b, top left). Following this, an age- 
appropriate template anatomical T1- weighted MRI (i.e., 
an average of a number of age- matched MRI scans) is 
selected from a database ( Richards  et  al.,  2016) and a 
surface mesh depicting the scalp is extracted using 
FieldTrip ( Oostenveld  et  al.,  2011) (Fig.  1b, top right). 
Meshes representing the outer head surface from both 
the structured- light scan and the template MRI are gen-
erated and a rigid body transformation is applied to co- 

register the two to the same space. While in this space, 
the structured- light scan is cropped such that it covers 
similar areas of the head to the surface extracted from 
the MRI scan. The two meshes are then converted into 
binary 3D images, and “filled in” using a convex hull 
method (Fig.  1b, middle row). This results in binary 
images that have a value of 1 inside the head and 0 out-
side the head. Finally, FSL’s FLIRT ( Jenkinson  et al.,  2002) 
is used to find the transformation matrix required to warp 
the binary images of the template MRI to the 3D 
structured- light image (parameters: X, Y, Z search from 
- 90:90 degrees; correlation ratio cost function; 12 
degrees of freedom; tri- linear interpolation). The derived 
transformation is then applied to the template MRI, gen-
erating a pseudo- MRI that has the same geometry as the 
outer head surface of the structured- light scan.

A final result is shown in Figure 1c; here the underlying 
grey- scale image of the brain is the pseudo- MRI, and the 
red transparent overlay is the binary image based on the 
subjects’ real head shape. Note that all MRI templates 

Fig. 1. Generation of pseudo- MRI data: (a) A flowchart describing the generation of pseudo- MRIs. Colours represent 
whether the action applies to the 3D structured- light scan only (green), template MRI only (yellow), or both (purple).  
(b) Real data demonstrating the method on a single participant. Top left shows the structured- light scan and top right 
shows the MRI. Both are used to create a binary image of the head, and the MRI is warped to fit the real subjects head 
shape from the structured- light scan. (c) The final warped template anatomy (the pseudo- MRI) with the 3D structured- light 
scan overlaid in red.
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were selected from the Neurodevelopmental MRI data-
base ( Richards  et al.,  2016).

2.2. Data collection

2.2.1. MEG participants and paradigm

Twenty healthy adult participants took part in the study 
(age range 23– 34 years; mean age 27 years; 10 identified 
as male, 10 as female). All participants provided written 
informed consent prior to data acquisition and the study 
was approved by the University of Nottingham’s Faculty 
of Medicine and Health Sciences Research Ethics Com-
mittee. These data— which were collected as part of a 
neurodevelopmental study— have been published previ-
ously ( Rier  et al.,  2024).

The task is outlined in Figure 2 and involved sensory 
stimulation. A single stimulator (Metec, Germany) com-
prised eight independently controlled “pins” which could 
be raised or lowered (using a piezo- electric crystal) to tap 
the participant’s finger. A single trial comprised 0.5 s of 
stimulation (during which the finger was tapped three 
times using all eight pins) followed by 3 s rest. We used 
two separate simulators to deliver stimulation to either 
the index or little fingers; the finger stimulated was alter-
nated between trials. There was a total of 41 trials for 
each finger (82 trials in total) and the experiment lasted 
287 s. Throughout the experiment, subjects were seated 

on a patient support (Cerca Magnetics Limited, Notting-
ham, UK) and watched a television program of their 
choice (presented via back projection onto a screen in 
the MSR located ~1 min front of the subject). Subjects 
were free to move their head during the experiment 
although they were not encouraged to do so.

2.2.2. Imaging system

The OPM- MEG system housed up to 64 triaxial sensors 
(3rd generation OPMs, QuSpin Inc., Boulder, CO, USA) 
each capable of measuring magnetic field in 3 orienta-
tions. The array could, therefore, acquire data via up to 
192 independent channels (note that, due to the experi-
mental nature of the system, not all sensors were avail-
able for all scans and so channel count varied between 
subjects). Sensors were uniformly distributed across rigid 
3D- printed helmets that came in multiple sizes to accom-
modate changes in head size (Cerca Magnetics Limited, 
Nottingham, UK). All sensors were synchronised, and 
their analogue outputs sampled at 1,200  Hz using a 
National Instruments (NI, Texas, USA) data acquisition 
system interfaced with LabView (NI). The system was 
housed in an OPM- optimised magnetically shielded room 
(MSR) comprising four layers of mu- metal, a single layer 
of copper, and equipped with degaussing coils (Magnetic 
Shields Limited, Kent, UK); the inner walls of the room 
were degaussed prior to every scan to reduce remnant 
magnetisation ( Altarev  et  al.,  2014). The environmental 
static magnetic field was further suppressed using a field 
nulling technique in which the known background field in 
the MSR was measured, and then reduced by applying 
an equal and opposite field delivered using a set of elec-
tromagnetic coils ( Holmes  et al.,  2018;  Rea  et al.,  2021, 
 2022;  Rhodes  et al.,  2023).

Immediately following MEG data acquisition, two 3D 
digitisations of the participant’s head, with and without 
the OPM helmet, were generated (using 3D structured- 
light scanning). These were used for both pseudo- MRI 
generation (see above) and coregistration of the OPM 
sensor locations and orientations to brain anatomy.

For all subjects, a volumetric anatomical MRI scan 
was acquired using a Phillips Ingenia 3T MRI system 
(running an MPRAGE sequence with 1 mm isotropic res-
olution and T1 contrast).

2.3. Data analysis

We processed all 20 OPM- MEG datasets twice, once 
using the individual MRI and a second time using the 
pseudo- MRI. The two pipelines were identical (unless oth-
erwise stated) and independent (i.e., the individual MRI 
was not used in the pseudo- MRI pipeline, and vice versa).

Fig. 2. Sensory paradigm: (a) A timeline of the sensory 
paradigm. (b) Images showing the braille stimulators (left) 
and hand placement over the two stimulators on the 
index and little finger of the right hand (right). This figure is 
adapted from  Rier  et al.  (2024).
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2.3.1. Coregistration

For coregistration to the pseudo- MRI: we aligned a 3D 
mesh of the OPM- MEG helmet (from which the sensor 
locations/orientations are known) to the structured- light 
scan of the participant wearing the helmet; we then 
aligned the facial features from the same scan, to the 
structured- light scan of the participant without the hel-
met on; this second scan (with no helmet) was already 
co registered to the pseudo- MRI (via the pseudo- MRI 
generation) and this, therefore, allowed complete coreg-
istration of the sensor array geometry to the pseudo- MRI.

For coregistration to the individual MRI: we took the 
3D image of the participant without the helmet and 
aligned the facial features to those extracted from their 
individual MRI (using manual feature selection and the 
iterative closest point algorithm in MeshLab;  Cignoni 
 et al.,  2008); we then combined this with the transform 
obtained above, from the 3D mesh of the OPM- MEG hel-
met to the 3D image of the participant without the helmet, 
and this enabled a complete coregistration of the sensor 
array geometry to the individual MRI. This process is 
depicted in Supplementary Figure S1.

2.3.2. Quantitative comparison of brain anatomy

Initially we aimed to quantify the difference in brain 
anatomy between individual MRI and pseudo- MRI. To 
this end, we employed the automated anatomical label-
ling (AAL) atlas ( Gong  et  al.,  2009;  Hillebrand  et  al., 
 2016;  Tzourio- Mazoyer  et al.,  2002). For both the indi-
vidual and pseudo- MRIs: (1) the brain was extracted 
from the MRI using FieldTrip ( Oostenveld  et al.,  2011); 
(2) the MNI standard brain was co registered to the indi-
vidual anatomy; (3) the same transform was applied to 
the AAL region map (these steps were completed using 
FLIRT in FSL;  Jenkinson  and  Smith,  2001;  Jenkinson 
 et  al.,  2002). (4) The medoid of each AAL region was 
then found. This resulted in two sets of AAL coordi-
nates: one for the individual MRI and one for the pseudo- 
MRI. Both the individual MRI and pseudo- MRI were in 
the same coordinate frame (i.e., they were defined rela-
tive to the OPM sensor locations), and this process, 
therefore, allowed us to calculate the Euclidean dis-
tances between AAL medoids derived using the two 
methods. This provides a quantification of the differ-
ences in brain shape between the real anatomy and the 
estimated (pseudo) brain anatomy.

2.3.3. MEG data pre- processing

For MEG data, we used a pre- processing pipeline 
described previously ( Rier  et al.,  2023). Broken or exces-

sively noisy channels were identified by visual inspection 
of channel power spectra and removed. Notch filters at 
the powerline frequency (50  Hz) and 2 harmonics (100 
and 150 Hz), and a 1– 150 Hz non- causal 4th order Butter-
worth bandpass filter, were applied. Bad trials were 
defined as those with variance greater than 3 standard 
deviations from the mean trial variance and removed. A 
visual inspection was also carried out and any remaining 
trials with excess artefacts were removed. Eye blink and 
cardiac artefacts were removed using ICA (implemented 
in FieldTrip;  Oostenveld  et al.,  2011) and homogeneous 
field correction (HFC) was applied to reduce interference 
that manifests as a homogeneous field across the helmet 
( Tierney  et  al.,  2021). On average (across participants), 
we had 159  ±  9 available channels, and we removed 
4 ± 2 trials. (Note the large variation in channel count was 
primarily a result of different numbers of OPMs being 
available for different subjects, rather than rejection of 
bad channels.)

2.3.4. Measuring beta modulation

The modulation of beta band amplitude during index and 
little finger stimulation was analysed separately for the 
two trial types. Data were filtered to the beta band (13– 
30  Hz) using a non- causal 4th order Butterworth band-
pass filter. Source localisation was performed using a 
linearly constrained minimum variance (LCMV) beam-
former ( Robinson  &  Vrba,  1998). We generated beam-
former images of the spatial signature of beta modulation 
using two approaches:

• A whole brain analysis, in which we divided the 
brain into 4 mm isotropic voxels.

• A “high- resolution” analysis where we masked the 
sensorimotor cortices (by taking the left pre-  and 
post- central gyri from the AAL atlas, dilating these 
volumes using a 5 mm sphere, and then masking 
those volumes for all subjects). Brain regions inside 
the mask were divided into 1 mm cubic voxels.

In both cases, forward solutions were computed using 
a single shell model ( Nolte,  2003) (for each OPM, we 
modelled all three axes of magnetic field (i.e., one radial, 
two tangential) and these were concatenated across all 
sensors to make a forward field for each voxel). Covari-
ance matrices were generated using beta band filtered 
data and separately for index and little finger trials 
(excluding bad trials). All covariance matrices were regu-
larised using the Tikhonov method with a regularisation 
parameter equal to 5% of the maximum eigenvalue of the 
unregularised matrix ( Brookes  et  al.,  2008). The opti-
mised source orientation for each voxel was taken as that 
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with the largest projected power ( Sekihara  et al.,  2004). 
Beamformer weights were generated for each voxel. 
Pseudo- T statistical images, contrasting source power in 
active (0.3– 0.8 s relative to movement onset) and control 
(2.5– 3  s) windows, were generated separately for the 
index finger and little finger trials. This analysis was car-
ried out independently using the individual and pseudo- 
MRI, resulting in eight images per subject for the following 
conditions: index and little finger; low and high resolution, 
and individual and pseudo- MRI.

Having identified the location in the brain of peak 
stimulus- induced beta modulation (based on the high- 
resolution maps), a broadband (1– 150  Hz) estimate of 
electrophysiological activity at this peak location (termed a 
virtual electrode measurement) was calculated. This was 
computed using a beamformer (with covariance based on 
broadband data, but otherwise implemented as above). 
The time– frequency content of this signal was analysed 
using a Hilbert transform. Briefly, the data were filtered into 
multiple overlapping frequency bands; within each band, 
the Hilbert transform of the signal was derived and from 
this we computed the absolute value of the analytic signal, 
giving the amplitude envelope of beta oscillations. These 
envelopes were averaged across trials. A baseline (defined 
in the 2.5– 3 s window) was subtracted, and the resulting 
data were normalised by the same baseline to generate a 
time– frequency decomposition showing relative change in 
oscillatory amplitude from baseline. This process resulted 
in four time– frequency plots per subject (index/little finger 
trials, and individual/pseudo- MRI).

2.3.5. Measuring connectivity

Whole- brain connectivity was quantified using amplitude 
envelope correlation (AEC) ( Brookes  et  al.,  2011;  Liu 
 et al.,  2010). Beta band filtered regional signals from the 
78 cortical AAL regions were calculated using a beam-
former (implemented as above with beta band covari-
ance). A time window, 0.1– 3.4 s relative to trial onset, was 
selected to exclude edge effects and all trials were con-
catenated. Source leakage was corrected using pairwise 
orthogonalisation ( Brookes  et  al.,  2012). The absolute 
value of the analytic signal was computed to generate the 
amplitude envelope of the oscillatory signal. Envelopes 
were down- sampled to 120 Hz and the Pearson correla-
tion was computed between all possible AAL region 
pairs, generating a 78  x  78 matrix for each participant 
describing the beta band connectivity. The “global con-
nectivity” in the beta band for each participant was cal-
culated by summing all off- diagonal elements of the 
connectivity matrix. The connectomes from the pseudo-  
and individual MRIs were compared at the individual and 
the group level, using Pearson correlation.

2.3.6. Removing the effects of coregistration error

The above analyses directly compared individual and 
pseudo- MRI approaches. However, they also conflate 
multiple sources of error:

• Volume conductor error: Error in the forward field 
model due to having a different volume conductor 
model (the real brain/head shape vs. an estimated 
brain).

• Coregistration error: Differences in the way coreg-
istration is achieved for the individual and pseudo- 
MRI approaches will lead to two slightly different 
co registrations.

• AAL region definition: Differences in brain shape 
will necessarily lead to the AAL medoids being in 
slightly different positions for the individual and 
pseudo- MRI approaches (though this only affects 
connectivity analysis).

In a situation where pseudo- MRIs are used (and no real 
MRI scan is available), conflation of these errors is unavoid-
able. However, as real MRIs were available in this study, 
some of these errors can be disentangled. To this end, we 
rigidly aligned the individual MRI brain to the pseudo- MRI 
using FLIRT ( Jenkinson  et  al.,  2002), meaning we could 
apply the same coregistration to both analyses. We then 
repeated the above analyses (beta band modulation and 
connectivity) using MRIs in the same space and using the 
same coregistration, thus eliminating the errors due to 
coregistration. Individual results with and without coregis-
tration error were plotted in histograms.

3. RESULTS

3.1. AAL comparison

We compared the medoids of the 78 cortical regions from 
the AAL atlas, derived using the individual and pseudo- 
MRIs. Figure  3a shows a single representative partici-
pant, in whom the median distance between regions was 
2.54 mm. Across all 20 participants, at the individual sub-
ject level, the medoids were separated by an average of 
2.46  ±   0.42 mm (note here, the median Euclidean dis-
tances across locations were computed separately for 
each subject, and the median and median absolute devi-
ation across subjects are presented). At the group level, 
the average distance between medoids (calculated by 
first averaging locations across subjects by taking the 
mean, and then computing the median location discrep-
ancy across regions) was 1.1 mm.

Figure 3b shows the median distances calculated (at 
the individual level) for all 78 AAL regions independently. 
Dorsal regions tend to show a larger Euclidean distance 
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than frontal regions. This will be addressed in the Discus-
sion section.

3.1.1. Beta modulation

Figure 4a and b shows beta band modulation for an exam-
ple participant during the sensory task; panel (a) shows 
index finger stimulation and panel (b) shows little finger 
stimulation. In both cases, the upper panel shows the 
pseudo- T statistical images contrasting stimulation and 
rest windows, overlaid on a standard brain. The left- hand 
side shows results from the individual MRI approach and 
the right- hand side shows the pseudo- MRI approach. The 
beta modulation (shown by negative pseudo- T values) 
localises to the left sensorimotor cortex using both mod-
els, as would be expected. For this individual, the peak 
locations for index finger stimulation, derived using our 
two methods, were separated by 14.99 mm; the separa-
tion of peak locations for little finger stimulation was 
11.84  mm. The median separation across all 20 partici-
pants was 11.46  ±  3.39  mm for index stimulation and 
11.60  ± 3.72  mm for little finger stimulation (median  ± 
median absolute deviation). The Pearson correlation 
between the (vectorised) pseudo- T statistical images for 
this participant was 0.87 for index finger stimulation and 
0.85 for little finger stimulation. The median correlation 
between images across the 20 participants was 0.76 ± 0.07 
for index finger stimulation and 0.74 ± 0.06 for little finger 
stimulation. These relatively high correlations demonstrate 
that similar results can be generated with or without an 
MRI scan, even at the individual subject level.

The lower panels of Figure  4a and b show time– 
frequency spectra from the location of maximum beta 

modulation; yellow represents an increase in oscillatory 
power and blue represents a decrease. As expected, 
when using either the individual or pseudo- MRI approach, 
we see a drop in beta band power in the 0– 1 s window 
(i.e., during stimulation). The Pearson correlations 
between TFS’s, derived using the two methods for this 
example subject, were 0.97 for index finger stimulation 
and 0.94 for little finger stimulation. The median correla-
tions across 20 participants (i.e., at the individual subject 
level) were 0.97  ±  0.01 for index finger stimulation and 
0.95 ±  0.03 for little finger stimulation (median ± median 
absolute deviation).

Figure 5 shows the group averaged results across 20 
participants. The Euclidean distance between peak loca-
tions from the group average pseudo- T statistical maps 
was 2.75 and 3.73 mm for index and little finger, respec-
tively. The Pearson correlation coefficients between 
group average individual and pseudo- MRI derived pseu-
do- T statistical maps are 0.95 and 0.92 for index finger 
and little finger stimulation, respectively. Group average 
time– frequency spectrograms (TFS) from virtual elec-
trodes at the location of the largest beta modulation are 
shown below the pseudo- T statistical maps. The Pearson 
correlations between the corresponding TFS are 0.99 
and 0.98.

3.1.2. Connectivity

Figure 6 shows the results from the group level connec-
tivity analysis. For these analyses, both index and little 
finger trials were concatenated, as in  Rier  et al.  (2024). 
Panel (a) shows the group average connectivity matrices 
from the individual MRI analysis (left) and pseudo- MRI 

Fig. 3. (a) An example participant with the location of the medoids of 78 cortical regions as dictated by the AAL atlas, 
derived from the pseudo- MRI (blue) and individual MRI (red). (b) Distance between medoid location by cortical region, 
averaged across the 20 participants.
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analysis (right). Panel (b) shows the corresponding glass 
brain plots displaying the top 5% of connections (i.e., 5% 
of all connections with the highest connectivity values, 
therefore, showing the 150 strongest connections) for the 
individual (left) and pseudo- MRIs (right). The radii of the 
blue circles on the glass brain are scaled by connectivity 
strength (i.e., how connected each node is to all other 

nodes; in other words, the sum of each row of the matrix). 
Both plots show a bilateral sensorimotor network, as 
expected during the sensory stimulation.

The relationship between all connections for all partic-
ipants is explored in panel (c), which shows the values of 
the elements in the two matrices in panel (a) plotted 
against each other. The result is a Pearson correlation 

Fig. 4. Beta modulation for an individual subject. (a, b) The results for the index and little finger stimulation, respectively. 
In both cases, the upper panel shows pseudo- T statistical maps depicting the spatial signature of task- induced beta 
modulation across the brain; these images are derived from either the individual MRI (left) or the pseudo- MRI (right). 
Maps are overlaid on the individual and pseudo- MRI extracted brains. The time– frequency spectrograms below show the 
evolution of spectral power throughout the average task trial.

Fig. 5. Group averaged beta results. (a, b) The results for the index and little finger stimulation, respectively. In both 
cases, the upper panel shows pseudo- T statistical maps depicting the spatial signature of task- induced beta modulation 
across the brain; these images are derived from either the individual MRI (left) or the pseudo- MRI (right). Maps are overlaid 
on the individual and pseudo- MRI extracted brains. The time– frequency spectrograms below show the evolution of 
spectral power throughout the average task trial.
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coefficient of 0.87. We also computed global connectivity 
(i.e., the sum of connectivity across all region pairs) for 
each individual subject and panel (d) shows these values 
computed using the individual MRI plotted against the 
same values derived using the pseudo- MRI; the Pearson 
correlation is 0.98. Finally, we measured the Pearson cor-
relation between connectivity matrices at the individual 
level, which had a median value across 20 subjects of 
0.82 ± 0.03 (median ± median absolute deviation).

3.1.3. Removing coregistration error

Figure 7a shows the distribution of median Euclidean dis-
tance between AAL regions identified from the individual 
and pseudo- MRI approaches.

Figure 7b and c shows histograms describing the indi-
vidual participant’s beta modulation for index and little 
finger stimulation, respectively. In both cases, the upper 
plot shows the spatial discrepancy between peak loca-
tions using individual and pseudo- MRIs; the middle plot 
shows the correlation between the pseudo- T- statistical 
images and the lower plot shows the correlation between 

TFS’s from the peak location. In all cases, orange rep-
resents the results with independent coregistration using 
the two separate MRIs (i.e., with coregistration error), and 
purple shows the equivalent data with coregistration 
error eliminated. Note that coregistration has a large 
effect on the pseudo- T- statistical images, yet a relatively 
small effect on the TFSs, which were highly correlated 
despite the presence of coregistration errors.

Finally, Figure 7d shows the correlation between beta 
band connectivity matrices with and without coregistra-
tion error. We find that eliminating coregistration error 
increases the correlation between correlation matrices.

4. DISCUSSION

Wearable OPM- MEG opens new avenues for neuroscien-
tific research, by enabling researchers to study partici-
pant groups that find a conventional neuroimaging 
environment challenging (e.g., where participants must 
remain still for extended periods). However, the value of 
this is limited if MRI scans (which also require partici-
pants to remain still) are required. Here, we have shown 

Fig. 6. (a) Group average connectivity matrices derived from analysis with the individual MRI anatomy (left) and pseudo- 
MRI (right). (b) The top 5% of connections overlaid on glass brains derived from analysis with the individual MRI anatomy 
(left) and pseudo- MRI (right). (c) The relationship between all connections from all participants. (d) The relationship 
between global connectivity (sum of off- diagonal elements of the connectivity matrices) for each participant from the 
individual MRI and pseudo- MRI.
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that a method of warping template MRIs to 3D structured- 
light scans of the head to generate pseudo- MRIs pro-
duces similar MEG results to those generated if individual 
MRI scans are used. This suggests that, particularly for 
group studies, a pseudo- MRI approach might be prefer-
able than acquiring individual MRIs for every participant.

We tested our method using data collected on 20 
adult participants, first examining the Euclidean dis-

tances between cortical regions identified using individ-
ual anatomy and pseudo- MRI. This is essentially a 
quantification of how different the locations of anatomi-
cal landmarks are, when identified using the real and the 
pseudo- MRI. On average we found good agreement, 
with a separation of 2.46 ±   0.42 mm at the individual 
subject level. The parietal cortex had the greatest dis-
crepancy; while the reason for this is unclear, this may 

Fig. 7. Histograms summarising the results across the 20 participants. (a) The Euclidean distance between AAL medoids 
from individual and pseudo- MRI anatomy. (b, c) The results of the index and little finger stimulation, respectively. (d) The 
connectivity results. For (b– d), orange describes the results from analyses using separate coregistration for individual and 
pseudo- MRI (i.e., conflating coregistration errors) and purple shows the repeated analyses following transformation of the 
individual MRI to the pseudo- MRI, using the same coregistration. Inset values show the median value.
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be due to the 3D digitisation being less representative of 
the true head shape at the top of the head, due to hair, 
and the elastic swim cap. This could be mitigated by 
using tighter fitting elastic caps or by accounting for hair 
thickness when generating the pseudo- MRI.

We examined the sensitivity of MEG analyses to the 
pseudo- MRI by analysing data recorded during a somato-
sensory task. Specifically, we used two equivalent analy-
sis pipelines, with forward models generated by individual 
and pseudo- MRI, and in both cases, we found beta mod-
ulation during right- hand sensory stimulation localised to 
the left sensorimotor cortex. As in  Rier  et al.  (2024), we 
did not find separation between index and little finger 
representations; this is likely because neither the experi-
ment nor the OPM array was optimised for this. The dis-
tance between voxels showing the highest beta 
modulation was, on average, around 11 mm at the indi-
vidual subject level; this compares well with the study by 
 Douw  et al.  (2018) which used template MRIs and con-
ventional MEG data. Related, the correlation between 
pseudo- T statistical maps was ~0.75, suggesting that the 
spatial patterns of beta activity are similar despite the dif-
ference in forward model. This is comparable with results 
found by  Jaiswal  et al.  (2025) who used a similar template 
warping method (albeit via a 3D digitiser (Polhemus, Col-
chester, VT, USA) rather than structured- light scanning) 
applied to conventional MEG data during visual, somato-
sensory, and auditory evoked responses. At the group 
level, the discrepancy between the approaches was 
reduced; the median peak voxel locations were sepa-
rated by just <3 mm and the correlation between images 
was ~0.95, implying that the differences between real-  
and pseudo- MRIs at the individual level are likely random 
and so average out across a group.

We also explored the impact of pseudo- MRI anatomy 
on functional connectivity. Specifically, we derived beta- 
band connectomes between 78 cortical regions and 
found high consistency at the group level with a correla-
tion of 0.87 between connectivity matrices derived using 
the two methods. Individual global connectivity was also 
consistent between analyses, and the individual connec-
tome matrices showed a correlation of >0.8.

The above results were all derived using completely 
independent pipelines (i.e., the pseudo- MRI analyses 
never used the real MRI and vice versa). However, this 
conflates three sources of error: (1) Coregistration error, 
that is, coregistration of sensor geometry to brain anat-
omy is performed independently using two MRI scans 
and so the sensor locations and orientations will differ 
between the two analyses. (2) Forward field error: the 
brains/heads are different shapes/sizes and this will lead 
to a difference in the volume conductor model used to 
derive the forward field. (3) AAL region error: because 

the brains are different shapes/sizes, the AAL locations 
are in slightly different positions (which will affect connec-
tivity analysis). In this study, we were able to coregister 
the two MRI scans, and in doing so remove the effect of 
coregistration error; importantly, this would be impossi-
ble in a real study (that did not include individual MRIs), 
but for our purposes showed that the likely largest source 
of discrepancies between our two approaches was 
coregistration error; that is, the coregistration error via the 
optical coregistration method used here (error source 
one) exceeds the error associated with template anatomy 
(sources 2 and 3). This is an important finding and demon-
strates that if coregistration procedures could be devel-
oped that are more accurate, pseudo- MRI approaches 
would match individual MRIs even closer. This should be 
the topic of future work.

There are a few notable limitations of the method 
described here. Firstly, the template MRIs, while approx-
imately age- matched (using 5- year windows), were not 
sex- matched. As there may be structural differences in 
the heads of males and females ( Giedd  et  al.,  2012) 
beyond just size, accounting for this might improve the 
overall results. Second, how this method applies across 
diverse participant groups should be considered, as it 
requires hair styles that can flatten to get an accurate 
head shape estimate. Therefore, this technique may not 
be appropriate for participants with afro- textured hair. 
This is an important limitation as OPM- MEG offers dis-
tinct advantages over EEG for its practical ability to 
acquire data from participants with all hair textures and 
could, therefore, be used to address the under- 
representation of people with afro- textured hair in neuro-
scientific research. Further work should be done to 
consider how template MRIs can be adapted for partici-
pants with thick hair texture. Third, we have only tested 
our method in adults, and it would be valuable to repli-
cate this study with a paediatric cohort. While the tem-
plate MRI databases exist for this ( Sanchez  et al.,  2012b), 
it would necessarily require individual MRIs to be carried 
out for a cohort of healthy children, which may be chal-
lenging. Fourth, we used a single shell forward model, as 
this has been suggested to be comparable with more 
complex BEM models ( Stenroos  et al.,  2014). However, 
this model may be less susceptible to inaccuracies in 
anatomy than, for example, a three- shell BEM. This 
should be investigated in future work. Finally, we note 
that the modulation in the beta band to sensory stimula-
tion is a robust response with a high signal amplitude and 
focal origin; in principle, high signal- to- noise responses 
would be more affected by inaccuracies in the forward 
model, but it remains to be seen how this technique 
applies in lower amplitude responses and signals with 
less focal origins.



12

N. Rhodes, L. Rier, E. Boto et al. Imaging Neuroscience, Volume 3, 2025

5. CONCLUSION

We have demonstrated a method for warping template 
anatomical MRIs to participants’ head shapes derived 
from 3D structured- light scanning. We have shown that 
pseudo- MRIs perform comparably with individual MRI 
anatomy in a range of typical MEG analyses. This method 
will allow source reconstruction of MEG data from partici-
pants who typically struggle with the MRI scanning envi-
ronment. It is important to note obtaining an individual MRI 
scan remains the “gold standard” for MEG analyses, par-
ticularly if accurate results are required in individual sub-
jects (e.g., we do not believe our pseudo- MRI approach 
would not be suitable for clinical application, where excel-
lent spatial accuracy at the individual level is critical). Nev-
ertheless, our method will be useful for neuroscientific 
studies employing wearable MEG using OPM sensors.
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