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This paper presents a Parallel Late Acceptance Hill-Climbing (PLAHC) al-
gorithm for solving binary-encoded optimization problems, with a focus on
the Uncapacitated Facility Location Problem (UFLP) and the Maximum Cut
Problem (MCP). The experimental results on various benchmark problem
instances demonstrate that PLAHC significantly improves upon the sequen-
tial implementation of the standard Late Acceptance Hill-Climbing method in
terms of solution quality and computational efficiency. For UFLP instances,
an 8-thread implementation with a history list length of 50 achieves the best
results, while for MCP instances, a 4-thread implementation with a history
list length of 100 is the most effective configuration. The speedup analysis
shows performance improvements ranging from 3.33x to 10.00x for UFLP and
2.72x to 9.20x for MCP as the number of threads increases. The performance
comparisons to the state-of-the-art algorithms illustrate that PLAHC is highly
competitive, often outperforming existing sequential methods, indicating the
potential of exploiting parallelism to improve heuristic search algorithms for
complex optimization problems.
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1. Introduction

A Binary-Encoded Optimization Problem
(BEOP) is a type of optimization problem in
which the solution is represented as a sequence
of binary values (0s and 1s). BEOPs are used in
many different areas of operations research, in-
cluding knapsack problems, 1,2 feature, selection3

maximum cut problem4 and facility location.
problem5 Due to the nature of BEOPs, the ex-
ponential growth of the number of variables in
the search space makes the process of performing
a comprehensive search inapplicable for complex
problems. For this purpose, the design of heuris-
tic/metaheuristic algorithm for these problems is
the main motivation of researchers.6

Hill-Climbing (HC) is one of the simplest
heuristic method to handle BEOPs and similar

problems. While HC accepts a non-worse solu-
tions during the search process, it stucks a local
optimum which prevents the diversification. To
tackle this, several variants of HC algorithm have
been proposed such as β-HC,7 Late Acceptance
HC,8 and Expansion-based HC.9

The Late Acceptance HC (LAHC) algorithm,
first proposed in 2012, is a version of the classi-
cal HC method designed to address the limita-
tions of early convergence and getting stuck in
local optimum.10 Unlike traditional HC, LAHC
does not immediately reject moves that lead to
worse solutions. It compares the current solution
with several previous solutions instead of the pre-
vious one, and then accepts or rejects it. Accept-
ing worse solutions early in the search process al-
lows for a more robust exploration of the solution
space and generally provides better convergence
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to the global optimum. Experiments on examples
of the traveling salesman problem verify the effec-
tiveness of the proposed method and demonstrate
its ability to obtain competitive results without
the need for any additional parameters.8 In addi-
tion, LAHC has outperformed some heuristic al-
gorithms in an international competition for solv-
ing the magic square problem. The simplicity
of the algorithm and its ease of implementation
make it a powerful tool for optimization problems.

Although the LAHC algorithm is a useful
method for optimization problems, it has some
disadvantages. Since a new solution is obtained
from a single solution at each step, the method
can get stuck at a local optimum if the history
list is not long enough. One of the simplest
ways to prevent this is to increase the history
list length. However, this also requires fine tun-
ing. This study aims to overcome these disad-
vantages by developing a parallelized version of
the LAHC algorithm focusing to solve BEOPs,
which is designed specifically for multi-core CPU
environments. This is to significantly speed up
the search process thanks to parallel computation
while preserving the quality of the search results.
The main contributions of this paper are summa-
rized as follows.

• We propose a Parallel LAHC (PLAHC)
algorithm for solving BEOPs, with a fo-
cus on the Uncapacitated Facility Loca-
tion Problem (UFLP) and Maximum Cut
Problem (MCP).
• PLAHC obtain higher quality results in
a shorter time compared to the sequen-
tial LAHC algorithm. The experiments
demonstrate a significant performance im-
provements through parallelization, with
speedups ranging from 3.33x to 10.00x for
UFLP instances and 2.72x to 9.20x for
MCP instances as the number of threads
increases.
• Comprehensive comparison with state-of-
the-art algorithms, showing that PLAHC
is highly competitive and often outper-
forms existing methods for both UFLP
and MCP.
• Analysis of the trade-offs between paral-
lelism and history list length, providing
insights into the balance between explo-
ration and exploitation in the search pro-
cess.

2. Background

2.1. Late acceptance hill-climbing

LAHC is a stochastic local search to explore the
solution space. The algorithm selectively accepts

new solutions that are better than the solution
kept in the queue. This is done by maintain-
ing a history list, which is how the algorithm re-
members past solutions. By keeping a record of
past solutions, the algorithm compares new can-
didates with known good solutions and explores
other possibilities. Figure 1 presents the pseu-
docode of LAHC.11

Over the years, several versions of the LAHC
algorithm have been proposed to improve its per-
formance and applicability. These include adap-
tive mechanisms for dynamically adjusting pa-
rameters, hybrid approaches combining LAHC
with other metaheuristics, and parallel implemen-
tations for efficient exploration of large solution
spaces.12 In addition, research efforts have fo-
cused on optimizing the algorithm’s parameters
and fine-tuning its behavior for specific problem
domains. Its adaptability to problems such as
exam scheduling and the traveling salesman prob-
lem was demonstrated, with both its versatility
and areas for improvement being highlighted.13 A
LAHC-based memetic algorithm for selecting fea-
tures for recognizing facial emotions is presented
and tested on multiple datasets.14

To enhance efficiency in complex scenarios,
the parallel version of LAHC was proposed, with
the google machine reassignment problem being
specifically addressed.15 Superior performance to
single-threaded LAHC was demonstrated by this
adaptation, and comparable results to advanced
search algorithms were achieved, emphasizing its
potential for resource allocation in large-scale
computing environments. A specialized modifi-
cation, custom LAHC was introduced to improve
solution quality for traveling salesman problem
instances.16 For anomaly detection, LAHC was
combined with genetic programming, resulting in
competitive models with fewer parameters being
produced.17

A recent literature indicates that the LAHC
algorithm has been demonstrated to be an effec-
tive tool for solving a wide range of optimization
problems in various application areas.18–20 The
balance between exploration and exploitation,
and the avoidance of local optima, make LACH a
valuable tool for researchers seeking efficient so-
lutions to complex optimization problems. How-
ever, the efficacy of the parallel LAHC algorithm
in accelerating optimization processes and over-
coming large-scale optimization problems remains
a topic of ongoing investigation. While parallel
implementations of LAHC have been previously
proposed, our PLAHC algorithm differs in several
key aspects from existing approaches.15 Other
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Algorithm 1 The pseudocode of LAHC.
Input: initial solution ▷ the starting solution

fitness function ▷ function to evaluate solution quality
L ▷ length of the late acceptance list
max iterations ▷ maximum number of iterations

Output: best solution ▷ the best solution found
Begin

1: current solution← initial solution
2: best solution← initial solution
3: current fitness← fitness function(current solution)
4: fitness list← [current fitness] * L ▷ create a list of length L filled with current fitness
5: for iteration ≤ max iterations do
6: candidate solution← generate neighbor(current solution)
7: candidate fitness← fitness function(candidate solution)
8: v← iteration mod L
9: if candidate fitness ≤ current fitness or candidate fitness ≤ fitness list[v] then

10: current solution← candidate solution
11: current fitness← candidate fitness
12: end if
13: if current fitness ≤fitness function(best solution)) then
14: best solution← current solution
15: end if
16: fitness list[v]← current fitness
17: end for
18: return best solution

End

1

Figure 1. The pseudocode of LAHC algorithm

parallel LAHC implementations use problem-
specific neighborhood operators, a shared mem-
ory architecture with synchronized global solution
access, and a fixed thread count based on available
cores to optimize performance for a given prob-
lem. We propose a generalized parallel frame-
work for binary optimization uses independent
history lists per thread to maintain solution diver-
sity, adapts the number of threads based on prob-
lem characteristics, and provides efficient coordi-
nation between threads. This approach balances
exploration and exploitation, improving scalabil-
ity and solution quality for diverse optimization
problems. Furthermore, to the best of our knowl-
edge, this is one of the first studies on the use of
parallel LAHC to solve UFLP and MCP.

2.2. Binary-encoded optimization problem
(BEOP)

BEOPs represent a fundamental class of chal-
lenges in the field of optimization and decision
making. A potential solution for a BEOP is rep-
resented as a binary variable. In this encoding
scheme, each bit typically represents a yes/no de-
cision or the presence/absence of a particular fea-
ture or element. This binary structure leads to a

discrete solution space in which the total num-
ber of possible solutions is finite, specifically 2h,
where h is the number of bits in the encoding.

BEOPs are characterized by a non-continuous
solution space of distinct points and often exhibit
combinatorial complexity, falling into the NP-
hard category, which makes them challenging to
solve for large instances due to the exponential
growth of the search space with the number of
bits.

2.2.1. Uncapacitated facility location problem

The Uncapacitated Facility Location Problem
(UFLP) is a minimization BEOP and the objec-
tive is to minimize costs by assigning facilities to
locations. Let n denote the set of potential facility
locations and m represent the number of demand
points (customers). The mathematical formula-
tion of UFLP is as follows:21

minimize

n∑
i=1

m∑
j=1

cijxij +

n∑
i=1

fiyi (1)

s.t.

n∑
i=1

xij = 1, j = 1, 2, ...,m (2)
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xij − yi ≤ 0, i = 1, ..., n, j = 1, ...,m (3)

xij ∈ {0, 1}, i = 1, ..., n, j = 1, ...,m (4)

yi ∈ {0, 1}, i = 1, ..., n. (5)

In the Eq. 1, cij represents the cost of servic-
ing demand from facility i for customer j, while fi
denotes the fixed cost associated with opening a
facility at location i. The objective of the UFLP
is to minimize the total cost, which comprises
both service costs and facility opening costs, as
represented by the first and second terms in Eq.
(1), respectively. Constraint (2) states that each
customer must be served by exactly one facility.
Constraint (3) ensures that customers cannot re-
ceive service from a facility that is not opera-
tional. Constraints (4) and (5) define the binary
nature of the decision variables, restricting them
to values of either 0 or 1.

Exact algorithms for UFLP developed since
the 1960s include branch-and-bound,22 improved
linear programming methods,23,24 and hybrid
approaches.25 However, these methods often re-
quire large amounts of memory or computational
time, which limits their applicability to small-
scale problems.26 Exact solvers struggle with
larger instances of 100-500 facilities.27 As a result,
metaheuristics have become preferred due to their
ability to efficiently find near-optimal solutions in
larger UFLP instances.28–31

2.2.2. Maximum cut problem

The Maximum Cut Problem (MCP) is a max-
imization BEOP in graph theory and combina-
torial optimization. An undirected graph G =
(V,E), where V is the set of vertices and E is
the set of edges. The aim is that partition V into
two subsets S and T (V − S) such that the total
weight (or number) of edges with one endpoint in
S and the other in T is maximized. The problem
can be encoded as a binary-encoding where each
bit represents a vertex. A ‘0’ might indicate the
vertex is in set S, while a ‘1’ indicates it’s in set
T (or vice versa). The mathematical formulation
of MCP is as follows:

maximize
∑

(u,v)∈E

w(u, v) · [xu ̸= xv] (6)

where xu and xv represent the binary values as-
signed to nodes u and v in Eq. 6, respectively.
If xu ̸= xv, then these two nodes are in different
sets and the edge is cut.

MCP has been addressed by various heuristic
and metaheuristic approaches. Recent literature
reveals a diverse range of optimization techniques,

including evolutionary algorithms, scatter search,
and hybrid methods.32 Randomized heuristics like
GRASP and VNS were proposed yielding near-
optimal solutions.33 Another metaheuristic algo-
rithm was proposed to compare the performance
against traditional genetic algorithms.34 An ad-
vanced scatter search35 and a tabu search based
hybrid evolutionary algorithm36 have showed
competitive performance in solving MCP. A
tabu search algorithm was presented to effec-
tively solve large-scale MCPs.37 Recent focus has
shifted to adapting continuous optimization al-
gorithms for discrete problems, introducing the
binary evolutionary algorithm (BinBRO)38 and
a one-dimensional binary evolutionary algorithm
(oBABC).39 Another study is proposed a novel
optimization algorithm called fixed set search for
solving MCP, demonstrating effectiveness over
GRASP by incorporating a learning procedure.40

These studies demonstrate the ongoing evolution
of optimization approaches for MCP, with hybrid
methods and binary adaptations showing promise
for future research.

3. The proposed parallel late
acceptance hill-climbing

To address the limitations of the LAHC algo-
rithm, such as the computational time required
to reach an optimal solution by iteratively search-
ing with a single solution, the algorithm can be
split into independent tasks suitable for concur-
rent execution. Task splitting identifies oppor-
tunities for parallelism, such as evaluating can-
didate solutions and updating the solution his-
tory. The implementation of the parallel LAHC
algorithm involves the use of a multi-threaded
approach, where multiple threads simultaneously
execute different instances of the LAHC. Threads
can be used to efficiently manage concurrency and
resource allocation. Multiple instances of LAHC
can be run simultaneously, allowing for a larger
exploration and exploitation of potential solutions
in different regions of the search space. The pro-
posed Parallel LAHC (PLAHC) is shown in Fig-
ure 2. According to the figure, PLAHC initially
reads the problem instance from a file. Then,
the number of threads to execute the LAHC algo-
rithm in parallel is set. Here, the history list can
be a list that can be used by all threads (shared),
or it can be a separate list for each thread (local).
In our study, each thread maintains its own his-
tory list (local). Following these steps, the spec-
ified number of threads (nt) are created, and the
parallel section is initiated using OpenMP. In this
section, each thread executes its own LAHC algo-
rithm. First, each thread starts by generating a
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random initial solution. It then creates a history
list of length L filled with this initial fitness value.
This list acts as a memory of recent solution qual-
ities.

The core of LAHC is its main loop, which
runs for a given number of iterations. At each
iteration, each threads generates a new candidate
solution using random bit flipping. This process
takes the current solution, represented as a bit
string, and randomly selects one or more bits
to flip - changing 0s to 1s or vice versa. This
method of solution generation is crucial because
it creates small, random changes to the current so-
lution, allowing the algorithm to explore nearby
points in the search space while maintaining the
overall structure of the solution. The threads
continue to generate candidate solutions and at-
tempt to improve the quality of the results until a
predetermined stopping criterion (e.g., a specific
number of iterations) is met. Upon satisfaction
of the stopping criterion, the parallel section is
completed. The best solution of each thread is
stored in an shared array accessible to all threads,
and the master thread identifies the best solution
among them and displays it as the global best
solution.

We use multi-threaded programming with
OpenMP to speed up the LAHC. Furthermore,
different numbers of threads (4, 8, 16 and 32) are
tested and the effect on the overall performance
of the proposed approach is analyzed.

4. Computational experiments and
results

We perform all experiments on a PC with an
eight-core processor (Intel(R) Xeon(R) E5-2630
CPU @ 2.40 GHz), with 64 GB of RAM, running
the Windows 10 64-bit operating system. PLAHC
is implemented in standard C using the gcc com-
piler with OpenMP version 4.5.

To systematically tune effective parameter
settings for PLAHC, we performed different pa-
rameter configurations on a subset of represen-
tative problem instances. We explore the length
of the history list (L) ∈ {10, 20, 50, 100} and the
number of threads (nt) ∈ {4, 8, 16, 32}. A fixed
computational budget of 80,000 objective func-
tion evaluations was allocated for each parameter
combination, with 30 independent runs performed
to ensure statistical significance.

4.1. Computational results for UFLP

We tested PLAHC on UFLP using the ORLib
benchmark set.41 This problem set has 15 UFLP
problems in 4 groups. Table 1 shows the main
characteristics of these problems, including the

number of facilities, customers, and optimal so-
lutions. The problem size is denoted as n × m,
where n represents the number of facilities and m
represents the number of customers.

Table 1. ORLib problem instances for UFLP

Instance Size Optimal cost

Cap71 16 x 50 932,615.75

Cap72 16 x 50 977,799.40

Cap73 16 x 50 1,010,641.45
Cap74 16 x 50 1,034,976.98

Cap101 25 x 50 796,648.44

Cap102 25 x 50 854,704.20

Cap103 25 x 50 893,782.11
Cap104 25 x 50 928,941.75

Cap131 50 x 50 793,439.56
Cap132 50 x 50 851,495.33

Cap133 50 x 50 893,076.71

Cap134 50 x 50 928,941.75

CapA 100 x 1000 17,156,454.48

CapB 100 x 1000 12,979,071.58
CapC 100 x 1000 11,505,594.33

First, we test different history list lengths
(L) to demonstrate the performance of sequential
LAHC on UFLP instances in ORLib. Note that
the termination criterion is a predetermined num-
ber of function evaluations = 80,000. Each experi-
ment is run for 30 trials for each problem instance.
Table 2 shows the sequential LAHC results using
the gap score, which is the ratio of the mean to
the distance between the mean and the optimum
in percent. The results show a clear trend of im-
proved performance as L increases from 10 to 100.
The average gap score consistently decreases, with
L = 100 yielding the best overall results at 0.84.
Smaller problem instances (cap71-cap74) perform
well across all L values, often reaching optimal so-
lutions, while larger instances benefit more signif-
icantly from increasing L values. This is particu-
larly evident for the extra large instances (capa,
capb, capc), where significant decreases in gap
scores are observed.

Table 3 shows the gap scores of PLAHC us-
ing 4 threads. The best overall performance
is achieved with L = 50, with an average gap
score of 0.35, closely followed by L = 100 with
0.44. Small and medium instances consistently
achieve optimal or near-optimal solutions, even
with shorter history lists. Larger instances still
benefit from larger L values, with L = 100 gen-
erally performing best for complex problems. For
the largest instances (capa, capb, capc), L = 50

114



Parallel late acceptance hill-climbing for binary-encoded optimization problems

Master Thread
Begin

Read the problem instance

Set the number of threads (nt)

Create a candidate solution

Evaluate the candidate
solution

Keep the current
solution

Accept the
candidate solution

Update the history list

No

Yes

Is the stopping
criterion met?

YesNo

Is the new solution
acceptable?

Create a candidate solution

Evaluate the candidate
solution

Keep the current
solution

Accept the
candidate solution

Update the history list

Yes

No Is the stopping
criterion met?

YesNo

Is the new solution
acceptable?

Thread #0 Thread #(nt-1)...

Master Thread

Return the global best 
solution among threads.

End

Initiate history list Initiate history list

Figure 2. The flowchart of the proposed PLAHC algorithm

outperforms L = 100, suggesting that paralleliza-
tion allows for more efficient exploration of the so-
lution space with shorter history lists. This par-
allel approach appears to mitigate the need for
very long history lists in some cases, likely due to
multiple threads simultaneously exploring differ-
ent regions of the solution space. Overall, the 4-
thread implementation significantly improves the
effectiveness of the algorithm, achieving better re-
sults with shorter history lists than the sequen-
tial version, potentially reducing computational
requirements while improving solution quality.

Table 4 shows the gap scores of PLAHC us-
ing 8 threads. It shows further performance im-
provements over the 4-thread version. It achieves
the best overall results at L = 50, with an av-
erage gap score of 0.29. Small and medium in-
stances consistently reach optimal solutions over
most L values, while larger instances benefit from

increasing L. In particular, L = 50 significantly
outperforms other configurations for the largest
instances, suggesting that increased parallelism
allows efficient solution space exploration with
moderate history list lengths. However, an unex-
pected performance drop occurs at L = 100, es-
pecially for the largest problems, indicating that
very long history lists combined with high paral-
lelism can sometimes lead to suboptimal explo-
ration. This 8-thread implementation highlights
the improved effectiveness of the algorithm with
increased parallelism, achieving superior results
with shorter history lists.

Table 5 shows the gap scores of PLAHC us-
ing 16 threads. It achieves optimal solutions
for small and medium instances across all his-
tory list lengths, demonstrating good perfor-
mance. However, its performance on the largest
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Table 2. Gap scores of sequential LAHC on UFLP instances for different L values

Instance L=10 L=20 L=50 L=100

cap71 0.03 0.06 0.00 0.00

cap72 0.23 0.00 0.00 0.00
cap73 0.17 0.00 0.05 0.01

cap74 0.00 0.05 0.00 0.00

cap101 0.15 0.09 0.10 0.03
cap102 0.13 0.14 0.08 0.02

cap103 0.25 0.09 0.06 0.05

cap104 0.73 0.18 0.07 0.00
cap131 0.81 0.46 0.33 0.35

cap132 0.42 0.36 0.15 0.22

cap133 0.57 0.47 0.20 0.17
cap134 0.44 0.54 0.28 0.12

capa 7.92 7.78 6.05 5.90

capb 5.53 4.17 3.28 3.16
capc 4.49 3.69 3.38 2.64

Avg.Gap 1.46 1.21 0.94 0.84

Table 3. Gap scores on UFLP instances for different values of L on using 4 threads

Instance L=10 L=20 L=50 L=100

cap71 0.00 0.00 0.00 0.00

cap72 0.00 0.00 0.00 0.00

cap73 0.10 0.00 0.00 0.00
cap74 0.00 0.00 0.00 0.00

cap101 0.06 0.00 0.00 0.00

cap102 0.05 0.00 0.00 0.00
cap103 0.05 0.05 0.02 0.00

cap104 0.00 0.00 0.00 0.00
cap131 0.35 0.26 0.16 0.10

cap132 0.14 0.18 0.03 0.01

cap133 0.15 0.12 0.09 0.02
cap134 0.02 0.00 0.00 0.00

capa 5.14 2.56 1.45 2.89

capb 2.67 2.72 2.32 2.09
capc 3.01 2.33 1.16 1.48

Avg.Gap 0.78 0.55 0.35 0.44

Table 4. Gap scores on UFLP instances for different values of L on using 8 threads

Instance L=10 L=20 L=50 L=100

cap71 0.00 0.00 0.00 0.00

cap72 0.00 0.00 0.00 0.00

cap73 0.00 0.00 0.00 0.00
cap74 0.00 0.00 0.00 0.00

cap101 0.04 0.00 0.00 0.00

cap102 0.02 0.00 0.00 0.00
cap103 0.05 0.00 0.00 0.00

cap104 0.00 0.00 0.00 0.00

cap131 0.21 0.31 0.06 0.05
cap132 0.01 0.05 0.00 0.01

cap133 0.05 0.05 0.04 0.01
cap134 0.01 0.00 0.00 0.00

capa 3.94 2.52 1.30 6.39

capb 2.47 2.26 1.82 2.61
capc 2.35 1.74 1.16 1.91

Avg.Gap 0.61 0.46 0.29 0.73
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instances (capa, capb, capc) decreases as the his-
tory list length increases, especially at L=100.
This leads to a significant increase in the aver-
age gap score for longer history lists, contrary to
previous trends. The best overall performance is
achieved with L = 20 with an average gap of 0.34,
closely followed by L = 10 with an average gap of
0.45, suggesting that shorter history lists are more
effective with high parallelism. This behavior in-
dicates that excessive parallelism combined with
longer history lists may cause over-exploration or
thread interference, resulting in suboptimal solu-
tions for extra large problems.

Table 6 shows the gap scores of PLAHC using
32 threads. While maintaining optimal solutions
for small and medium instances across all history
list lengths, it shows a dramatic deterioration in
performance for larger instances as the history list
length increases. The best overall performance is
achieved with the shortest history lists: L = 10
with an average gap of 0.32 and L = 20 with an
average gap of 0.33. Performance degrades signif-
icantly for L = 50 and L = 100, primarily due
to poor results on the largest instances. These
results indicate that as parallelism increases to
this level, shorter history lists become more effec-
tive, likely because high parallelism already pro-
vides diverse exploration. This implementation
highlights the need to adjust the tradeoff between
parallelism and history length for optimal perfor-
mance in highly parallel environments, encourag-
ing shorter history lists as the number of threads
increases.

The comparison of all experimental results
shows a clear performance improvement through
parallelization over the sequential implementa-
tion. The 8-thread parallel implementation with
L = 50 emerges as the best overall configura-
tion, achieving the lowest average gap score of
0.29. This configuration provides an optimal bal-
ance between parallelism and history list length,
and performs well across different problem sizes.
As the number of threads increases, the ideal his-
tory list length generally decreases, with 16- and
32-thread implementations favoring shorter lists
(L = 20 and L = 10, respectively). However,
these high thread counts have shown poor perfor-
mance for longer history lists, especially for larger
problem instances.

Figure 3 shows average speedups for UFLP in-
stances. The results show consistent performance
improvements as the number of threads increases.
Starting with a 3.33x speedup at 4 threads, per-
formance scales up to 5.52x at 8 threads, 6.96x at
16 threads, and reaches a maximum of 10.00x at
32 threads. Although the speedup is significant, it

exhibits sub-linear scaling, meaning that the effi-
ciency gains decrease as the number of threads in-
creases. This is typical in parallel computing due
to factors such as communication overhead and al-
gorithm parts that can’t be perfectly parallelized.
Despite these limitations, the continued improve-
ment even at 32 threads suggests that high lev-
els of parallelism are beneficial for these UFLP
instances. The most significant performance im-
provements are seen in the initial increments, es-
pecially from 4 to 8 threads. Overall, these results
suggest that UFLP and PLAHC are well suited
for parallelization, although the optimal number
of threads depends on specific hardware capabil-
ities and the trade-off between computation time
and resource utilization.

The comparative results of the PLAHC ( 8-
thread with L = 50), and the state-of-the-art al-
gorithms on the UFLP instances are reported in
Table 7. The performance of PLAHC is evalu-
ated by comparing its gap scores and standard
deviation (Std) values with those of reference al-
gorithms, as presented in the individual columns
of the table. The results of these methods were
taken directly from the relevant studies. The best
gap values for each instance are shown in bold.
oBABC is a metaheuristic algorithm designed to
address the limitations of existing binary vari-
ants of the ABC algorithm, particularly in solving
binary optimization problems such as UFLP.39

MBVS is a metaheuristic algorithm originally de-
signed for continuous optimization problems and
later adapted to solve binary problems by trans-
forming continuous values into binary ones.31

The performance comparison of PLAHC
against oBABC and MBVS shows PLAHC’s effec-
tiveness in solving UFLP across various instance
sizes. For small to medium instances (cap71-
cap104), all three algorithms achieve optimal so-
lutions, with PLAHC matching or slightly out-
performing the others. PLAHC’s strength be-
comes more apparent for larger instances (cap131-
cap134), where it consistently outperforms or
matches the other algorithms. For extra large in-
stances, PLAHC significantly outperforms both
oBABC and MBVS on the capa instance with a
gap score of 1.2982 compared to 2.8969 and 5.8962
respectively. However, for capb and capc, MBVS
outperforms PLAHC. Nevertheless, PLAHC con-
sistently outperforms oBABC on these large in-
stances. In addition, PLAHC generally has lower
std values, especially for larger instances, indi-
cating more consistent performance over multiple
runs. This combination of competitive solution
quality in most instances, especially for complex
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Table 5. Gap scores on UFLP instances for different values of L on using 16 threads

Instance L=10 L=20 L=50 L=100

cap71 0.00 0.00 0.00 0.00

cap72 0.00 0.00 0.00 0.00
cap73 0.00 0.00 0.00 0.00

cap74 0.00 0.00 0.00 0.00

cap101 0.00 0.00 0.00 0.00
cap102 0.00 0.00 0.00 0.00

cap103 0.01 0.00 0.00 0.00
cap104 0.00 0.00 0.00 0.00

cap131 0.16 0.08 0.00 0.04

cap132 0.03 0.00 0.00 0.01
cap133 0.01 0.03 0.05 0.03

cap134 0.00 0.00 0.00 0.00

capa 2.72 1.97 5.73 53.26
capb 2.20 1.57 2.77 20.47

capc 1.66 1.38 2.03 15.10

Avg.Gap 0.45 0.34 0.71 5.93

Table 6. Gap scores on UFLP instances for different values of L on using 32 threads

Instance L=10 L=20 L=50 L=100

cap71 0.00 0.00 0.00 0.00

cap72 0.00 0.00 0.00 0.00

cap73 0.00 0.00 0.00 0.00
cap74 0.00 0.00 0.00 0.00

cap101 0.00 0.00 0.00 0.00
cap102 0.00 0.00 0.00 0.00

cap103 0.00 0.00 0.00 0.00

cap104 0.00 0.00 0.00 0.00
cap131 0.02 0.06 0.05 1.22

cap132 0.00 0.00 0.01 1.54

cap133 0.00 0.00 0.04 0.75
cap134 0.00 0.00 0.00 2.98

capa 1.76 1.90 52.37 103.31

capb 1.58 1.63 21.14 42.93
capc 1.43 1.36 14.85 31.94

Avg.Gap 0.32 0.33 5.90 12.31
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Figure 3. Comparison between sequential and parallel implementation of LAHC in terms of average speedup
for UFLP instances
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Table 7. A comparison with the state-of-the-art algorithms on UFLP instances

Instance oBABC MBVS PLAHC

Gap Std Gap Std Gap Std

cap71 0.0000 0.00 0.0000 0.00 0.0000 0.00

cap72 0.0000 0.00 0.0000 0.00 0.0000 0.00
cap73 0.0000 0.00 0.0000 0.00 0.0000 0.00

cap74 0.0000 0.00 0.0000 0.00 0.0000 0.00

cap101 0.0000 0.00 0.0000 0.00 0.0000 0.00
cap102 0.0000 0.00 0.0000 0.00 0.0000 0.00

cap103 0.0017 57.34 0.0017 57.34 0.0000 0.00

cap104 0.0000 0.00 0.0000 0.00 0.0000 0.00
cap131 0.1010 813.74 0.0112 270.21 0.0578 691.20

cap132 0.0125 236.72 0.0000 0.00 0.0041 69.92

cap133 0.0409 395.63 0.0591 328.65 0.0416 325.20
cap134 0.0000 0.00 0.0000 0.00 0.0000 0.00

capa 2.8969 299,727.30 5.8962 1,334,986.34 1.2982 96,479.58
capb 2.3595 102,565.90 1.5752 313,844.03 1.8239 89,884.50

capc 2.3283 94,785.55 0.6960 69,018.86 1.1600 30,122.69

Avg.Scores 0.5161 33,238.81 0.5493 114,567.02 0.2924 14,504.87

Table 8. Problem instances of MCP

Instance Optimal Instance Optimal

pw01–100.0 2019 pw05–100.5 8169
pw01–100.1 2060 pw05–100.6 8217

pw01–100.2 2032 pw05–100.7 8249

pw01–100.3 2067 pw05–100.8 8199
pw01–100.4 2039 pw05–100.9 8099

pw01–100.5 2108 pw09–100.0 13585

pw01–100.6 2032 pw09–100.1 13417
pw01–100.7 2074 pw09–100.2 13461

pw01–100.8 2022 pw09–100.3 13656

pw01–100.9 2005 pw09–100.4 13514
pw05–100.0 8190 pw09–100.5 13574

pw05–100.1 8045 pw09–100.6 13640

pw05–100.2 8039 pw09–100.7 13501
pw05–100.3 8139 pw09–100.8 13593

pw05–100.4 8125 pw09–100.9 13658

problems, establishes PLAHC as an effective algo-
rithm for solving the UFLP. It shows remarkable
advantages in many instances, although MBVS
outperforms it in some larger instances.

4.2. Computational results for MCP

The performance of PLAHC in solving MCP is

tested using the benchmark set shown in Table

8. This problem set has 30 MCP problems in 3

groups.42 The problem size is 100 for all instances,

while the density varies between 0.1, 0.5, and 0.9

for each group, respectively.
We first test different history list lengths (L)

to demonstrate the performance of sequential

LAHC on MCP instances. Note that the termina-
tion criterion is a predetermined number of func-
tion evaluations = 80,000. Table 9 shows the av-
erage gap scores of LAHC for each instance, aver-
aged from 30 runs. The results show a clear trend
of improvement as L increases from 10 to 100.
This improvement is clearly seen for the pw09 in-
stances, where the algorithm’s performance im-
proves significantly at higher L values. In general,
L = 100 emerges as the best performing configu-
ration, consistently yielding the lowest gap scores
for most instances. This suggests that longer L
values allow the LAHC algorithm to explore the
solution space more effectively, leading to better
quality solutions.

119
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Table 9. Gap scores of sequential LAHC on MCP instances for different L values

Instance L=10 L=20 L=50 L=100

pw01 100.0 2.1313 1.9034 1.8623 1.1823

pw01 100.1 2.9369 1.6311 1.4044 0.2461
pw01 100.2 2.6476 2.0832 1.0138 0.9365

pw01 100.3 1.9434 1.8515 0.9516 1.1403

pw01 100.4 2.6891 1.8293 1.2423 1.5758

pw01 100.5 3.5878 1.9511 2.6409 1.2225

pw01 100.6 2.1491 2.0177 1.4090 2.1196
pw01 100.7 2.9074 1.3679 1.1427 1.1172

pw01 100.8 3.9975 2.3393 1.6632 2.0213

pw01 100.9 2.1032 1.9766 1.8389 1.1920
pw05 100.0 0.9667 0.8165 0.5186 0.3040

pw05 100.1 1.0470 0.9654 0.7201 0.5395

pw05 100.2 0.9715 0.7211 0.7256 0.5424
pw05 100.3 1.1562 0.9620 0.7240 0.4825

pw05 100.4 0.9567 0.8545 0.4538 0.3065

pw05 100.5 1.7371 1.1033 0.7745 0.4587
pw05 100.6 0.8957 0.7724 0.4357 0.3630

pw05 100.7 1.0672 0.7803 0.4659 0.3512
pw05 100.8 1.7742 1.0627 0.7083 0.3607

pw05 100.9 0.9437 1.0532 0.5930 0.3013

pw09 100.0 0.6976 0.4750 0.3340 0.2088
pw09 100.1 0.6162 0.4852 0.3237 0.2556

pw09 100.2 0.8040 0.5416 0.5269 0.3442

pw09 100.3 0.6915 0.6852 0.3603 0.2920
pw09 100.4 0.7543 0.6208 0.4042 0.3295

pw09 100.5 0.6412 0.4938 0.2112 0.2271

pw09 100.6 0.7847 0.6349 0.5320 0.3375
pw09 100.7 0.5220 0.4822 0.4646 0.2889

pw09 100.8 0.6553 0.5481 0.3607 0.2170

pw09 100.9 0.7119 0.7256 0.3385 0.1491

Avg.Gap 1.5163 1.1245 0.8382 0.6471

Table 10 presents the average gap scores on
30 trials with an L = 50 of PLAHC using
different numbers of threads, which are 4, 8,
16, and 32 shown in the columns. The results
show interesting patterns across different prob-
lem sizes. For all instances, the 4-thread im-
plementation consistently produces the best re-
sults. The gap scores increases as the number
of threads increases, suggesting that for these
simpler problems, a lower degree of paralleliza-
tion is most effective. This may be because
the overhead of managing more threads out-
weighs the benefits of increased parallelism for
these smaller problem sizes. For the pw09 se-
ries, increasing to 16 or 32 threads generally re-
sults in a decrease in performance. In summary,
these results highlight the importance of care-
fully matching the degree of parallelization to
the specific problem complexity. For the ma-
jority of instances, 4-thread implementation pro-
vides better balance between parallelism and effi-
ciency.

Table 11 presents the average gap scores with
an L = 100 of PLAHC. According to the ex-
perimental results, across all three groups (pw01,
pw05, and pw09), the 4-thread implementation
consistently produces the best results, with per-
formance generally decreasing as the number of

threads increases. This can be clearly seen clearly
in all instances, where the difference in perfor-
mance between 4 threads and 32 threads is quite
significant.

Comparing all experiments, including sequen-
tial implementations with different history list
lengths (L = 10, 20, 50, 100) and parallel imple-
mentations with L = 50 and L = 100 using
different number of threads (4, 8, 16, 32), the
best overall configuration emerges as the paral-
lel implementation with L = 100 and 4 threads.
This configuration consistently produces the best
average gaps scores across all problem instance
groups (pw01, pw05, pw09). The longer history
list (L = 100) generally outperforms the shorter
ones, indicating the benefits of a larger search his-
tory for the sequential LAHC. Parallelization of
the LAHC algorithm using 4 threads shows the
highest level of efficiency. This is because the
overhead associated with parallel processing re-
duces the benefits of parallelism as the number
of threads increases. This optimal configuration
successfully balances exploration of the solution
space with computational efficiency, demonstrat-
ing robustness to varying problem characteris-
tics. It effectively combines the benefits of ex-
tensive search history with efficient parallel pro-
cessing, making it the most appropriate choice
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Table 10. Gap scores for MCP instances with different number of threads on PLAHC where L = 50

Instance 4 thds 8 thds 16 thds 32 thds

pw01 100.0 0.8504 1.4165 2.4978 4.0451
pw01 100.1 0.3383 0.9141 1.9694 3.3723

pw01 100.2 0.7859 1.3844 1.8209 2.9444

pw01 100.3 0.6918 0.8403 2.7949 4.4881
pw01 100.4 0.9725 2.3409 3.4036 4.7048

pw01 100.5 0.7386 1.7362 3.0773 4.4639

pw01 100.6 0.9070 1.2879 2.7347 4.6344
pw01 100.7 0.5868 1.1172 1.9012 3.4730

pw01 100.8 1.0618 1.7557 2.9228 4.2779
pw01 100.9 0.7247 1.0574 2.3277 3.5711

pw05 100.0 0.1966 0.5076 0.7485 1.0546

pw05 100.1 0.3924 0.5395 0.9475 1.2799
pw05 100.2 0.2920 0.4715 0.6291 0.9852

pw05 100.3 0.2924 0.5439 1.2520 1.6836

pw05 100.4 0.2896 0.3967 0.6994 1.0933
pw05 100.5 0.3791 0.5941 0.9728 1.4494

pw05 100.6 0.2601 0.4044 0.7469 1.1777

pw05 100.7 0.2501 0.3621 0.7743 1.2632
pw05 100.8 0.2143 0.5285 1.1676 1.5746

pw05 100.9 0.1824 0.5503 0.9063 1.3800

pw09 100.0 0.1877 0.4183 0.5067 0.7528
pw09 100.1 0.2253 0.2849 0.4593 0.6449

pw09 100.2 0.3605 0.4546 0.5861 0.7050
pw09 100.3 0.3048 0.4945 0.6178 0.8836

pw09 100.4 0.2573 0.4179 0.6527 0.8448

pw09 100.5 0.1490 0.2981 0.4126 0.5844
pw09 100.6 0.3268 0.5086 0.7036 0.9122

pw09 100.7 0.1701 0.3523 0.4716 0.5994

pw09 100.8 0.1962 0.3995 0.6001 0.7494
pw09 100.9 0.2473 0.4127 0.6094 0.8271

Avg.Gap 0.4277 0.7597 1.3305 2.0140

for the PLAHC algorithm applied to MCP in-
stances.

Figure 4 shows average speedups for MCP in-
stances. Similar to the UFLP experiments, the re-
sults show consistent performance improvements
as the number of threads increases. Speedup val-
ues increase from 2.93x with 4 threads to 11.01x
with 32 threads, demonstrating significant im-
provement through parallelization. However, the
observed scaling is non-linear, suggesting that the
benefits of adding more threads yield less per-
formance. This can be seen in the decreasing
throughput or speedup per thread as the number
of threads increases. While 32 threads achieve the
highest speedup of 11.01x, it’s important to note
that earlier results show that 4-thread implemen-
tation often produces the best solution quality.
This highlights a critical trade-off in parallel op-
timization algorithms between speed and solution
quality.

The comparative results of PLAHC (4-thread
with L = 100), and the state-of-the-art algo-
rithms on the MCP instances are reported in Ta-
ble 12. The performance evaluation of PLAHC
is conducted by comparing its average gap and

std values. The results of oBABC were taken di-
rectly from the the reference study. Note that
the termination criterion is a predetermined num-
ber of function evaluations = 20,000 to fairly
compare the performance of oBABC to ABPEA.
The best average gap scores for each instance
are shown in bold. The performance compar-
ison between PLAHC and oBABC shows that
PLAHC generally outperforms oBABC in most
problem instances, especially in the pw01 series.
PLAHC consistently achieves lower gap scores,
with improvements in several instances such as
pw01 100.5, pw05 100.1, and pw09 100.6. While
PLAHC typically has higher standard deviations,
indicating more diverse solutions, its superior av-
erage gap scores indicate a more effective explo-
ration of the solution space. The results highlight
PLAHC’s effectiveness in solving MCP instances,
likely due to its parallel nature and late accep-
tance strategy.

4.3. Runtime analysis

To provide a comprehensive understanding of the
computational efficiency of PLAHC, we analyzed
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Table 11. Gap scores for MCP instances with different number of threads on PLAHC where L = 100

Instance 4 thds 8 thds 16 thds 32 thds

pw01 100.0 0.7098 1.2566 2.3789 3.7593
pw01 100.1 0.5714 0.9772 1.9888 3.1359

pw01 100.2 0.8022 1.0566 1.7879 2.6068

pw01 100.3 0.8016 1.2274 2.6352 4.3493
pw01 100.4 0.8176 1.7474 3.4036 4.4679

pw01 100.5 0.7936 1.7566 2.9331 4.3819

pw01 100.6 0.8253 1.6845 2.8430 4.3356
pw01 100.7 0.4725 1.0882 1.8963 3.3558

pw01 100.8 0.9545 1.6864 2.7829 4.3917
pw01 100.9 0.6050 0.9362 1.9636 3.5112

pw05 100.0 0.2487 0.5137 0.6972 0.9955

pw05 100.1 0.3198 0.5158 0.6865 1.2098
pw05 100.2 0.2347 0.4756 0.6838 0.9084

pw05 100.3 0.3231 0.6594 1.0718 1.6673

pw05 100.4 0.2511 0.4107 0.6810 1.1434
pw05 100.5 0.3774 0.5211 0.9907 1.4355

pw05 100.6 0.2300 0.4710 0.6730 1.0941

pw05 100.7 0.1197 0.3342 0.6756 1.1472
pw05 100.8 0.1699 0.4744 1.0940 1.4786

pw05 100.9 0.1840 0.5948 0.9647 1.3487

pw09 100.0 0.2088 0.3185 0.4750 0.7499
pw09 100.1 0.1824 0.3421 0.4418 0.6266

pw09 100.2 0.2704 0.4601 0.5839 0.6777
pw09 100.3 0.2631 0.4674 0.6175 0.8577

pw09 100.4 0.1663 0.3732 0.6608 0.7868

pw09 100.5 0.1537 0.2399 0.4165 0.5413
pw09 100.6 0.3556 0.4646 0.6820 0.8908

pw09 100.7 0.2150 0.3538 0.4269 0.6229

pw09 100.8 0.1727 0.2906 0.4995 0.7708
pw09 100.9 0.2077 0.3776 0.5482 0.8471

Avg.Gap 0.4003 0.7359 1.2728 1.9365
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Figure 4. Comparison between sequential and parallel implementation of LAHC in terms of average speedup
for MCP instances

the execution times of both sequential and par-
allel LAHC implementations across all problem
instances. Tables 13 and 14 show the average
execution times in seconds for UFLP and MCP
instances, respectively.

For UFLP instances, the execution times
show a clear correlation with problem dimen-
sions. Small instances (16×50 and 25×50)
are solved rapidly, with sequential LAHC
requiring only 0.12-0.24 seconds and par-
allel implementations further reducing this

to 0.02-0.08 seconds. Medium-sized in-
stances (50×50) show moderate computa-
tion times of 0.22-0.35 seconds for sequen-
tial execution. The most major computa-
tional demands are observed in the large in-
stances (100×1000), where sequential execu-
tion times reach 7.06-7.38 seconds, highlight-
ing the increased complexity of these problem
sizes.

The MCP instances show a clear pattern with
respect to graph density. Problems with lower
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Table 12. A comparison with the state-of-the-art algorithms on UFLP instances

Instance oBABC PLAHC

Gap Std Gap Std

pw01–100.0 1.6840 9.18 1.3670 9.72

pw01–100.1 1.1845 16.25 1.1553 14.92
pw01–100.2 1.8455 11.07 1.5502 12.86

pw01–100.3 1.2966 11.34 1.5820 16.41
pw01–100.4 2.0745 13.91 1.9225 14.82

pw01–100.5 2.5427 25.47 2.0873 19.02

pw01–100.6 2.1604 11.2 1.8602 15.99
pw01–100.7 1.3549 15.98 1.2150 13.56

pw01–100.8 1.8200 16.38 2.0870 16.8

pw01–100.9 1.2070 9.96 1.0574 7.82
pw05–100.0 0.5043 22.67 0.4786 19.28

pw05–100.1 0.6750 17.54 0.5991 18.92

pw05–100.2 0.6481 22.61 0.6978 19.48
pw05–100.3 0.7863 31.86 0.9399 35.66

pw05–100.4 0.5600 24.93 0.5157 22.5

pw05–100.5 0.5276 28.52 0.8802 22.81
pw05–100.6 0.4211 15.66 0.4211 22.37

pw05–100.7 0.4413 24.94 0.4667 22.77
pw05–100.8 0.6989 38.79 0.7635 39.12

pw05–100.9 0.6964 27.18 0.7161 27.16

pw09–100.0 0.2657 21.71 0.3526 18.22
pw09–100.1 0.3622 26.45 0.3898 18.75

pw09–100.2 0.4858 31.32 0.4702 21.78

pw09–100.3 0.4379 33.6 0.4196 24.54
pw09–100.4 0.4344 22.97 0.4136 16.49

pw09–100.5 0.2380 27.44 0.3330 20.8

pw09–100.6 0.5916 13.18 0.4985 19.73
pw09–100.7 0.3133 23.44 0.3466 22.63

pw09–100.8 0.3171 28.28 0.3524 22.97

pw09–100.9 0.3507 32.71 0.4049 19.78

Avg.Scores 0.8975 21.88 0.8781 19.92

Table 13. Average execution times on UFLP instances

Instance LAHC 4 thds 8 thds 16 thds 32 thds

cap71 16 50 0.17 0.06 0.04 0.04 0.03
cap72 16 50 0.16 0.05 0.04 0.04 0.03

cap73 16 50 0.12 0.04 0.03 0.03 0.02

cap74 16 50 0.12 0.04 0.03 0.03 0.02
cap101 25 50 0.24 0.08 0.05 0.05 0.03

cap102 25 50 0.22 0.07 0.05 0.05 0.03

cap103 25 50 0.17 0.06 0.04 0.04 0.03
cap104 25 50 0.15 0.05 0.04 0.04 0.03

cap131 50 50 0.35 0.11 0.07 0.06 0.04

cap132 50 50 0.33 0.10 0.08 0.06 0.04
cap133 50 50 0.30 0.10 0.07 0.05 0.04

cap134 50 50 0.22 0.09 0.06 0.05 0.03
capa 100 1000 7.25 2.13 1.27 0.99 0.65

capb 100 1000 7.06 2.12 1.26 1.01 0.65

capc 100 1000 7.38 2.18 1.30 1.01 0.65

Average 1.61 0.48 0.29 0.23 0.16
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Table 14. Average execution times on MCP instances

Instance LAHC 4 thds 8 thds 16 thds 32 thds

pw01 100.0 0.14 0.06 0.05 0.04 0.04
pw01 100.1 0.15 0.06 0.05 0.05 0.04

pw01 100.2 0.15 0.06 0.05 0.05 0.04

pw01 100.3 0.15 0.06 0.05 0.04 0.04
pw01 100.4 0.15 0.06 0.05 0.04 0.04

pw01 100.5 0.15 0.06 0.05 0.05 0.03
pw01 100.6 0.15 0.06 0.05 0.05 0.04

pw01 100.7 0.15 0.06 0.05 0.04 0.04

pw01 100.8 0.15 0.06 0.05 0.05 0.03
pw01 100.9 0.15 0.05 0.05 0.04 0.03

pw05 100.0 0.67 0.28 0.17 0.13 0.08

pw05 100.1 0.67 0.27 0.17 0.13 0.08
pw05 100.2 0.66 0.27 0.17 0.13 0.08

pw05 100.3 0.67 0.27 0.17 0.13 0.08

pw05 100.4 0.67 0.27 0.17 0.13 0.08
pw05 100.5 0.67 0.27 0.17 0.13 0.08

pw05 100.6 0.66 0.27 0.17 0.13 0.08

pw05 100.7 0.66 0.27 0.17 0.13 0.08
pw05 100.8 0.66 0.28 0.17 0.13 0.07

pw05 100.9 0.67 0.28 0.17 0.13 0.08
pw09 100.0 1.67 0.52 0.30 0.23 0.11

pw09 100.1 1.68 0.52 0.30 0.23 0.11

pw09 100.2 1.67 0.52 0.31 0.23 0.11
pw09 100.3 1.68 0.52 0.29 0.23 0.11

pw09 100.4 1.68 0.51 0.30 0.23 0.11

pw09 100.5 1.67 0.52 0.30 0.23 0.11
pw09 100.6 1.68 0.52 0.30 0.23 0.11

pw09 100.7 1.68 0.52 0.30 0.23 0.12

pw09 100.8 1.69 0.52 0.30 0.23 0.11
pw09 100.9 1.68 0.52 0.31 0.22 0.11

Average 0.83 0.28 0.17 0.14 0.08

density (pw01 series, density=0.1) are solved
quickly, requiring only 0.14-0.15 seconds sequen-
tially. Medium-density instances (pw05 series,
density=0.5) require approximately 0.67 seconds,
while high-density instances (pw09 series, den-
sity=0.9) need about 1.68 seconds for sequential
execution.

Parallel implementation shows significant ef-

ficiency gains across both problem types. For

UFLP, the average execution time decreases from

1.61 seconds (sequential) to 0.49, 0.29, 0.24, and

0.15 seconds at 4, 8, 16, and 32 threads, re-

spectively. Similarly for MCP, the average time

reduces from 0.83 seconds to 0.28, 0.17, 0.14,

and 0.08 seconds as the number of threads in-

creases. The performance improvement is most

pronounced when moving from sequential to 4

threads and from 4 to 8 threads, with yields de-

creasing as the number of threads increases.

4.4. Parametric analysis

The experimental results revealed distinct op-
timal configurations for different problem in-
stances. Figure 5 and 6 show the results of
our parameter tuning analysis through heatmaps
for UFLP and MCP, respectively, where lighter
shading indicates better performance (lower gap
scores). The visualization shows distinct opti-
mal configurations for different problem types.
For UFLP instances, the combination of L = 50
and nt = 8 achieves the best performance with
an average gap of 0.29. This configuration pro-
vides an effective balance between exploration
depth through moderate history length and ef-
ficient parallel computation. The MCP instances
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showed different characteristics, with optimal per-
formance achieved at L = 100 and nt = 4,
yielding consistently lower gap scores across all
problem sizes. This suggests that MCP benefits
from longer history lists but requires fewer paral-
lel threads for effective exploration of the solution
space.

Analysis of parameter interactions showed
that higher thread counts (nt ≥ 16) combined
with long history lists (L ≥ 100) often led to de-
graded performance, especially for larger problem
instances. This decline in performance is particu-
larly pronounced in instances of UFLP, where the
average gap score increases from 0.29 under opti-
mal parameter configurations to 12.31 when the
largest parameter values are employed. This sug-
gests that the exploration-exploitation balance of

the algorithm can be compromised by an exces-
sive degree of parallelism. As a result of these
findings, our recommendation is to use moder-
ate thread counts (4 ≤ nt ≤ 8) with problem-
specific history list lengths for optimal perfor-
mance.

5. Conclusion

This study presents a Parallel Late Acceptance
Hill-Climbing (PLAHC) algorithm for solving
binary-encoded optimization problems (BEOPs),
specifically the Uncapacitated Facility Location
Problem (UFLP) and the Maximum Cut Problem
(MCP). The proposed PLAHC algorithm utilizes
parallel processing to improve the performance of
the LAHC algorithm.
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Our experimental results demonstrate that
PLAHC significantly improves upon the sequen-
tial LAHC implementation in terms of solution
quality and computational efficiency. For UFLP
instances, the 8-thread parallel implementation
with a history list length (L) of 50 emerged as
the best overall configuration, achieving the low-
est average gap score of 0.29. For MCP instances,
the 4-thread parallel implementation with an L
of 100 consistently achieved the best results. Per-
formance comparisons with state-of-the-art algo-
rithms show that PLAHC is highly competitive,
often outperforming existing methods.

Despite these results, our extensive testing
pointed out several important limitations of the
algorithm and its parallel implementation. While
significant speedups were achieved, ranging from
3.33x to 10.00x for UFLP and from 2.72x to 9.20x
for MCP, the performance improvements exhibit
sub-linear scaling as the number of threads in-
creases. This indicates diminishing returns due
to communication overhead and algorithmic parts
that cannot be perfectly parallelized. Further-
more, for larger problem instances, especially
when combined with high degrees of parallelism,
very long history lists can lead to suboptimal ex-
ploration of the solution space, suggesting a com-
plex interaction between parallelism and search
history that requires fine tuning.

The experimental results revealed additional
challenges related to thread interference effects
and problem instance scaling. Excessive paral-
lelism, especially when combined with longer his-
tory lists, can lead to over-exploration or thread
interference. This effect was observed for problem
instances with extreme configurations, where per-
formance degraded as the number of threads in-
creased. In addition, the scalability of PLAHC al-
gorithm for larger problem sizes remains an open
area for further study. For example, while the cur-
rent study focused on benchmark sets with well-
defined sizes and computational budgets, future
research could extend these experiments to larger
problem instances (e.g., UFLP with more diverse
customer and facility sizes, or MCP with larger
graph configurations) to better assess the scala-
bility and robustness of the algorithm.

The relationship between the number of
threads and performance improvement is non-
linear, indicating that further refinement of the
parallel implementation is needed. This could in-
clude exploring adaptive mechanisms for dynam-
ically adjusting the length of history lists, im-
proving thread coordination, or using alternative
parallelization frameworks (e.g., MPI, CUDA) or

hybrid strategies. By extending the experimen-
tal setup to a wider range of problem instances
and configurations, future research can provide
deeper insights into the performance of PLAHC
under diverse and challenging conditions, thereby
addressing the scalability concerns raised in this
study.
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Supervision: Ender Özcan
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Writing – review & editing: Ender Özcan
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