THE AUTOMORPHISMS OF GENERALIZED CYCLIC AZUMAYA
ALGEBRAS

S. PUMPLUN

ABSTRACT. We define a nonassociative generalization of cyclic Azumaya algebras em-
ploying skew polynomial rings D[t; o], where D is an Azumaya algebra of constant rank
with center C' and ¢ an automorphism of D, such that o|c has finite order. The auto-
morphisms of these algebras are canonically induced by ring automorphisms of the skew
polynomial ring D[t; o] used in their construction. We achieve a description of their (left)
inner automorphisms. Results on the automorphisms of classical Azumaya algebras and
central simple algebras of this type are obtained as special cases.

INTRODUCTION

Let D be an Azumaya algebra of constant rank with center C. Let o € Aut(D) be a ring
automorphism, such that o|¢ has finite order m and fixed ring Sy = Fix(c) NC. We assume
that C'/Sy is a cyclic Galois ring extension of degree m with Galois group Gal(C/Sy) = (o¢).
We define generalized cyclic Azumaya algebras with the help of the skew polynomial rings
Dlt; o] as quotient algebras D[t; o]/D[t; o] f for some f(t) = t™ — d, where m is the order of
olc and d € Sy = C NFix(o). Generalized cyclic Azumaya algebras are special examples
of crossed product algebras that are Azumaya algebras: the crossed product is taken using
D and the cyclic group (o). In particular, let o be an automorphism of S with fixed ring
So, and let S/Sy be a Galois ring extension with cyclic Galois group G = (o). Then this
construction yields cyclic Azumaya algebras.

This approach allows us to fit generalized Azumaya algebras into a more general family
of nonassociative algebras. In order to do so we use a construction that goes back to Petit
[17]. We note that the skew polynomials R,, = {h € DI[t;o]|deg(h) < m} of degree less
than m canonically represent the elements of the left D[t; o]-module D[t; o]/ Dl[t; o] f, for any
f € DIt; o] of degree m. Let f(t) =t™ — d, where m is the order of o|¢c, but allow d € D*.
Define the new Sp-algebra Sy on the additive subgroup R,, by using right division by f
to define the algebra multiplication g o h = gh mod, f. This algebra is not associative for
d & Sy, but coincides with the associative quotient algebra DIt;o]/Dlt;o]f if d € Sp. The
algebras Sy were introduced and studied in detail by Petit in [17, 18] when D is a division
ring, and more generally for arbitrary rings in [19].

Note that associative generalized cyclic algebras over fields were investigated by Amitsur

in [3], and nonassociative generalized cyclic algebras over fields in [7]. Another generalization
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of associative generalized cyclic algebras over fields called associative cyclic extensions of
stmple rings was considered by Kishimoto [14].

After introducing the basic terminology in Section 1, we introduce nonassociative gen-
eralized cyclic Azumaya algebras and some of their properties in Section 2. In Section 3,
we then prove that every automorphism of a nonassociative generalized Azumaya algebra
A of constant rank over Sy is canonically induced by some ring automorphism of D[¢; o]
(Theorem 10). Furthermore, the automorphisms Hiq, , that extend idp are in one-one
correspondence with the elements of the group {c € C'| N¢/g,(c) = 1}. These are the only
automorphisms of A, unless some 7 # idp that commutes with o can be extended to an Sy-
automorphism of A as well. In particular, every automorphism of an associative generalized
cyclic Azumaya algebra A of constant rank extends an automorphism 7 € Autg, (D) that
commutes with o, and the possible extensions H j of an Sy-automorphism 7 that commutes
with o are in one-one correspondence with the group {c € C'| N¢/g,(c) = 1}. Moreover,
the Sy-automorphisms 7 of D that commute with o form a subgroup of the automorphism
group of the Azumaya algebra.

In Section 4, we show that all automorphisms of a nonassociative generalized cyclic Azu-
maya algebra can be written as a composition of an inner automorphism and a map that is
a canonical extension of T to A of the type Z:-i_ol a;t’ v Z?:Ol 7(a;)t" (Theorem 16). We
also prove that the automorphisms H;q,, 1, of a nonassociative generalized cyclic Azumaya
algebra which extend the identity idp are inner for all k£ € C, such that there is ¢ € C* with
k = ¢ lo(c). In the special case that we have a nonassociative generalized cyclic algebra
(D, o,d) over a base field, all its automorphisms are of this last type.

As an immediate consequence of our results, the automorphisms of an Azumaya algebra
(D, 0,d), where the ring extension satisfies an analogue of Hilbert’s Theorem 90, are the
composition of an inner automorphism G, ¢ € C* with the canonical extension H ; of some
7 € Autg, (D) which commutes with o (Corollary 18). In particular, the automorphisms of
a generalized cyclic central simple algebra over a field are induced by ring automorphisms of
the ring D[t; o] used in their construction; each is the composition of an inner automorphism
G., ¢ € C* with the canonical extension H,; of some 7 € Autg, (D) which commutes with
o (Corollary 19). If A = (K/F,o,d) is an associative cyclic central simple algebra, we show
that all its automorphism can be described as inner automorphisms of the type G, for
some ¢ € K with Ng/p(c) =1 and a suitable integer j, 0 < j <m — 1.

1. PRELIMINARIES

1.1. Nonassociative algebras. Let R be a unital commutative ring and let A be an R-
module. A is an algebra over R if there exists an R-bilinear map A x A — A, (xz,y) — = -y,
denoted simply by juxtaposition zy, the multiplication of A. An algebra A is called unital
if there is an element in A, denoted by 1, such that 1z = 1 = x for all x € A. We will only
consider unital algebras.

The associator of A is given by [z,y, z] = (zy)z—x(yz). The left nucleus of A is defined as
Nuc;(A) = {x € A| [z, A, A] = 0}, the middle nucleus of Ais Nuc,,(A) ={z € A|[A,z,A] =
0} and the right nucleus of A is Nuc,(A) = {z € A|[A, A, z] = 0}. Nuc;(A), Nuc,,(A4), and
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Nuc,(A) are associative subalgebras of A. Their intersection Nuc(A4) = {x € A| [z, A, A] =
[A,z, A] = [A, A, x] = 0} is the nucleus of A. Nuc(A) is an associative subalgebra of A
containing F'1 and z(yz) = (xy)z whenever one of the elements x,y, z lies in Nuc(A4). The
center of A is defined as C(A) = {x € A|z € Nuc(A) and zy = yx for all y € A}. Define
Comm(A4) = {x € A|zy = yrforally € A}. For a subring B of a unital ring A, the
centralizer (also called the commutator subring if A is associative) of B in A is defined as
Centa(B) = {a € A|ab=ba for all b € B}. If A is not associative, Cent 4(B) need not be
a ring. If Cent4(B) = B then Cent4(B) is a maximal commutative nonassociative subring
of A.

An automorphism G € Aut(A) of an algebra A is called a (left) inner automorphism if
there is an element m € A with left inverse m; such that G(z) = (myx)m for all z € A. We
denote such an automorphism by G,,. It is possible to define (right) inner automorphisms
analogously as F,,,(z) = m(xm,) for all z € A, if there is an element m € A with right inverse
m,., but these are not needed in this paper. Given an inner automorphism G, € Aut(A)
and some H € Aut(A), H ! oG, o H € Aut(A) is also an inner automorphism. Indeed,

[27, Lemma 2, Theorem 3, 4] generalize to any nonassociative algebra over a ring:

Proposition 1. Let A be an algebra over R.

(i) For all invertible n € Nuc(A), G, (z) = (n~'z)n is an inner automorphism of A.

(ii) If Gy, is an inner automorphism of A, then so is Gpm(z) = ((myn=Y)x)(nm) for all
invertible n € Nuc(A).

(iii) If G, is an inner automorphism of A, and a,b € Nuc(A) are invertible, then Gapm =
Gom if and only if ab=! € C(A).

(iv) For invertible n,m € Nuc(A), G, = G, if and only if n='m € C(A).

The set {G.,, | m € Nuc(A) is invertible} of inner automorphisms is a subgroup of Autr(A4).
For each invertible m € Nuc(A) \ C(A), G, generates a cyclic subgroup of inner automor-
phisms which has finite order s if m* € C(A), so in particular if m has order s.

If the nucleus of A is commutative, then for all invertible n € Nuc(A), G,,(z) = (n"*x)n

is an inner automorphism of A such that G, |Nuc(a) = idNuc(4)-

1.2. Azumaya algebras. An algebra A is called an Azumaya algebra over a unital ring R,
if A is finitely generated as an R-module, A is a separable extension of R, and the center
of A is R. Equivalently, A is an Azumaya algebra if A is a finitely generated R-module and
A/Am is a central simple R/m-algebra, for all maximal ideals m in R.

A commutative ring extension R’ of R is called a splitting ring of Aif AQr R’ = Endg/ (P)
for a suitable faithfully projective R’-module P.

If S is a maximal commutative subalgebra in A and S is separable over R then S is a
splitting ring for A [15].

1.3. Galois extensions. Let S be a commutative ring. Recall that two Sp-algebra homo-
morphisms o and 7 are called strongly distinct, if for every non-zero idempotent e € S there
is € S such that o(x)e # 7(x)e.

If we assume that S is an Sy-algebra and faithfully projective as an Sy-module, and that G
is a group of Sp-algebra homomorphisms of .S, then the following conditions are equivalent:
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(i) S is a separable Sp-algebra, finitely generated projective as an Sp-module, and rankg, S =
|G|. All elements of G are pairwise strongly distinct.

(ii) S is faithfully projective as an Sp-module, rankg,S = |G| and for every o € G there
exist ; o, Yi,o € S such that ZZ’I ZioT(Yio) = 070 forall 7 € G.

(iii) p: S®S — 8™, p(s®t) = (s7(t))req is an isomorphism of S-algebras where n is the
order of G.

If one of these conditions is satisfied we call S/Sy a Galois extension with Galois group
G in the sense of Chase-Harrison-Rosenberg [9].

Moreover, S/Sy is called a weakly Galois extension (resp., (G-)Galois in Szeto’s papers
[22, 23, 24, 25]) if S is a separable algebra over Sy, finitely generated projective as Sp-module,
and there is a finite group of automorphisms G of S such that Sy = S is the fixed ring of
G in S. Note that if S/Sy is a Galois extension with Galois group G then this implies that
SG =8, If S/Sp is a Galois extension and the elements in G are Sp-automorphisms of S
then S is a weakly Galois extension of Sy of constant rank (cf. [11, Lemma 2.3, Corollary
2.4] for this summary).

If S/Sp is a Galois extension with Galois group G, then the map H ~ S gives a one-one
correspondence between the set of subgroups of G and the set of Sy-subalgebras Sy of S
which are separable and G-strong, i.e. the restriction of any two elements of G to Sy are
either equal or strongly distinct as maps from Sy to Sg.

In this paper, we will use commutative Galois extensions that are weakly commutative
Galois extensions.

1.4. Skew polynomial rings. Let S be a unital associative ring, ¢ a ring endomorphism of
Sand d:S — S aleft o-derivation, i.e. an additive map such that d(ab) = o(a)d(b) + d(a)b
for all a,b € S. Then the skew polynomial ring S[t;o,d] is the set of skew polynomials
g(t) = agtait+---+a,t" with a; € S, with term-wise addition and where the multiplication
is defined via ta = o(a)t + §(a) for all a € S. That means,
at"bt™ = " a(A, ; bt
§=0

for all a,b € S, where the map A, ; is defined recursively via
Apj=0(An 1) +0(An_15-1),

with Ag o = idg, A10 =9, A1 = 0. Therefore A, ; is the sum of all polynomials in ¢ and
d of degree j in o and degree n — j in 6 [13, p. 2]. If § =0, then A, ,, = o".

For o = id and § = 0, we obtain the usual ring of left polynomials S[t] = S[t;id, 0]. Define
Fix(o) = {a € S|o(a) = a} and Const(d) = {a € S|J(a) = 0}.

For f(t) = aptait+- - -+a,t"™ € S[t; 0, 9] with a,, # 0 define deg(f) = n and deg(0) = —oc.
Then deg(gh) < deg(g)+deg(h) (with equality if h has an invertible leading coefficient, or g
has an invertible leading coefficient and o is injective, or if S is a division ring). An element
f € S[t;0,6] is irreducible if it is not a unit and it has no proper factors, i.e if there do not
exist g,h € R such that f = gh.
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1.5. Algebras obtained from skew polynomial rings. Let S be a unital associative
ring and R = S[t; 0,0] a skew polynomial ring where o is injective.

Assume f(t) = > a;t* € S[t;0,6] has an invertible leading coefficient a,, € S*. Then
for all g(t) € S[t;o,d] of degree I > m, there exist uniquely determined r(t), q(t) € S[t; o, ]
with deg(r) < deg(f), such that g(t) = q(t)f(t) + r(¢) ([6],[19, Proposition 1]).

Let mod,. f denote the remainder of right division by f. The skew polynomials of degree
less that m canonically represent the elements of the right S[¢; o, 6]-module S[t; o, §]/S[t; o, 0] f-
Moreover,

{g € S[t; 0, 0] [ deg(g) < m}
together with the multiplication

gh if deg(g) + deg(h) < m,
gh mod, f if deg(g) + deg(h) > m,

is a unital nonassociative ring Sy also denoted by S[t;0,6]/S[t;0,8]f. Sy is a unital nonas-

sociative algebra over the commutative subring
{a € S|ah = ha for all h € Sy} = Comm(Sy) NS

of S. When the context is clear, we will drop the o notation and simply use juxtaposition
for multiplication in Sf. Note that if f has degree 1 then Sy =2 S, and if f is reducible then
S contains zero divisors. For all invertible a € S we have Sy = S,¢.

In the following, we assume m > 2 and call the algebras Sy Petit algebras as the con-
struction goes back to Petit [17].

St is a free left S-module of rank m with basis t® = 1,¢,...,t™~1. S} is associative if
and only if Rf is a two-sided ideal in R. If Sy is not associative then S C Nuc;(Sy), S C
Nuc,,, (Sy) and

{9 € R|deg(g) < m and fg € Rf} = Nuc,(S5f).

When S is a division ring, these inclusions become equalities [19, Theorem 4].
Note that C(Sy) = Comm(Sy) N Nuc;(Sy) N Nuc,, (Sy) N Nuc,(Sy) and so

{a € S|ah = ha for all h € Sy} = Comm(Sy) NS C C(Sy).

If Nuc;(Sy) = Nuc,,(Sf) = S this yields that the center C(Sy) = Comm(Sy) NS N
Nuc, (Sf) = Comm(Sy) N S of Sy is identical to the ring {a € S|ah = ha for all h € S;}.
Also note that

C(S) NFix(o) N Const(d) C {a € S|ah = ha for all h € Sy}

which is proved analogously as [19, Theorem 8 (ii)], where § = 0.
If§ =0and f(t) = Z;ZO a;t’ € S[t; o] then Comm(Sy) = {g € Sy|gh = hg for all h €
Sy} contains the set
m—1
{Z dit'|d; € Fix(o) and cd; = d;o’(c) for all ¢ € S}
i=0
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[19, Theorem 8 (i)]. If ag is invertible, the two sets are equal [6, Proposition 7.4 (iii)],
implying

{a € S|ah = ha for all h € Sy} = {a € S|a € Fix(c) and ca = ac for all ¢ € S} = C(S)NFix(o).

2. NONASSOCIATIVE GENERALIZED CYCLIC AZUMAYA ALGEBRAS

In the following, let D be a unital ring with center C = C(D). Let ¢ € Aut(D) be
a ring automorphism, such that o|c has finite order m and fixed ring Sy = Fix(c) N C.
Moreover, we assume that C/Sp is a cyclic Galois ring extension of degree m with Galois
group Gal(C/Sy) = (o|c). This implies that C' has constant rank m as an Sp-module.

Let f(t) =t™ — d € D[t; o] with d € D* invertible. Then Sy = Dt;0|/D[t; o](t™ — d) is

a nonassociative algebra over its center
{a € D|ah = ha for all h € Sy} = C'NFix(c) = So.

Moreover, since d is invertible we know that
m—1
Comm(Sy) = {Z dit'|d; € Fix(o) and cd; = d;o'(c) for all ¢ € S}.
i=0

In the associative setting, i.e. when d € S, we have the following result:

Theorem 2. Let Sy = Dlt;0]/D[t; o](t™ — d) with d € S;. Then the following statements
are equivalent:

(i) D[t; o]/ D[t; o](t™ — d) is an Azumaya algebra over Sp.

(i) D is an Azumaya algebra over C.

Proof. (ii) implies (i): Since D is an Azumaya algebra over C, D is separable over C.
Moreover, S is a separable extension of D, since

m—1
r=mtd! Z th@tmTi
i=1

is a separable idempotent of Sy over D: we have m~td~! Z::llti ®p tm~ 17t = 1 and
gr = zg for all g € Sy. Thus Sy is a separable extension of Sy by the transitivity of
separable extensions. By our general theory on Petit algebras, we know that Sy is an
algebra with center Sy. By construction, Sy is finitely generated as an Sp-module, since D
is finitely generated over C. Therefore Sy is an Azumaya algebra over Sp.

(i) implies (ii): Assume that DJt;o]/D[t; o](t"™ — d) is an Azumaya algebra. Then its center
is So = CNFix(0). By Proposition 6 below, the centralizer Cent(p ,q4)(C) of C'in (D, 0,d) is
D. Thus D is a separable Sp-algebra by the Commutator Theorem for Azumaya algebras [12,
Theorem 4.3], since C' is a separable Sp-algebra. Therefore D is an Azumaya algebra. O

Assuming additionally that ¢ has finite order m, we obtain:

Theorem 3. Let Sy = D[t;o]/D[t;o](t™ — d) with d € S and let o have finite order m.
Then the following statements are equivalent:
(i) D[t; o]/ D[t; o](t™ — d) is an Azumaya algebra over Sp.
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(ii) Let G¢(g) = tgt™" be the inner automorphism of Sy defined by t. Then {u € Sf|G¢(u) =
u} = Fix(0)[t]/Fix(o)[t](t™ — d) is an Azumaya algebra with center Sy[t]/So[t](t™ — d).

Proof. We only need to show that {u € Sy |G(u) = u} = Fix(o)[t]/Fix(o)[t](¢™ — d). The
rest is proved in [22, Theorem 3.3]. For this we note that both Fix(¢) C {u € Sy | Gi(u) = u}
and t,t2,...,t™ 1 € {u € S§|G¢(u) = u}. Moreover, we have t™ = d € {u € Sy |Gy(u) =
u}, so that {u € Sy |u(t) € Fix(o)[t]} C Fix(o)[t]. This proves the assertion. O

More generally, we still have:

Theorem 4. Let D be an Azumaya algebra over C' and let o|c have finite order m. Consider
the Azumaya algebra Sy = Dlt;o]/Dt; o] (t™ —d), d € S§. Let Gi(g) = tgt™" be the inner
automorphism of Sy defined by t. Then:

(i) D[t; o]/ D[t; o](t"™ — d) is a G¢-Galois extension of S?t = {u € Sy |G (u) = u}, such that
S?t is a direct summand of DIt;o]/DIt;o](t™ — d) as a bimodule over S?‘.

(it) {u € S| G¢(u) = u} = Fix(0)[t]/Fix(o)[t](t™ — d) is an Azumaya algebra with center
Soltl/Solt)(t™ — d).

Proof. (i) The proof of [22, Theorem 3.3] for this statement carries over verbatim. Note
that ¢ is invertible in Sy with inverse ™~ 'd 1.

(ii) The corresponding part of the proof of [22, Theorem 3.1] does not need the assumption
that o € Aut(D) has finite order m, since we assume that d € SJ, so in particular that

d € C, and we assume that o|c has finite order order m. O

Definition 1. Let D be an Azumaya algebra of constant rank with center C and f(t) =
t™—d € D[t; o] with d € S§. Then the associative algebra Sy = Dl[t; 0]/D[t; o] f in Theorem

2 is called a generalized cyclic Azumaya algebra. We write (D, o, d) for this algebra.

We follow Jacobson’s terminology [13, p. 19]. Note that for d € S;, (D, 0,d) can also be
viewed as a crossed product algebra.

In particular, if D = C is a commutative ring, C/Sp is a cyclic Galois extension of
degree m with Galois group generated by o, and f(t) = t"™ — d € Sp[t], then we obtain an
associative Azumaya algebra we will denote by (C/Sy, 0,d) = C|t,o]/C[t; o] f, which we call
a cyclic Azumaya algebra. Note that if C'/Sy is a cyclic field extension, then (C/Sp,0,d) is

an associative cyclic algebra over Sy of degree m?.

Remark 5. (i) This construction of Azumaya algebras was first mentioned in [26] for f(¢) =
t> — 1 € D[t; 0] with D a commutative ring, as a generalization of the classical quaternion
algebra. It was shown that Sy = (D,o,d) is an Azumaya algebra over Sy, that D is
a maximal commutative subalgebra of (D,o,d) [25, Lemma 3.1], and that (D,o,d) is a
separable extension over Fix(c). The centralizer of D in (D, o,d) given by {g € Sy|gs =
sg for all s € D} was shown to be D. Moreover, S ®g, (D,o,d) = Mat,(S). (In [23],
(D,o,d) is called a generalized quaternion ring extension.)

(ii) The associative setting in [22] is more restrictive than the one we consider: in [22], the
ring automorphism o € Aut(D) is always required to have finite order m, and d € Fix(o).

Since m is the order of o, in that case t"™b = o™ (b)t™ = bt™ for all b € D, which implies
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db="bd in Sy for all b € D, hence d € C, i.e. d € C NFix(o).

(iii) If D is a central simple algebra over a field F' of degree n, then (D,o,d) is a central
simple algebra over the field Sy of degree mn and the centralizer of D in (D, o,d) is F [13,
p. 20, Proposition 1.4.4].

(iv) If m is an invertible integer in D, then So[t]/So[t](t™ — d) is a separable extension of Sy
contained in A = (D, 0,d) [22].

Our definition of associative generalized cyclic Azumaya algebras generalizes to nonasso-
ciative algebras as follows:

Definition 2. Let D be an Azumaya algebra over C and f(¢t) =t™ —d € DJt;o], d € D*.
The algebra (D, 0,d) = D[t;o]/D[t;o]f over Sy is called a nonassociative generalized cyclic

Azumaya algebra.

In particular, if D has constant rank n, then the algebra A = (D, 0,d), d € D>, is finitely
generated as an Sg-module of constant rank m2n?2.

If S is a commutative ring, and S/S is a cyclic Galois extension of degree m with Galois
group generated by ¢ and f(t) = t™ —d € S[t;0], we call the algebra S[t,o]/S[t;o]f a
nonassociative cyclic Azumaya algebra and denote it by (S5/Sp, o, d) (this is the case where
D=20C).

The following generalizes [22, Lemma 3.2] to the nonassociative setting:
Proposition 6. For all d € D*, the centralizer Cent(p , 4)(C) of C in (D,0,d) is D.

Proof. The proof is analogous to the one in the associative case when d € SJ: It is easy to
see that D C Cent(p . 4)(C) = {a(t) € (D,0,d)|a(t)c = ca(t) for all c € C}. Conversely,
for each Z?l_ol a;it" € Cent(p ;. 4)(C), we know that C(Z?l_ol a;t’) = (ZT:_Ol a;t')c for all
c € O, implying that a;(c — o*(c)) = 0 for all ¢ € C and for all 4. Since by assumption C' is
a cyclic Galois extension of S, the ideal of C generated by {c — o%(c)|c € C} is C. This

means a; = 0 for all ¢ > 0 and so Z?:OI a;it" = ag € D, yielding Cent(p 4 q)(C) C D. O
The general structure theory of Petit algebras gives us the following two results:

Theorem 7. Let (S/Sy,0,d) be a nonassociative cyclic Azumaya algebra over Sy.

(i) (S/So,0,d) is finitely generated as an Sy-module of constant rank m?.

(ii) (S/So,0,d) is associative if and only if d € So. If (S/So,0,d) is not associative
then (S/So,0,d) contains S in its left and middle nucleus, and if Sy is a domain, then
Nuc;((D, 0,d)) = Nucy, ((D,0,d)) = S.

(#3) Let s be the smallest integer such that d € Fix(c®). Then rs = m for some integer r and
the finitely generated So-module S®St* @- - - StV of rank mr lies in Nuc,.((S/So, o, d)).
If s # 1 is a prime or Sy is a domain, then Nuc,((S/So,0,d)) =8 ® St* @ --- @ Str—1s,

(iv) S is a mazimal commutative associative subring of (S/So,0,d).

Proof. (i) is trivial as S/Sy has constant rank m.

(ii) By our general theory on Petit algebras, we know that (S/Sp,0,d) is an algebra with
center Sy satisfying these properties, cf. [19, Theorem 4].

(iii) We know that Nuc,((S/So,0,d)) = {g € R|deg(g) < m and fg € Rf} by [19, Theorem
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4]. We have Nuc,.((5/So,0,d)) NS = S. Since d € Fix(c®) we can easily conclude that also
t* € Nuc,((S/So,0,d)). This implies that the finitely generated Sp-module S & St® @
oo @ St=1s lies in the right nucleus of (S/Sp,o,d). Since S/Sy has constant rank m
by our assumptions, this submodule has constant rank mr. Now Nuc,((S/So,0,d)) is an
So-submodule of (S/Sy,0,d) and (S/So,o,d) has rank m?. Hence comparing ranks we
conclude that if s is prime then either r = m and Sy is an associative algebra, or r < m,
and Nuc,((S/Sp,0,d)) = S @ St* @ --- @ Str—1s,

If Sy is a domain, we also obtain that Nuc,((S/Sy,0,d)) = S @ St* @ --- @ St0—1s. by
the same proof as the one of [21, Proposition 3.2.3] (note that there this is proved for the
opposite algebra).

(iv) This generalizes [25, Lemma 3.1] and follows immediately from Proposition 6 above:
For all d € S*, the centralizer of S in (S/Sp,0,d) is Cent(p 4,4)(S) = S. O

Hence S is always contained in the nucleus of (S/Sy, o, d) and if Sy is a domain, then the
nucleus of (5/Sy,0,d) is S.

Theorem 8. Let (D,o,d) be a nonassociative generalized cyclic Azumaya algebra of con-
stant rank n®m?, Sy = Fix(o) N C.

(i) (D,o,d) is finitely generated as an So-module.

(ii) (D,o,d) is non-associative if and only if d € D\ Sy. If (D,o,d) is not associa-
tive then (D,o,d) contains D in its left and middle nucleus, and if Sy is a domain, then
Nuc;((D, 0,d)) = Nuc,, (D, 0,d)) = D.

(iii) Let s be the smallest integer such that d € Fix(o*®), then either m = rs for some integer
r and the left Sy-module

C@Cts@...@Ct(T*US

of constant rank rm lies in Nuc,((D,o,d)) or m = rs+ b for two integers v and b with
0 < b < s and the left So-module

CeCtie.--aCt”

of constant rank (r + 1)m lies in Nuc,((D,0,d)). In particular, So C Nuc((D, o,d)).
(iv) D is separable over Sy.

Proof. (i) This is proved analogously to [22, Lemma 3.2].

(ii) By our general theory on Petit algebras, we know that (D, o, d) is an algebra with center
So and the nuclei as claimed [19, Theorem 4].

(iii) We have Nuc,((D,0,d)) = {g € R|deg(g) < mand fg € Rf}. It is easy to check
that C' C Nuc,((D,0,d)). Let s be the smallest integer such that d € Fix(¢®). Then a
straightforward calculation shows that t* € Nuc,((D, 0, d)). Hence C@&Ct* @---aCtr—1s C
Nuc,((D,0,d)) if m =rs and C® Ct* @ --- @ Ct™ C Nuc,((D,0,d)) if m = rs+b.

(iv) By construction, (D,o,d) is free of rank m as a left D-module. Since D is finitely
generated as a C-module by assumption, and since C is finitely generated as an Sp-module
as it is a Galois extension, (D, o, d) is finitely generated as an Sp-module.

(iv) is trivial by the assumptions on D and C/Fix(o). O
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3. AUTOMORPHISMS OF NONASSOCIATIVE GENERALIZED CYCLIC AZUMAYA ALGEBRAS

3.1. Nonassociative generalized cyclic Azumaya algebras. Let D be an Azumaya
algebra over C' of constant rank n and A = (D, 0,d) be a nonassociative generalized cyclic
Azumaya algebra over Sy = C' N Fix(o). In the following o sometimes also stands for o|c
to simplify notation.

For k € C, we define N¢/g, : C — Sp via

Noys, (k) = (”ﬁl Ul(k‘))
i=o

Some of the ring automorphisms of the skew polynomial ring D[t; o] canonically induce

algebra automorphisms of (D, o, d):

Theorem 9. Let A = (D,o,d) be a nonassociative generalized cyclic Azumaya algebra. Let

7 € Autg, (D) be an algebra automorphism that commutes with o. For all k € C* such that

m—1
(1) (@)= (II ')d.
=0
define Hy - (D,o,d) — (D, 0,d) via
m—1 m—1 )
‘r k Z €Z; t = Z T Z
=0 =0
= 7(x0) + 7(x1) Kkt + T(x2)ko (k)t? + - + T(xp_1)ko (k) --- o™ 2 (k)™ 1,
Then H. j is an automorphism of A that extends 7. H,j is canonically induced by a ring

automorphism of DIt; o].
(ii) For all k € C* such that N¢yg, (k) =1,

m—1 m—1
Higp( Y ait) =ag+ Y
i=0 i=1

is an automorphism of (D, o,d) extending idp.

ai( f[ O'l(k'))ti
=0

Proof. (i) Let G be a ring automorphism of D[t; o]. Then for h(t) = 3.7 " bit" € D[t; 0] we
have

G(h(t)) = 7(bo) + Z Ho

for some 7 € Aut(D) such that 0 o7 = 700 and some k € C* (the proof of [14, p. 75]
works for D[t;o]). It is straightforward to see that for 7 € Autg,(D) and Sy = (D, 0,d),
we have Sy = Sg(sp) (cf. [16, Theorem 7] or [6, p. 55 ff.], the proofs also work when
D is not a division algebra). In particular, this means that if & € C* satisfies (1) then
G(f(t)) = (IT1%" o' (k) f(t) = af(t) with a € D* being the product of the o(k), and so
G induces an isomorphism of Sy with S,y = Sy, i.e. an automorphism of Sy = (D, 0,d).

(ii) follows from (i). O

All the automorphisms of a nonassociative generalized cyclic Azumaya algebra (D, o, d)
are canonically induced by ring automorphisms of the twisted polynomial ring D[¢t; o], i.e.

the maps H; j are all possible automorphisms:
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Theorem 10. Let A = (D,o,d), d € D*, be a nonassociative generalized cyclic Azumaya

algebra of constant rank m2n? over Sy.

(i) Let H € Autg,(A). Then H = H,j, with

(2) HTvk(i aiti) = T(ao) + - T(ai)(ﬁdl(k))ti,
i=0 i=1 =0

for some T € Autg,(D) which commutes with o, and some k € C* such that 7(d) =
Ne¢ys,(k)d. Moreover, if T € Autg, (D) commutes with o, and k € C* such that 7(d) =
Neys,(k)d, then Hy . is an automorphism of A, and induced by an automorphism of D[t; o].
(ii) For all k € C* such that N¢,g,(k) = 1, id € Aut(D) extends to an automorphism
H = Hiq . € Autg,(A),

m—1 m—1 i—1
Hid,k(z a;t') = ag + Z ai(HUl(k))ti,
i=0 i=1 1=0

The proof is similar to the one of [7, Theorem 6], but works also when the algebra is

non-associative, as it does not rely on the right nucleus being D, whereas the proof of [7,
Theorem 6] did.

Proof. (i) Let H € Autg,(A). Then H|p € Autg,(D), since H leaves the commutator
Cent(p 44 (C) invariant and we know that Cent(p  4)(C) = D. (The argument in the proof
of [7, Theorem 6] uses instead that the right nucleus is invariant under H).

Thus H|p = 7 for some 7 € Autg, (D). Write H(t) = .7 " k;t' for some k; € D, then

we have

H(tz) = H{t)H(z) = ( i kit')7(z) = i kot (T(2))t",
i=0 i=0
and ) )
H(tz) = H(o(2)t) = 7(0(2)) Z kit' = Z 7(0(2)) kst
i=0 i=0

for all z € D. Comparing the coefficients of ¢ yields
kio'(1(2)) = 7(0(2))k; for all i = {0,...,m — 1}
for all z € D. This implies that
ki(o'(1(2)) — 7(0(2))) =0 for all i € {0,...,m — 1}

for all z € C. Now o restricted to C generates the Galois group of the cyclic Galois extension
C/Sp by assumption, and 7|c : C — C fixes Sy by assumption, thus lies in this Galois
group. Hence 7|c commutes with o|c and we obtain

ki(o'(1(2)) — o(7(2))) =0 for all i € {0,...,m — 1}
for all z € C, therefore
ki(o"(w) —w) =0forallie {1,...,m—1}

for all w € C. As o|c has order m, we know that o|c # o'|¢ for all 1 #4 € {0,...,m — 1}.
Since C'/Sy is Galois, we also know that the ideal of C' generated by {c — ¢%(c) |c € C}
is all of C by [10, p. 80]. That means k; =0 for all 1 #¢ € {0,...,m —1}. For i = 1, we
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obtain k17(0(z)) = 7(0(2))k; for all z € D, hence ky € C. This implies H(t) = kt for some
ke Cx.

Since
i-1
H(et') = H(z)H(t)' = 7(2)(kt) = 7(=) ([T o' (0) )",
1=0
forallie {1,...,m —1} and all z € D, H has the form
m—1 ) m—1 i—1 )
H Z a;t' — 7(ag) + T(ai)(Hal(k))tl,
i=0 i=1 1=0

for some k € C*.
Comparing the constant terms in H(t)™ = H(t™) = H(d) implies

7(d) = ko(k)-- o™ ' (k)d = Ngys, (k)d.

The fact that H, ) is by assumption a multiplicative map forces o and 7 to commute:
H.i(toc)=H;,(t)H: k(c) for all ¢ € D implies that

H,i(toc) = H;(o(c)t) = 1(0(c))kt

and
H: (t)H: i(c) = ktot(c) = ko(r(c))t.

Thus we obtain 7(o(c))k = ko(r(c)) for all ¢ € D and some k € C*, implying 7(c(c)) =
o(7(c)) for all ¢ € D.

By Theorem 9 all these maps are automorphisms induced by automorphisms of the skew
polynomial ring, since ¢ and 7 commute.
(ii) For 7 = idp, H has the form

Hid,k(z a;t') = ag + az(Hal(k))tl
i=0 i=1  1=0
for some k € C* with ko(k)---0™ (k) = N¢ys, (k) = 1 by (i). O

It is clear that H,, = H,; if and only if 0 = p and k = [, and that H; y o H,; = Hrop 1.

Corollary 11. (i) The subgroup of So-automorphisms of (D, o,d) extending idp is isomor-
phic to
{k € C*|N¢gys, (k) =1},

(ii) Suppose that Sy contains an mth root of unity w. If T has finite order s, then the cyclic
subgroup (H; ) of Autg,(A) generated by H. . has order at most ms. (If T has infinite
order then this subgroup has infinite order.) In particular, (H;q.) ts a cyclic subgroup of
Autg, ((D,0,d)) of order at most m.

As a consequence of Theorem 10 and Corollary 11 we obtain all automorphisms of a

nonassociative cyclic Azumaya algebra:
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Theorem 12. Let A = (S/So,0,d) be a nonassociative cyclic Azumaya algebra.
(i) Let H € Autg,(A). Then H = H,}, with

HT’k(Z_; a;t’) = 1(ag) + Z_; T(ai)(;Hoal(k))ti,

for some T € Autg, (S) and some k € S* such that 7(d) = Ng;s,(k)d. All maps H;y where
T € Autg, (S) and where k € S* such that 7(d) = Ng/s,(k)d, are automorphisms of A.
(ii) For all k € S* such that Ng;s,(k) =1, ids can be extended to an automorphism

m—1 . m—1 i—1 _
Hid,k(z a;t') = ao + Z ai( l_Iorl(k:))tZ
=0 =1 =0

in Autg, (4).
(iii) The subgroup of So-automorphisms of A extending ids is isomorphic to

{k € S*|Ngys,(k) =1}.

Proof. (i) Let S/Sy be a cyclic Galois ring extension with Gal(S/Sy) = (o) of order m, o
an automorphism of S. Then for all 7 € Gal(S/Sy) and k € S* such that

(3) 7(d) = (nﬁl al(k:))d,
=0

the map H,  : (5/S,0,d) — (5/S0,0,d),

m—1 m—1

Hp (> ait') =Y w(i)(kt)'
i=0 i=0
is an automorphism of the nonassociative cyclic Azumaya algebra (S/Sy, 0, d) that extends
T (choose D = C in Theorem 9). Since all 7 € Autg,(S) commute with o, we obtain all
automorphisms this way by Theorem 10.
(ii) and (iii) follow from (i) and Corollary 11. O

Note that if Sy contains an mth root of unity w, and 7 has finite order s, then the cyclic
subgroup (H,,,) of Autg,((S/So,0,d)), again has order at most ms.
If Sy has no non-trivial mth root of unity, we obtain:

Theorem 13. Suppose Sy has no non-trivial mth root of unity. Let A = (S/Sy,0,d) be
a nonassociative cyclic algebra of degree m where d € S* is not contained in any proper

subring of S. Then every S-automorphism of A leaves Sy fized and
Autgo (A) = ker(NS/SD).

Proof. Every automorphism of A has the form H;q ;: suppose that there exist j € {1,...,m—
1} and k € S* such that H,; , € Autg,(A). This implies H2, , = H,j 0 H,i ), € Autg,(A)
and

m—1 m—1

(4) ngk( Z xiti) = 0% (x0) + Z UQj(%)(ﬁ Uj+q(]f)0q(’f))ti~
i=1 q=0

1=
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Now H?2;, must have the form H,2;; for some | € S*. Comparing (2) and (4) yields
| = ko¥ (k). Similarly, H3, , = H,s; s € Autg,(A) where s = ko’ (k)o? (k). Continuing in
this manner the automorphisms H,; ., Hy2i ;, Hysi g, . .. all satisfy (1) implying that

o’(d) = Ngys, (k)d,

o?(d) = Ngys,(ko’ (k))d = Ng;s,(k)*d,
(5)

d = O'nj(d) = Ns/so (k)nd,

where n = m/ged(j, m) is the order of 7. Note that 0% (d) # d for alli € {1,...,n—1} since
d is not contained in any proper subring of S. Therefore Ng,g, (k)" =1 and NS/SO(k:)i #1
for all i € {1,...,n — 1} by (5), i.e. Ng,g,(k) is a primitive nth root of unity, thus also an

mth root of unity, a contradiction. This proves the assertion. O

3.2. Associative generalized cyclic Azumaya algebras. In the associative setting,
the previous results show that all automorphisms of a generalized cyclic Azumaya algebra
(D, 0,d) are induced by automorphisms of D[t;o]:

Corollary 14. Let A = (D,o,d) be a generalized cyclic Azumaya algebra, i.e. d € Si.
(i) Every T € Autg, (D) that commutes with o can be extended to an automorphism

-1 m—1

Hf,k(i ait') = 3 7(ai)(kt) = 7(ag) + 3 T(ai)(ﬁol(k))ti
1=0 =0

% i=1

3

I
o

in Auts, (A) for some k € C* such that N¢ys, (k) = 1. All maps H., where T € Autg, (D)
commutes with o and where k € C* such that N¢s, (k) =1 are automorphisms of A.
(ii) The subgroup of So-automorphisms extending some fixred T € Autg, (D) is isomorphic to

{k € C*|N¢gys, (k) =1},

(iii) Suppose that Sy contains a primitive mth root of unity w. If T has finite order s, then
the cyclic subgroup (H,,) of Auts,(A) generated by H, ., has order ms. (If T has infinite
order then this subgroup has infinite order.) Furthermore, (H;q.,) s a cyclic subgroup of
Autg, ((D,0,d)) of order m.

(i) {T € Autg, (D) |7 00 =0 o7} is isomorphic to a subgroup of Autg,(A).

Proof. It remains to show (iv), which holds since we have the canonical extension H, ; for
each 7 € Autg, (A) that commutes with o. O

Corollary 15. Let A = (5/So,0,d), d € S, be a cyclic Azumaya algebra. Then every

7 € Autg, (S) can be extended to an automorphism

Hﬂk(z_o ait’) = 1(ag) + z_; T(ai)(l_Hoal(k))ti

in Autgs,(A) for some k € S* such that Ng/s,(k) = 1. All maps H; where 7 € Autg,(S)
and where k € S* such that Ng;s,(k) =1 are algebra automorphisms of A.
In particular, Autg,(S) = (o) C Autg,(A).
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These are all possible automorphisms. So there is a bijection between the set of auto-
morphisms of A = (5/S5y,0,d) and the set

{(7,k) |7 € Autg, (A), k € S with Ngg, (k) = 1}

and for each 7 € Autg,(A), there are either infinitely many (if the set of norm one elements
in S is infinite) or [{k € S* | Ng/g,(k) = 1}| different possible extensions.

4. INNER AUTOMORPHISMS

We now consider the inner automorphisms of nonassociative generalized cyclic Azumaya

algebras.

Theorem 16. (a) Let A = (D, 0,d) be a nonassociative generalized cyclic Azumaya algebra.
Let k € C such that there is ¢ € C* with k = ¢ lo(c).
(i) Hyj, = Ge.o H 1 (note that H, 1 is not necessarily an automorphism here, just a map).

(i) The automorphism Hqy of A is the inner automorphism
m—1 m—1
GC(Z ait’) = (¢! Z a;t')e
i=0 i=0

(b) Let A = (5/Sp,0,d) be a nonassociative cyclic Azumaya algebra. Let k € S such that
there is c € S* with k = ¢ lo(c).
(i) Hr, = G.o H;1 (note that H; 1 again is not necessarily an automorphism here, just a

map).
(i) The automorphism H;qy of A is the inner automorphism

m—1 m—1
GC(Z ait’) = (¢! Z ait')c
i=0 i=0
Proof. (a) (i) For k € C such that k = ¢c"1o(c) for some ¢ € C*, we have
ko(k)--- oY (k) = co'(c), i=1...,m—1,

hence

m—1

m—1 m—1 m—1
E T(a)t") = 1E 7(a;)t")e E T(a;))c o' (o)t = H H, E a;t’)
=0 1=0 1=0

with the last equality holding because of II_jo!(c 1o (c)) = ¢ 1o’ (c).
(ii) follows from (i) and (b) from (a). O

A similar result to Theorem 16 (a) (i) was proved for automorphisms of (associative)
G-Azumaya algebras over a connected commutative ring R with a primitive sth root of
unity in [5] when G is a finite abelian group of finite order n and exponent s, provided that
Pic,(R) is trivial and n a unit in R.

Let us look at the associative setting:
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Theorem 17. (a) Let A = (D, 0,d) be a generalized cyclic Azumaya algebra.
(i) Let k € C* such that there is c € C* with k = ¢ 'o(c). Then H, = G.0o H, 1.

(i) Hy1 = Gy-1 is an inner automorphism. Moreover,
{Gctfj |c€C’X,0§i§m71}

is a subgroup of Auts,(A) of inner automorphisms.

(b) Let A= (S/So,0,d) be a cyclic Azumaya algebra.

(i) Let k € S* such that there is ¢ € S* with k = ¢ 'o(c). Then Hyp = G.o H, 1.

(i1) {Ge-i e € S*,0 <i<m—1} is a subgroup of Autg,(A) of inner automorphisms.

Proof. (a) (i) follows from Theorem 16.
(i) We know that t™ = d in A. This means that d~*™~1! is the inverse of ¢, since d € Sp.
We have

m—1 m—1 m—1 m—1
G (Y ait') = tat' (t" 1) =d > o(a)td = Hya (D ait’).
=0 =0 =0 =0

Thus also H,; ; = G;-; is an inner automorphism for all integers j, 0 < j <m — 1, and so
is Geo Hyjy = Hyj o-14(c) = Gey—i for all ¢ € C. The rest of the assertion is trivial.
All of (b) follows from (a). O

Corollary 18. (i) Let (D, o0,d) be a generalized cyclic Azumaya algebra. If there exists an
analogue of Hilbert’s Theorem 90 for the ring extension C/Sy (i.e., for every k € C with
Neys, (k) =1 there is ¢ € C* such that k = ¢ 'o(c)), then

Auts, ((D,0,d)) = {H-1 |7 € Auts (D), 00T =700, k€ C* such that N¢ /g, (k) = 1}

={G.oH:1 |7 € Autg,(D),coTr =700, c€ C*}.

(i) If there exists an analogue of Hilbert’s Theorem 90 for the cyclic Galois ring extension
S/So, then the cyclic Azumaya algebra (S/Sy,0,d) has the automorphism group

Autg, ((S/S0,0,d)) ={Ge—i |c € S*,0<i<m—1}.

Proof. (i) The first equality is clear by Theorem 10. By assumption, we can write H, j =
G.(H, 1) for k= o(c)c?, that is

Hﬂk(z—: ait’) = (¢! z_: 7(a;)t')c
i=0 i

which implies the second equality.

(ii) We know that Auts, ((S/So,0,d)) = {Hyi 1|0 < j <m—1, k € §* such that Ng/g, (k) =
1}. Now we also have H,i ; = GeoH,; y forl = o(c)c™t, and H,j 1 = Gy-10Gy-10- - -0Gy-1 =
G5, thus H,; ; = G. o Gy-; = G5 is an inner automorphism. This implies the asser-
tion. O
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4.1. The automorphisms of central simple algebras. In this section let D be a division
algebra which is finite-dimensional over its center F' = C(D) and o € Aut(D) such that o|p
has finite order m and fixed field Fy = Fix(c) N F. Thus F/Fy is automatically a cyclic
Galois field extension of degree m with Gal(F/Fy) = (o|r). For all d € F*, A= (D, 0,d) is
a generalized cyclic central simple algebra over Fy, cf. [13].

As an immediate consequence of our results, the automorphisms of a generalized cyclic
algebra over a field are induced by ring automorphisms of the ring DIt; o] used in their
construction. More precisely, they can be described as the composition of an inner auto-
morphism G, ¢ € F*, with the canonical extension H,; of some 7 € Autg, (D) which

commutes with o:
Corollary 19. (i) Let A= (D,o,d) be a central simple algebra over Fy, then
Autp,(A) = {H; |7 € Autp,(D),0 07 =700, k€ F* such that Np/p, (k) = 1}

={G.oH,;1|7m € Autp,(D),coTr =100, c€ F*}.
(ii) Let A = (K/F,o0,d) be a cyclic algebra over F of degree m. Then

Autp(A) = {Ge-i|c€e K*,0<j<m—1}
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