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Abstract. We define a nonassociative generalization of cyclic Azumaya algebras em-

ploying skew polynomial rings D[t;σ], where D is an Azumaya algebra of constant rank

with center C and σ an automorphism of D, such that σ|C has finite order. The auto-

morphisms of these algebras are canonically induced by ring automorphisms of the skew

polynomial ring D[t;σ] used in their construction. We achieve a description of their (left)

inner automorphisms. Results on the automorphisms of classical Azumaya algebras and

central simple algebras of this type are obtained as special cases.

Introduction

Let D be an Azumaya algebra of constant rank with center C. Let σ ∈ Aut(D) be a ring

automorphism, such that σ|C has finite order m and fixed ring S0 = Fix(σ)∩C. We assume

that C/S0 is a cyclic Galois ring extension of degree m with Galois group Gal(C/S0) = 〈σ|C〉.
We define generalized cyclic Azumaya algebras with the help of the skew polynomial rings

D[t;σ] as quotient algebras D[t;σ]/D[t;σ]f for some f(t) = tm − d, where m is the order of

σ|C and d ∈ S0 = C ∩ Fix(σ). Generalized cyclic Azumaya algebras are special examples

of crossed product algebras that are Azumaya algebras: the crossed product is taken using

D and the cyclic group 〈σ〉. In particular, let σ be an automorphism of S with fixed ring

S0, and let S/S0 be a Galois ring extension with cyclic Galois group G = 〈σ〉. Then this

construction yields cyclic Azumaya algebras.

This approach allows us to fit generalized Azumaya algebras into a more general family

of nonassociative algebras. In order to do so we use a construction that goes back to Petit

[17]. We note that the skew polynomials Rm = {h ∈ D[t;σ] |deg(h) < m} of degree less

than m canonically represent the elements of the left D[t;σ]-module D[t;σ]/D[t;σ]f , for any

f ∈ D[t;σ] of degree m. Let f(t) = tm − d, where m is the order of σ|C , but allow d ∈ D×.

Define the new S0-algebra Sf on the additive subgroup Rm by using right division by f

to define the algebra multiplication g ◦ h = gh modrf . This algebra is not associative for

d 6∈ S0, but coincides with the associative quotient algebra D[t;σ]/D[t;σ]f if d ∈ S0. The

algebras Sf were introduced and studied in detail by Petit in [17, 18] when D is a division

ring, and more generally for arbitrary rings in [19].

Note that associative generalized cyclic algebras over fields were investigated by Amitsur

in [3], and nonassociative generalized cyclic algebras over fields in [7]. Another generalization
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of associative generalized cyclic algebras over fields called associative cyclic extensions of

simple rings was considered by Kishimoto [14].

After introducing the basic terminology in Section 1, we introduce nonassociative gen-

eralized cyclic Azumaya algebras and some of their properties in Section 2. In Section 3,

we then prove that every automorphism of a nonassociative generalized Azumaya algebra

A of constant rank over S0 is canonically induced by some ring automorphism of D[t;σ]

(Theorem 10). Furthermore, the automorphisms HidD,k that extend idD are in one-one

correspondence with the elements of the group {c ∈ C |NC/S0
(c) = 1}. These are the only

automorphisms of A, unless some τ 6= idD that commutes with σ can be extended to an S0-

automorphism of A as well. In particular, every automorphism of an associative generalized

cyclic Azumaya algebra A of constant rank extends an automorphism τ ∈ AutS0
(D) that

commutes with σ, and the possible extensions Hτ,k of an S0-automorphism τ that commutes

with σ are in one-one correspondence with the group {c ∈ C |NC/S0
(c) = 1}. Moreover,

the S0-automorphisms τ of D that commute with σ form a subgroup of the automorphism

group of the Azumaya algebra.

In Section 4, we show that all automorphisms of a nonassociative generalized cyclic Azu-

maya algebra can be written as a composition of an inner automorphism and a map that is

a canonical extension of τ to A of the type
∑m−1
i=0 ait

i 7→
∑m−1
i=0 τ(ai)t

i (Theorem 16). We

also prove that the automorphisms HidD,k of a nonassociative generalized cyclic Azumaya

algebra which extend the identity idD are inner for all k ∈ C, such that there is c ∈ C× with

k = c−1σ(c). In the special case that we have a nonassociative generalized cyclic algebra

(D,σ, d) over a base field, all its automorphisms are of this last type.

As an immediate consequence of our results, the automorphisms of an Azumaya algebra

(D,σ, d), where the ring extension satisfies an analogue of Hilbert’s Theorem 90, are the

composition of an inner automorphism Gc, c ∈ C× with the canonical extension Hτ,1 of some

τ ∈ AutS0
(D) which commutes with σ (Corollary 18). In particular, the automorphisms of

a generalized cyclic central simple algebra over a field are induced by ring automorphisms of

the ring D[t;σ] used in their construction; each is the composition of an inner automorphism

Gc, c ∈ C× with the canonical extension Hτ,1 of some τ ∈ AutS0
(D) which commutes with

σ (Corollary 19). If A = (K/F, σ, d) is an associative cyclic central simple algebra, we show

that all its automorphism can be described as inner automorphisms of the type Gctj for

some c ∈ K with NK/F (c) = 1 and a suitable integer j, 0 ≤ j ≤ m− 1.

1. Preliminaries

1.1. Nonassociative algebras. Let R be a unital commutative ring and let A be an R-

module. A is an algebra over R if there exists an R-bilinear map A×A→ A, (x, y) 7→ x · y,

denoted simply by juxtaposition xy, the multiplication of A. An algebra A is called unital

if there is an element in A, denoted by 1, such that 1x = x1 = x for all x ∈ A. We will only

consider unital algebras.

The associator of A is given by [x, y, z] = (xy)z−x(yz). The left nucleus of A is defined as

Nucl(A) = {x ∈ A | [x,A,A] = 0}, the middle nucleus of A is Nucm(A) = {x ∈ A | [A, x,A] =

0} and the right nucleus of A is Nucr(A) = {x ∈ A | [A,A, x] = 0}. Nucl(A), Nucm(A), and
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Nucr(A) are associative subalgebras of A. Their intersection Nuc(A) = {x ∈ A | [x,A,A] =

[A, x,A] = [A,A, x] = 0} is the nucleus of A. Nuc(A) is an associative subalgebra of A

containing F1 and x(yz) = (xy)z whenever one of the elements x, y, z lies in Nuc(A). The

center of A is defined as C(A) = {x ∈ A |x ∈ Nuc(A) and xy = yx for all y ∈ A}. Define

Comm(A) = {x ∈ A |xy = yx for all y ∈ A}. For a subring B of a unital ring A, the

centralizer (also called the commutator subring if A is associative) of B in A is defined as

CentA(B) = {a ∈ A | ab = ba for all b ∈ B}. If A is not associative, CentA(B) need not be

a ring. If CentA(B) = B then CentA(B) is a maximal commutative nonassociative subring

of A.

An automorphism G ∈ Aut(A) of an algebra A is called a (left) inner automorphism if

there is an element m ∈ A with left inverse ml such that G(x) = (mlx)m for all x ∈ A. We

denote such an automorphism by Gm. It is possible to define (right) inner automorphisms

analogously as Fm(x) = m(xmr) for all x ∈ A, if there is an element m ∈ A with right inverse

mr, but these are not needed in this paper. Given an inner automorphism Gm ∈ Aut(A)

and some H ∈ Aut(A), H−1 ◦ Gm ◦ H ∈ Aut(A) is also an inner automorphism. Indeed,

[27, Lemma 2, Theorem 3, 4] generalize to any nonassociative algebra over a ring:

Proposition 1. Let A be an algebra over R.

(i) For all invertible n ∈ Nuc(A), Gn(x) = (n−1x)n is an inner automorphism of A.

(ii) If Gm is an inner automorphism of A, then so is Gnm(x) = ((mln
−1)x)(nm) for all

invertible n ∈ Nuc(A).

(iii) If Gm is an inner automorphism of A, and a, b ∈ Nuc(A) are invertible, then Gam =

Gbm if and only if ab−1 ∈ C(A).

(iv) For invertible n,m ∈ Nuc(A), Gm = Gn if and only if n−1m ∈ C(A).

The set {Gm |m ∈ Nuc(A) is invertible} of inner automorphisms is a subgroup of AutR(A).

For each invertible m ∈ Nuc(A) \ C(A), Gm generates a cyclic subgroup of inner automor-

phisms which has finite order s if ms ∈ C(A), so in particular if m has order s.

If the nucleus of A is commutative, then for all invertible n ∈ Nuc(A), Gn(x) = (n−1x)n

is an inner automorphism of A such that Gn|Nuc(A) = idNuc(A).

1.2. Azumaya algebras. An algebra A is called an Azumaya algebra over a unital ring R,

if A is finitely generated as an R-module, A is a separable extension of R, and the center

of A is R. Equivalently, A is an Azumaya algebra if A is a finitely generated R-module and

A/Am is a central simple R/m-algebra, for all maximal ideals m in R.

A commutative ring extension R′ of R is called a splitting ring of A if A⊗RR′ ∼= EndR′(P )

for a suitable faithfully projective R′-module P .

If S is a maximal commutative subalgebra in A and S is separable over R then S is a

splitting ring for A [15].

1.3. Galois extensions. Let S be a commutative ring. Recall that two S0-algebra homo-

morphisms σ and τ are called strongly distinct, if for every non-zero idempotent e ∈ S there

is x ∈ S such that σ(x)e 6= τ(x)e.

If we assume that S is an S0-algebra and faithfully projective as an S0-module, and that G

is a group of S0-algebra homomorphisms of S, then the following conditions are equivalent:
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(i) S is a separable S0-algebra, finitely generated projective as an S0-module, and rankS0
S =

|G|. All elements of G are pairwise strongly distinct.

(ii) S is faithfully projective as an S0-module, rankS0S = |G| and for every σ ∈ G there

exist xi,σ, yi,σ ∈ S such that
∑mσ
i=1 xi,στ(yi,σ) = δτ,σ for all τ ∈ G.

(iii) ϕ : S ⊗S −→ Sn, ϕ(s⊗ t) = (sτ(t))τ∈G is an isomorphism of S-algebras where n is the

order of G.

If one of these conditions is satisfied we call S/S0 a Galois extension with Galois group

G in the sense of Chase-Harrison-Rosenberg [9].

Moreover, S/S0 is called a weakly Galois extension (resp., (G-)Galois in Szeto’s papers

[22, 23, 24, 25]) if S is a separable algebra over S0, finitely generated projective as S0-module,

and there is a finite group of automorphisms G of S such that S0 = SG is the fixed ring of

G in S. Note that if S/S0 is a Galois extension with Galois group G then this implies that

SG = S0. If S/S0 is a Galois extension and the elements in G are S0-automorphisms of S

then S is a weakly Galois extension of S0 of constant rank (cf. [11, Lemma 2.3, Corollary

2.4] for this summary).

If S/S0 is a Galois extension with Galois group G, then the map H 7→ SH gives a one-one

correspondence between the set of subgroups of G and the set of S0-subalgebras SH of S

which are separable and G-strong, i.e. the restriction of any two elements of G to SH are

either equal or strongly distinct as maps from SH to SH .

In this paper, we will use commutative Galois extensions that are weakly commutative

Galois extensions.

1.4. Skew polynomial rings. Let S be a unital associative ring, σ a ring endomorphism of

S and δ : S → S a left σ-derivation, i.e. an additive map such that δ(ab) = σ(a)δ(b) + δ(a)b

for all a, b ∈ S. Then the skew polynomial ring S[t;σ, δ] is the set of skew polynomials

g(t) = a0+a1t+· · ·+antn with ai ∈ S, with term-wise addition and where the multiplication

is defined via ta = σ(a)t+ δ(a) for all a ∈ S. That means,

atnbtm =

n∑
j=0

a(∆n,j b)t
m+j

for all a, b ∈ S, where the map ∆n,j is defined recursively via

∆n,j = δ(∆n−1,j) + σ(∆n−1,j−1),

with ∆0,0 = idS , ∆1,0 = δ, ∆1,1 = σ. Therefore ∆n,j is the sum of all polynomials in σ and

δ of degree j in σ and degree n− j in δ [13, p. 2]. If δ = 0, then ∆n,n = σn.

For σ = id and δ = 0, we obtain the usual ring of left polynomials S[t] = S[t; id, 0]. Define

Fix(σ) = {a ∈ S |σ(a) = a} and Const(δ) = {a ∈ S | δ(a) = 0}.
For f(t) = a0+a1t+· · ·+antn ∈ S[t;σ, δ] with an 6= 0 define deg(f) = n and deg(0) = −∞.

Then deg(gh) ≤ deg(g)+deg(h) (with equality if h has an invertible leading coefficient, or g

has an invertible leading coefficient and σ is injective, or if S is a division ring). An element

f ∈ S[t;σ, δ] is irreducible if it is not a unit and it has no proper factors, i.e if there do not

exist g, h ∈ R such that f = gh.
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1.5. Algebras obtained from skew polynomial rings. Let S be a unital associative

ring and R = S[t;σ, δ] a skew polynomial ring where σ is injective.

Assume f(t) =
∑m
i=0 ait

i ∈ S[t;σ, δ] has an invertible leading coefficient am ∈ S×. Then

for all g(t) ∈ S[t;σ, δ] of degree l ≥ m, there exist uniquely determined r(t), q(t) ∈ S[t;σ, δ]

with deg(r) < deg(f), such that g(t) = q(t)f(t) + r(t) ([6],[19, Proposition 1]).

Let modrf denote the remainder of right division by f . The skew polynomials of degree

less thatm canonically represent the elements of the right S[t;σ, δ]-module S[t;σ, δ]/S[t;σ, δ]f .

Moreover,

{g ∈ S[t;σ, δ] |deg(g) < m}

together with the multiplication

g ◦ h =

gh if deg(g) + deg(h) < m,

gh modrf if deg(g) + deg(h) ≥ m,

is a unital nonassociative ring Sf also denoted by S[t;σ, δ]/S[t;σ, δ]f . Sf is a unital nonas-

sociative algebra over the commutative subring

{a ∈ S | ah = ha for all h ∈ Sf} = Comm(Sf ) ∩ S

of S. When the context is clear, we will drop the ◦ notation and simply use juxtaposition

for multiplication in Sf . Note that if f has degree 1 then Sf ∼= S, and if f is reducible then

Sf contains zero divisors. For all invertible a ∈ S we have Sf = Saf .

In the following, we assume m ≥ 2 and call the algebras Sf Petit algebras as the con-

struction goes back to Petit [17].

Sf is a free left S-module of rank m with basis t0 = 1, t, . . . , tm−1. Sf is associative if

and only if Rf is a two-sided ideal in R. If Sf is not associative then S ⊆ Nucl(Sf ), S ⊆
Nucm(Sf ) and

{g ∈ R |deg(g) < m and fg ∈ Rf} = Nucr(Sf ).

When S is a division ring, these inclusions become equalities [19, Theorem 4].

Note that C(Sf ) = Comm(Sf ) ∩Nucl(Sf ) ∩Nucm(Sf ) ∩Nucr(Sf ) and so

{a ∈ S | ah = ha for all h ∈ Sf} = Comm(Sf ) ∩ S ⊆ C(Sf ).

If Nucl(Sf ) = Nucm(Sf ) = S this yields that the center C(Sf ) = Comm(Sf ) ∩ S ∩
Nucr(Sf ) = Comm(Sf ) ∩ S of Sf is identical to the ring {a ∈ S | ah = ha for all h ∈ Sf}.
Also note that

C(S) ∩ Fix(σ) ∩ Const(δ) ⊆ {a ∈ S | ah = ha for all h ∈ Sf}

which is proved analogously as [19, Theorem 8 (ii)], where δ = 0.

If δ = 0 and f(t) =
∑m
i=0 ait

i ∈ S[t;σ] then Comm(Sf ) = {g ∈ Sf | gh = hg for all h ∈
Sf} contains the set

{
m−1∑
i=0

dit
i | di ∈ Fix(σ) and cdi = diσ

i(c) for all c ∈ S}
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[19, Theorem 8 (i)]. If a0 is invertible, the two sets are equal [6, Proposition 7.4 (iii)],

implying

{a ∈ S | ah = ha for all h ∈ Sf} = {a ∈ S | a ∈ Fix(σ) and ca = ac for all c ∈ S} = C(S)∩Fix(σ).

2. Nonassociative generalized cyclic Azumaya algebras

In the following, let D be a unital ring with center C = C(D). Let σ ∈ Aut(D) be

a ring automorphism, such that σ|C has finite order m and fixed ring S0 = Fix(σ) ∩ C.

Moreover, we assume that C/S0 is a cyclic Galois ring extension of degree m with Galois

group Gal(C/S0) = 〈σ|C〉. This implies that C has constant rank m as an S0-module.

Let f(t) = tm − d ∈ D[t;σ] with d ∈ D× invertible. Then Sf = D[t;σ]/D[t;σ](tm − d) is

a nonassociative algebra over its center

{a ∈ D | ah = ha for all h ∈ Sf} = C ∩ Fix(σ) = S0.

Moreover, since d is invertible we know that

Comm(Sf ) = {
m−1∑
i=0

dit
i | di ∈ Fix(σ) and cdi = diσ

i(c) for all c ∈ S}.

In the associative setting, i.e. when d ∈ S×0 , we have the following result:

Theorem 2. Let Sf = D[t;σ]/D[t;σ](tm − d) with d ∈ S×0 . Then the following statements

are equivalent:

(i) D[t;σ]/D[t;σ](tm − d) is an Azumaya algebra over S0.

(ii) D is an Azumaya algebra over C.

Proof. (ii) implies (i): Since D is an Azumaya algebra over C, D is separable over C.

Moreover, Sf is a separable extension of D, since

x = m−1d−1
m−1∑
i=1

ti ⊗ tm−1−i

is a separable idempotent of Sf over D: we have m−1d−1
∑m−1
i=1 ti ⊗D tm−1−i = 1 and

gx = xg for all g ∈ Sf . Thus Sf is a separable extension of S0 by the transitivity of

separable extensions. By our general theory on Petit algebras, we know that Sf is an

algebra with center S0. By construction, Sf is finitely generated as an S0-module, since D

is finitely generated over C. Therefore Sf is an Azumaya algebra over S0.

(i) implies (ii): Assume that D[t;σ]/D[t;σ](tm− d) is an Azumaya algebra. Then its center

is S0 = C∩Fix(σ). By Proposition 6 below, the centralizer Cent(D,σ,d)(C) of C in (D,σ, d) is

D. Thus D is a separable S0-algebra by the Commutator Theorem for Azumaya algebras [12,

Theorem 4.3], since C is a separable S0-algebra. Therefore D is an Azumaya algebra. �

Assuming additionally that σ has finite order m, we obtain:

Theorem 3. Let Sf = D[t;σ]/D[t;σ](tm − d) with d ∈ S×0 and let σ have finite order m.

Then the following statements are equivalent:

(i) D[t;σ]/D[t;σ](tm − d) is an Azumaya algebra over S0.



GENERALIZED CYCLIC AZUMAYA ALGEBRAS 7

(ii) Let Gt(g) = tgt−1 be the inner automorphism of Sf defined by t. Then {u ∈ Sf |Gt(u) =

u} = Fix(σ)[t]/Fix(σ)[t](tm − d) is an Azumaya algebra with center S0[t]/S0[t](tm − d).

Proof. We only need to show that {u ∈ Sf |Gt(u) = u} = Fix(σ)[t]/Fix(σ)[t](tm − d). The

rest is proved in [22, Theorem 3.3]. For this we note that both Fix(σ) ⊆ {u ∈ Sf |Gt(u) = u}
and t, t2, . . . , tm−1 ∈ {u ∈ Sf |Gt(u) = u}. Moreover, we have tm = d ∈ {u ∈ Sf |Gt(u) =

u}, so that {u ∈ Sf |u(t) ∈ Fix(σ)[t]} ⊆ Fix(σ)[t]. This proves the assertion. �

More generally, we still have:

Theorem 4. Let D be an Azumaya algebra over C and let σ|C have finite order m. Consider

the Azumaya algebra Sf = D[t;σ]/D[t;σ](tm − d), d ∈ S×0 . Let Gt(g) = tgt−1 be the inner

automorphism of Sf defined by t. Then:

(i) D[t;σ]/D[t;σ](tm−d) is a Gt-Galois extension of SGtf = {u ∈ Sf |Gt(u) = u}, such that

SGtf is a direct summand of D[t;σ]/D[t;σ](tm − d) as a bimodule over SGtf .

(ii) {u ∈ Sf |Gt(u) = u} = Fix(σ)[t]/Fix(σ)[t](tm − d) is an Azumaya algebra with center

S0[t]/S0[t](tm − d).

Proof. (i) The proof of [22, Theorem 3.3] for this statement carries over verbatim. Note

that t is invertible in Sf with inverse tm−1d−1.

(ii) The corresponding part of the proof of [22, Theorem 3.1] does not need the assumption

that σ ∈ Aut(D) has finite order m, since we assume that d ∈ S×0 , so in particular that

d ∈ C, and we assume that σ|C has finite order order m. �

Definition 1. Let D be an Azumaya algebra of constant rank with center C and f(t) =

tm−d ∈ D[t;σ] with d ∈ S×0 . Then the associative algebra Sf = D[t;σ]/D[t;σ]f in Theorem

2 is called a generalized cyclic Azumaya algebra. We write (D,σ, d) for this algebra.

We follow Jacobson’s terminology [13, p. 19]. Note that for d ∈ S×0 , (D,σ, d) can also be

viewed as a crossed product algebra.

In particular, if D = C is a commutative ring, C/S0 is a cyclic Galois extension of

degree m with Galois group generated by σ, and f(t) = tm − d ∈ S0[t], then we obtain an

associative Azumaya algebra we will denote by (C/S0, σ, d) = C[t, σ]/C[t;σ]f , which we call

a cyclic Azumaya algebra. Note that if C/S0 is a cyclic field extension, then (C/S0, σ, d) is

an associative cyclic algebra over S0 of degree m2.

Remark 5. (i) This construction of Azumaya algebras was first mentioned in [26] for f(t) =

t2 − 1 ∈ D[t;σ] with D a commutative ring, as a generalization of the classical quaternion

algebra. It was shown that Sf = (D,σ, d) is an Azumaya algebra over S0, that D is

a maximal commutative subalgebra of (D,σ, d) [25, Lemma 3.1], and that (D,σ, d) is a

separable extension over Fix(σ). The centralizer of D in (D,σ, d) given by {g ∈ Sf | gs =

sg for all s ∈ D} was shown to be D. Moreover, S ⊗S0
(D,σ, d) ∼= Matn(S). (In [23],

(D,σ, d) is called a generalized quaternion ring extension.)

(ii) The associative setting in [22] is more restrictive than the one we consider: in [22], the

ring automorphism σ ∈ Aut(D) is always required to have finite order m, and d ∈ Fix(σ).

Since m is the order of σ, in that case tmb = σm(b)tm = btm for all b ∈ D, which implies
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db = bd in Sf for all b ∈ D, hence d ∈ C, i.e. d ∈ C ∩ Fix(σ).

(iii) If D is a central simple algebra over a field F of degree n, then (D,σ, d) is a central

simple algebra over the field S0 of degree mn and the centralizer of D in (D,σ, d) is F [13,

p. 20, Proposition 1.4.4].

(iv) If m is an invertible integer in D, then S0[t]/S0[t](tm− d) is a separable extension of S0

contained in A = (D,σ, d) [22].

Our definition of associative generalized cyclic Azumaya algebras generalizes to nonasso-

ciative algebras as follows:

Definition 2. Let D be an Azumaya algebra over C and f(t) = tm − d ∈ D[t;σ], d ∈ D×.

The algebra (D,σ, d) = D[t;σ]/D[t;σ]f over S0 is called a nonassociative generalized cyclic

Azumaya algebra.

In particular, if D has constant rank n, then the algebra A = (D,σ, d), d ∈ D×, is finitely

generated as an S0-module of constant rank m2n2.

If S is a commutative ring, and S/S0 is a cyclic Galois extension of degree m with Galois

group generated by σ and f(t) = tm − d ∈ S[t;σ], we call the algebra S[t, σ]/S[t;σ]f a

nonassociative cyclic Azumaya algebra and denote it by (S/S0, σ, d) (this is the case where

D = C).

The following generalizes [22, Lemma 3.2] to the nonassociative setting:

Proposition 6. For all d ∈ D×, the centralizer Cent(D,σ,d)(C) of C in (D,σ, d) is D.

Proof. The proof is analogous to the one in the associative case when d ∈ S×0 : It is easy to

see that D ⊆ Cent(D,σ,d)(C) = {a(t) ∈ (D,σ, d) | a(t)c = ca(t) for all c ∈ C}. Conversely,

for each
∑m−1
i=0 ait

i ∈ Cent(D,σ,d)(C), we know that c(
∑m−1
i=0 ait

i) = (
∑m−1
i=0 ait

i)c for all

c ∈ C, implying that ai(c− σi(c)) = 0 for all c ∈ C and for all i. Since by assumption C is

a cyclic Galois extension of S0, the ideal of C generated by {c − σi(c) | c ∈ C} is C. This

means ai = 0 for all i > 0 and so
∑m−1
i=0 ait

i = a0 ∈ D, yielding Cent(D,σ,d)(C) ⊆ D. �

The general structure theory of Petit algebras gives us the following two results:

Theorem 7. Let (S/S0, σ, d) be a nonassociative cyclic Azumaya algebra over S0.

(i) (S/S0, σ, d) is finitely generated as an S0-module of constant rank m2.

(ii) (S/S0, σ, d) is associative if and only if d ∈ S0. If (S/S0, σ, d) is not associative

then (S/S0, σ, d) contains S in its left and middle nucleus, and if S0 is a domain, then

Nucl((D,σ, d)) = Nucm((D,σ, d)) = S.

(iii) Let s be the smallest integer such that d ∈ Fix(σs). Then rs = m for some integer r and

the finitely generated S0-module S⊕Sts⊕· · ·⊕St(r−1)s of rank mr lies in Nucr((S/S0, σ, d)).

If s 6= 1 is a prime or S0 is a domain, then Nucr((S/S0, σ, d)) = S ⊕ Sts ⊕ · · · ⊕ St(r−1)s.
(iv) S is a maximal commutative associative subring of (S/S0, σ, d).

Proof. (i) is trivial as S/S0 has constant rank m.

(ii) By our general theory on Petit algebras, we know that (S/S0, σ, d) is an algebra with

center S0 satisfying these properties, cf. [19, Theorem 4].

(iii) We know that Nucr((S/S0, σ, d)) = {g ∈ R |deg(g) < m and fg ∈ Rf} by [19, Theorem
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4]. We have Nucr((S/S0, σ, d)) ∩ S = S. Since d ∈ Fix(σs) we can easily conclude that also

ts ∈ Nucr((S/S0, σ, d)). This implies that the finitely generated S0-module S ⊕ Sts ⊕
· · · ⊕ St(r−1)s lies in the right nucleus of (S/S0, σ, d). Since S/S0 has constant rank m

by our assumptions, this submodule has constant rank mr. Now Nucr((S/S0, σ, d)) is an

S0-submodule of (S/S0, σ, d) and (S/S0, σ, d) has rank m2. Hence comparing ranks we

conclude that if s is prime then either r = m and Sf is an associative algebra, or r < m,

and Nucr((S/S0, σ, d)) = S ⊕ Sts ⊕ · · · ⊕ St(r−1)s.
If S0 is a domain, we also obtain that Nucr((S/S0, σ, d)) = S ⊕ Sts ⊕ · · · ⊕ St(r−1)s. by

the same proof as the one of [21, Proposition 3.2.3] (note that there this is proved for the

opposite algebra).

(iv) This generalizes [25, Lemma 3.1] and follows immediately from Proposition 6 above:

For all d ∈ S×, the centralizer of S in (S/S0, σ, d) is Cent(D,σ,d)(S) = S. �

Hence S is always contained in the nucleus of (S/S0, σ, d) and if S0 is a domain, then the

nucleus of (S/S0, σ, d) is S.

Theorem 8. Let (D,σ, d) be a nonassociative generalized cyclic Azumaya algebra of con-

stant rank n2m2, S0 = Fix(σ) ∩ C.

(i) (D,σ, d) is finitely generated as an S0-module.

(ii) (D,σ, d) is non-associative if and only if d ∈ D \ S0. If (D,σ, d) is not associa-

tive then (D,σ, d) contains D in its left and middle nucleus, and if S0 is a domain, then

Nucl((D,σ, d)) = Nucm((D,σ, d)) = D.

(iii) Let s be the smallest integer such that d ∈ Fix(σs), then either m = rs for some integer

r and the left S0-module

C ⊕ Cts ⊕ · · · ⊕ Ct(r−1)s

of constant rank rm lies in Nucr((D,σ, d)) or m = rs + b for two integers r and b with

0 < b < s and the left S0-module

C ⊕ Cts ⊕ · · · ⊕ Ctrs

of constant rank (r + 1)m lies in Nucr((D,σ, d)). In particular, S0 ⊆ Nuc((D,σ, d)).

(iv) D is separable over S0.

Proof. (i) This is proved analogously to [22, Lemma 3.2].

(ii) By our general theory on Petit algebras, we know that (D,σ, d) is an algebra with center

S0 and the nuclei as claimed [19, Theorem 4].

(iii) We have Nucr((D,σ, d)) = {g ∈ R |deg(g) < m and fg ∈ Rf}. It is easy to check

that C ⊆ Nucr((D,σ, d)). Let s be the smallest integer such that d ∈ Fix(σs). Then a

straightforward calculation shows that ts ∈ Nucr((D,σ, d)). Hence C⊕Cts⊕· · ·⊕Ct(r−1)s ⊆
Nucr((D,σ, d)) if m = rs and C ⊕ Cts ⊕ · · · ⊕ Ctrs ⊆ Nucr((D,σ, d)) if m = rs+ b.

(iv) By construction, (D,σ, d) is free of rank m as a left D-module. Since D is finitely

generated as a C-module by assumption, and since C is finitely generated as an S0-module

as it is a Galois extension, (D,σ, d) is finitely generated as an S0-module.

(iv) is trivial by the assumptions on D and C/Fix(σ). �
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3. Automorphisms of nonassociative generalized cyclic Azumaya algebras

3.1. Nonassociative generalized cyclic Azumaya algebras. Let D be an Azumaya

algebra over C of constant rank n and A = (D,σ, d) be a nonassociative generalized cyclic

Azumaya algebra over S0 = C ∩ Fix(σ). In the following σ sometimes also stands for σ|C
to simplify notation.

For k ∈ C, we define NC/S0
: C −→ S0 via

NC/S0
(k) =

(m−1∏
l=0

σl(k)
)
.

Some of the ring automorphisms of the skew polynomial ring D[t;σ] canonically induce

algebra automorphisms of (D,σ, d):

Theorem 9. Let A = (D,σ, d) be a nonassociative generalized cyclic Azumaya algebra. Let

τ ∈ AutS0
(D) be an algebra automorphism that commutes with σ. For all k ∈ C× such that

(1) τ(d) =
(m−1∏
l=0

σl(k)
)
d,

define Hτ,k : (D,σ, d) −→ (D,σ, d) via

Hτ,k(

m−1∑
i=0

xit
i) =

m−1∑
i=0

τ(xi)(kt)
i

= τ(x0) + τ(x1)kt+ τ(x2)kσ(k)t2 + · · ·+ τ(xm−1)kσ(k) · · ·σm−2(k)tm−1.

Then Hτ,k is an automorphism of A that extends τ . Hτ,k is canonically induced by a ring

automorphism of D[t;σ].

(ii) For all k ∈ C× such that NC/S0
(k) = 1,

Hid,k(

m−1∑
i=0

ait
i) = a0 +

m−1∑
i=1

ai
( i−1∏
l=0

σl(k)
)
ti

is an automorphism of (D,σ, d) extending idD.

Proof. (i) Let G be a ring automorphism of D[t;σ]. Then for h(t) =
∑m−1
i=0 bit

i ∈ D[t;σ] we

have

G(h(t)) = τ(b0) +

m−1∑
i=i

τ(bi)

i−1∏
l=0

σl(k)ti

for some τ ∈ Aut(D) such that σ ◦ τ = τ ◦ σ and some k ∈ C× (the proof of [14, p. 75]

works for D[t;σ]). It is straightforward to see that for τ ∈ AutS0(D) and Sf = (D,σ, d),

we have Sf ∼= SG(f) (cf. [16, Theorem 7] or [6, p. 55 ff.], the proofs also work when

D is not a division algebra). In particular, this means that if k ∈ C× satisfies (1) then

G(f(t)) =
(∏m−1

l=0 σl(k)
)
f(t) = af(t) with a ∈ D× being the product of the σl(k), and so

G induces an isomorphism of Sf with Saf = Sf , i.e. an automorphism of Sf = (D,σ, d).

(ii) follows from (i). �

All the automorphisms of a nonassociative generalized cyclic Azumaya algebra (D,σ, d)

are canonically induced by ring automorphisms of the twisted polynomial ring D[t;σ], i.e.

the maps Hτ,k are all possible automorphisms:
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Theorem 10. Let A = (D,σ, d), d ∈ D×, be a nonassociative generalized cyclic Azumaya

algebra of constant rank m2n2 over S0.

(i) Let H ∈ AutS0(A). Then H = Hτ,k with

(2) Hτ,k(

m−1∑
i=0

ait
i) = τ(a0) +

m−1∑
i=1

τ(ai)
( i−1∏
l=0

σl(k)
)
ti,

for some τ ∈ AutS0(D) which commutes with σ, and some k ∈ C× such that τ(d) =

NC/S0
(k)d. Moreover, if τ ∈ AutS0

(D) commutes with σ, and k ∈ C× such that τ(d) =

NC/S0
(k)d, then Hτ,k is an automorphism of A, and induced by an automorphism of D[t;σ].

(ii) For all k ∈ C× such that NC/S0
(k) = 1, id ∈ Aut(D) extends to an automorphism

H = Hid,k ∈ AutS0
(A),

Hid,k(

m−1∑
i=0

ait
i) = a0 +

m−1∑
i=1

ai
( i−1∏
l=0

σl(k)
)
ti,

The proof is similar to the one of [7, Theorem 6], but works also when the algebra is

non-associative, as it does not rely on the right nucleus being D, whereas the proof of [7,

Theorem 6] did.

Proof. (i) Let H ∈ AutS0(A). Then H|D ∈ AutS0(D), since H leaves the commutator

Cent(D,σ,d)(C) invariant and we know that Cent(D,σ,d)(C) = D. (The argument in the proof

of [7, Theorem 6] uses instead that the right nucleus is invariant under H).

Thus H|D = τ for some τ ∈ AutS0
(D). Write H(t) =

∑m−1
i=0 kit

i for some ki ∈ D, then

we have

H(tz) = H(t)H(z) =
(m−1∑
i=0

kit
i
)
τ(z) =

m−1∑
i=0

kiσ
i(τ(z))ti,

and

H(tz) = H(σ(z)t) = τ(σ(z))

m−1∑
i=0

kit
i =

m−1∑
i=0

τ(σ(z))kit
i

for all z ∈ D. Comparing the coefficients of ti yields

kiσ
i(τ(z)) = τ(σ(z))ki for all i = {0, . . . ,m− 1}

for all z ∈ D. This implies that

ki(σ
i(τ(z))− τ(σ(z))) = 0 for all i ∈ {0, . . . ,m− 1}

for all z ∈ C. Now σ restricted to C generates the Galois group of the cyclic Galois extension

C/S0 by assumption, and τ |C : C −→ C fixes S0 by assumption, thus lies in this Galois

group. Hence τ |C commutes with σ|C and we obtain

ki(σ
i(τ(z))− σ(τ(z))) = 0 for all i ∈ {0, . . . ,m− 1}

for all z ∈ C, therefore

ki(σ
i−1(w)− w) = 0 for all i ∈ {1, . . . ,m− 1}

for all w ∈ C. As σ|C has order m, we know that σ|C 6= σi|C for all 1 6= i ∈ {0, . . . ,m− 1}.
Since C/S0 is Galois, we also know that the ideal of C generated by {c − σi(c) | c ∈ C}

is all of C by [10, p. 80]. That means ki = 0 for all 1 6= i ∈ {0, . . . ,m − 1}. For i = 1, we
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obtain k1τ(σ(z)) = τ(σ(z))k1 for all z ∈ D, hence k1 ∈ C. This implies H(t) = kt for some

k ∈ C×.

Since

H(zti) = H(z)H(t)i = τ(z)(kt)i = τ(z)
( i−1∏
l=0

σl(k)
)
ti,

for all i ∈ {1, . . . ,m− 1} and all z ∈ D, H has the form

Hτ,k :

m−1∑
i=0

ait
i 7→ τ(a0) +

m−1∑
i=1

τ(ai)
( i−1∏
l=0

σl(k)
)
ti,

for some k ∈ C×.

Comparing the constant terms in H(t)m = H(tm) = H(d) implies

τ(d) = kσ(k) · · ·σm−1(k)d = NC/S0
(k)d.

The fact that Hτ,k is by assumption a multiplicative map forces σ and τ to commute:

Hτ,k(t ◦ c) = Hτ,k(t)Hτ,k(c) for all c ∈ D implies that

Hτ,k(t ◦ c) = Hτ,k(σ(c)t) = τ(σ(c))kt

and

Hτ,k(t)Hτ,k(c) = kt ◦ τ(c) = kσ(τ(c))t.

Thus we obtain τ(σ(c))k = kσ(τ(c)) for all c ∈ D and some k ∈ C×, implying τ(σ(c)) =

σ(τ(c)) for all c ∈ D.

By Theorem 9 all these maps are automorphisms induced by automorphisms of the skew

polynomial ring, since σ and τ commute.

(ii) For τ = idD, H has the form

Hid,k(

m−1∑
i=0

ait
i) = a0 +

m−1∑
i=1

ai
( i−1∏
l=0

σl(k)
)
ti

for some k ∈ C× with kσ(k) · · ·σm−1(k) = NC/S0
(k) = 1 by (i). �

It is clear that Hτ,k = Hρ,l if and only if σ = ρ and k = l, and that Hτ,k ◦Hρ,l = Hτ◦ρ,kl.

Corollary 11. (i) The subgroup of S0-automorphisms of (D,σ, d) extending idD is isomor-

phic to

{k ∈ C× |NC/S0
(k) = 1}.

(ii) Suppose that S0 contains an mth root of unity ω. If τ has finite order s, then the cyclic

subgroup 〈Hτ,ω〉 of AutS0
(A) generated by Hτ,ω has order at most ms. (If τ has infinite

order then this subgroup has infinite order.) In particular, 〈Hid,ω〉 is a cyclic subgroup of

AutS0((D,σ, d)) of order at most m.

As a consequence of Theorem 10 and Corollary 11 we obtain all automorphisms of a

nonassociative cyclic Azumaya algebra:
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Theorem 12. Let A = (S/S0, σ, d) be a nonassociative cyclic Azumaya algebra.

(i) Let H ∈ AutS0(A). Then H = Hτ,k with

Hτ,k(

m−1∑
i=0

ait
i) = τ(a0) +

m−1∑
i=1

τ(ai)
( i−1∏
l=0

σl(k)
)
ti,

for some τ ∈ AutS0
(S) and some k ∈ S× such that τ(d) = NS/S0

(k)d. All maps Hτ,k where

τ ∈ AutS0
(S) and where k ∈ S× such that τ(d) = NS/S0

(k)d, are automorphisms of A.

(ii) For all k ∈ S× such that NS/S0
(k) = 1, idS can be extended to an automorphism

Hid,k(

m−1∑
i=0

ait
i) = a0 +

m−1∑
i=1

ai
( i−1∏
l=0

σl(k)
)
ti

in AutS0(A).

(iii) The subgroup of S0-automorphisms of A extending idS is isomorphic to

{k ∈ S× |NS/S0
(k) = 1}.

Proof. (i) Let S/S0 be a cyclic Galois ring extension with Gal(S/S0) = 〈σ〉 of order m, σ

an automorphism of S. Then for all τ ∈ Gal(S/S0) and k ∈ S× such that

(3) τ(d) =
(m−1∏
l=0

σl(k)
)
d,

the map Hτ,k : (S/S0, σ, d) −→ (S/S0, σ, d),

Hτ,k(

m−1∑
i=0

xit
i) =

m−1∑
i=0

τ(xi)(kt)
i

is an automorphism of the nonassociative cyclic Azumaya algebra (S/S0, σ, d) that extends

τ (choose D = C in Theorem 9). Since all τ ∈ AutS0(S) commute with σ, we obtain all

automorphisms this way by Theorem 10.

(ii) and (iii) follow from (i) and Corollary 11. �

Note that if S0 contains an mth root of unity ω, and τ has finite order s, then the cyclic

subgroup 〈Hτ,ω〉 of AutS0
((S/S0, σ, d)), again has order at most ms.

If S0 has no non-trivial mth root of unity, we obtain:

Theorem 13. Suppose S0 has no non-trivial mth root of unity. Let A = (S/S0, σ, d) be

a nonassociative cyclic algebra of degree m where d ∈ S× is not contained in any proper

subring of S. Then every S-automorphism of A leaves S0 fixed and

AutS0
(A) ∼= ker(NS/S0

).

Proof. Every automorphism ofA has the formHid,k: suppose that there exist j ∈ {1, . . . ,m−
1} and k ∈ S× such that Hσj ,k ∈ AutS0(A). This implies H2

σj ,k = Hσj ,k ◦Hσj ,k ∈ AutS0(A)

and

H2
σj ,k

(m−1∑
i=0

xit
i
)

= σ2j(x0) +

m−1∑
i=1

σ2j(xi)
( i−1∏
q=0

σj+q(k)σq(k)
)
ti.(4)
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Now H2
σj ,k must have the form Hσ2j ,l for some l ∈ S×. Comparing (2) and (4) yields

l = kσj(k). Similarly, H3
σj ,k = Hσ3j ,s ∈ AutS0(A) where s = kσj(k)σ2j(k). Continuing in

this manner the automorphisms Hσj ,k, Hσ2j ,l, Hσ3j ,s, . . . all satisfy (1) implying that

σj(d) = NS/S0
(k)d,

σ2j(d) = NS/S0
(kσj(k))d = NS/S0

(k)2d,

...
...

d = σnj(d) = NS/S0
(k)nd,

(5)

where n = m/gcd(j,m) is the order of σj . Note that σij(d) 6= d for all i ∈ {1, . . . , n−1} since

d is not contained in any proper subring of S. Therefore NS/S0
(k)n = 1 and NS/S0

(k)i 6= 1

for all i ∈ {1, . . . , n− 1} by (5), i.e. NS/S0
(k) is a primitive nth root of unity, thus also an

mth root of unity, a contradiction. This proves the assertion. �

3.2. Associative generalized cyclic Azumaya algebras. In the associative setting,

the previous results show that all automorphisms of a generalized cyclic Azumaya algebra

(D,σ, d) are induced by automorphisms of D[t;σ]:

Corollary 14. Let A = (D,σ, d) be a generalized cyclic Azumaya algebra, i.e. d ∈ S×0 .

(i) Every τ ∈ AutS0
(D) that commutes with σ can be extended to an automorphism

Hτ,k(

m−1∑
i=0

ait
i) =

m−1∑
i=0

τ(ai)(kt)
i = τ(a0) +

m−1∑
i=1

τ(ai)
( i−1∏
l=0

σl(k)
)
ti

in AutS0
(A) for some k ∈ C× such that NC/S0

(k) = 1. All maps Hτ,k where τ ∈ AutS0
(D)

commutes with σ and where k ∈ C× such that NC/S0
(k) = 1 are automorphisms of A.

(ii) The subgroup of S0-automorphisms extending some fixed τ ∈ AutS0
(D) is isomorphic to

{k ∈ C× |NC/S0
(k) = 1}.

(iii) Suppose that S0 contains a primitive mth root of unity ω. If τ has finite order s, then

the cyclic subgroup 〈Hτ,ω〉 of AutS0
(A) generated by Hτ,ω has order ms. (If τ has infinite

order then this subgroup has infinite order.) Furthermore, 〈Hid,ω〉 is a cyclic subgroup of

AutS0((D,σ, d)) of order m.

(iv) {τ ∈ AutS0
(D) | τ ◦ σ = σ ◦ τ} is isomorphic to a subgroup of AutS0

(A).

Proof. It remains to show (iv), which holds since we have the canonical extension Hτ,1 for

each τ ∈ AutS0
(A) that commutes with σ. �

Corollary 15. Let A = (S/S0, σ, d), d ∈ S×0 , be a cyclic Azumaya algebra. Then every

τ ∈ AutS0(S) can be extended to an automorphism

Hτ,k(

m−1∑
i=0

ait
i) = τ(a0) +

m−1∑
i=1

τ(ai)
( i−1∏
l=0

σl(k)
)
ti

in AutS0
(A) for some k ∈ S× such that NS/S0

(k) = 1. All maps Hτ,k where τ ∈ AutS0
(S)

and where k ∈ S× such that NS/S0
(k) = 1 are algebra automorphisms of A.

In particular, AutS0(S) = 〈σ〉 ⊆ AutS0(A).
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These are all possible automorphisms. So there is a bijection between the set of auto-

morphisms of A = (S/S0, σ, d) and the set

{(τ, k) | τ ∈ AutS0
(A), k ∈ S× with NS/S0

(k) = 1}

and for each τ ∈ AutS0
(A), there are either infinitely many (if the set of norm one elements

in S is infinite) or |{k ∈ S× |NS/S0
(k) = 1}| different possible extensions.

4. Inner automorphisms

We now consider the inner automorphisms of nonassociative generalized cyclic Azumaya

algebras.

Theorem 16. (a) Let A = (D,σ, d) be a nonassociative generalized cyclic Azumaya algebra.

Let k ∈ C such that there is c ∈ C× with k = c−1σ(c).

(i) Hτ,k = Gc ◦Hτ,1 (note that Hτ,1 is not necessarily an automorphism here, just a map).

(ii) The automorphism Hid,k of A is the inner automorphism

Gc(

m−1∑
i=0

ait
i) = (c−1

m−1∑
i=0

ait
i)c.

(b) Let A = (S/S0, σ, d) be a nonassociative cyclic Azumaya algebra. Let k ∈ S such that

there is c ∈ S× with k = c−1σ(c).

(i) Hτ,k = Gc ◦Hτ,1 (note that Hτ,1 again is not necessarily an automorphism here, just a

map).

(ii) The automorphism Hid,k of A is the inner automorphism

Gc(

m−1∑
i=0

ait
i) = (c−1

m−1∑
i=0

ait
i)c.

Proof. (a) (i) For k ∈ C such that k = c−1σ(c) for some c ∈ C×, we have

kσ(k) · · ·σi−1(k) = cσi(c), i = 1 . . . ,m− 1,

hence

Gc(

m−1∑
i=0

τ(ai)t
i) = (c−1

m−1∑
i=0

τ(ai)t
i)c =

m−1∑
i=0

τ(ai)c
−1σi(c)ti = Hτ,k(

m−1∑
i=0

ait
i)

with the last equality holding because of Πi−1
l=0σ

l(c−1σ(c)) = c−1σi(c).

(ii) follows from (i) and (b) from (a). �

A similar result to Theorem 16 (a) (i) was proved for automorphisms of (associative)

G-Azumaya algebras over a connected commutative ring R with a primitive sth root of

unity in [5] when G is a finite abelian group of finite order n and exponent s, provided that

Pics(R) is trivial and n a unit in R.

Let us look at the associative setting:
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Theorem 17. (a) Let A = (D,σ, d) be a generalized cyclic Azumaya algebra.

(i) Let k ∈ C× such that there is c ∈ C× with k = c−1σ(c). Then Hτ,k = Gc ◦Hτ,1.

(ii) Hσ,1 = Gt−1 is an inner automorphism. Moreover,

{Gct−j | c ∈ C×, 0 ≤ i ≤ m− 1}

is a subgroup of AutS0
(A) of inner automorphisms.

(b) Let A = (S/S0, σ, d) be a cyclic Azumaya algebra.

(i) Let k ∈ S× such that there is c ∈ S× with k = c−1σ(c). Then Hτ,k = Gc ◦Hτ,1.

(ii) {Gct−j | c ∈ S×, 0 ≤ i ≤ m− 1} is a subgroup of AutS0(A) of inner automorphisms.

Proof. (a) (i) follows from Theorem 16.

(ii) We know that tm = d in A. This means that d−1tm−1 is the inverse of t, since d ∈ S0.

We have

Gt−1(

m−1∑
i=0

ait
i) =

m−1∑
i=0

tait
i(tm−1d−1) = d−1

m−1∑
i=0

σ(ai)t
id = Hσ,1(

m−1∑
i=0

ait
i).

Thus also Hσj ,1 = Gt−j is an inner automorphism for all integers j, 0 ≤ j ≤ m− 1, and so

is Gc ◦Hσj ,1 = Hσj ,c−1σ(c) = Gct−j for all c ∈ C×. The rest of the assertion is trivial.

All of (b) follows from (a). �

Corollary 18. (i) Let (D,σ, d) be a generalized cyclic Azumaya algebra. If there exists an

analogue of Hilbert’s Theorem 90 for the ring extension C/S0 (i.e., for every k ∈ C with

NC/S0
(k) = 1 there is c ∈ C× such that k = c−1σ(c)), then

AutS0
((D,σ, d)) = {Hτ,k | τ ∈ AutS0

(D), σ ◦ τ = τ ◦ σ, k ∈ C× such that NC/S0
(k) = 1}

= {Gc ◦Hτ,1 | τ ∈ AutS0
(D), σ ◦ τ = τ ◦ σ, c ∈ C×}.

(ii) If there exists an analogue of Hilbert’s Theorem 90 for the cyclic Galois ring extension

S/S0, then the cyclic Azumaya algebra (S/S0, σ, d) has the automorphism group

AutS0
((S/S0, σ, d)) = {Gct−j | c ∈ S×, 0 ≤ i ≤ m− 1}.

Proof. (i) The first equality is clear by Theorem 10. By assumption, we can write Hτ,k =

Gc(Hτ,1) for k = σ(c)c−1, that is

Hτ,k(

m−1∑
i=0

ait
i) = (c−1

m−1∑
i=0

τ(ai)t
i)c

which implies the second equality.

(ii) We know that AutS0
((S/S0, σ, d)) = {Hσj ,k | 0 ≤ j ≤ m−1, k ∈ S× such that NS/S0

(k) =

1}. Now we also have Hσj ,l = Gc◦Hσj ,1 for l = σ(c)c−1, and Hσj ,1 = Gt−1◦Gt−1◦· · ·◦Gt−1 =

Gt−j , thus Hσj ,l = Gc ◦ Gt−j = Gct−j is an inner automorphism. This implies the asser-

tion. �
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4.1. The automorphisms of central simple algebras. In this section let D be a division

algebra which is finite-dimensional over its center F = C(D) and σ ∈ Aut(D) such that σ|F
has finite order m and fixed field F0 = Fix(σ) ∩ F . Thus F/F0 is automatically a cyclic

Galois field extension of degree m with Gal(F/F0) = 〈σ|F 〉. For all d ∈ F×0 , A = (D,σ, d) is

a generalized cyclic central simple algebra over F0, cf. [13].

As an immediate consequence of our results, the automorphisms of a generalized cyclic

algebra over a field are induced by ring automorphisms of the ring D[t;σ] used in their

construction. More precisely, they can be described as the composition of an inner auto-

morphism Gc, c ∈ F×, with the canonical extension Hτ,1 of some τ ∈ AutF0(D) which

commutes with σ:

Corollary 19. (i) Let A = (D,σ, d) be a central simple algebra over F0, then

AutF0
(A) = {Hτ,k | τ ∈ AutF0

(D), σ ◦ τ = τ ◦ σ, k ∈ F× such that NF/F0
(k) = 1}

= {Gc ◦Hτ,1 | τ ∈ AutF0
(D), σ ◦ τ = τ ◦ σ, c ∈ F×}.

(ii) Let A = (K/F, σ, d) be a cyclic algebra over F of degree m. Then

AutF (A) = {Gct−j | c ∈ K×, 0 ≤ j ≤ m− 1}.
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Hamburgischen Universitäten, 5 (1927), 225-231.

[5] M. Beattie, Automorphisms of G-Azumaya algebras. Canad. J. Math. 37 (6) (1985) 1047-1058.

[6] C. Brown, Petit algebras and their automorphisms. PhD Thesis, University of Nottingham 2018. Online

at arXiv:1806.00822 [math.RA]

[7] C. Brown, S. Pumplün, Nonassociative cyclic extensions of fields and central simple algebras. J. Pure

Applied Algebra 223 (6) 2019, 2401-2412.

[8] C. Brown, S. Pumplün, How a nonassociative algebra reflects the properties of a skew polynomial. Online

at arXiv:1806.04537v1 [math.RA]

[9] S.U. Chase, D.K. Harrison, A. Rosenberg, Galois theory and Galois cohomology of commutative rings.

Mem. Amer. Math. Soc. 52 (1965), 15-33.

[10] F. DeMeyer, E. Ingraham, “Separable algebras over commutative rings”. Lecture Notes in Mathematics

181 (1971) Springer-Verlag, Berlin-New York.

[11] M. Ferrero, A. Paques, Galois theory of commutative rings revisited. Beiträge Algebra Geom. 38 (2)
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