Cellular immune responses to covid-19

T cells could be valuable allies in pandemic control

Herb F Sewell, emeritus professor of immunology and consultant immunologist, Raymond M Agius, emeritus professor of occupational and environmental medicine, Marcia Stewart, lay member and emeritus academic, Denise Kendrick, professor of primary care research and general practitioner.

1 University of Nottingham, Nottingham, UK
2 University of Manchester, Manchester, UK
3 De Montfort University, Leicester, UK
Correspondence to: H Sewell herb.sewell@nottingham.ac.uk

Protective and enduring immune responses to viral infections or vaccines usually arise from the combined actions of lymphocytes: B cells (responsible for humoral antibody immunity) and T cells (responsible for cellular immunity and helping B cell responses).

B cells produce detectable antibodies in classes IgM, IgG, and IgA along with lesser amounts of IgD and IgE. For SARS-CoV-2, the causative agent of covid-19, the focus is mainly on IgM, IgG, and IgA antibodies that can neutralise the virus by binding to the spike and other membrane proteins and thus preventing infection. Understanding the lesser known roles of T cells and cellular immunity will deepen our insights into covid-19 pathogenesis and help inform both vaccine development and pandemic containment strategies.

An effective immune response to SARS-CoV-2 involves four types or subsets of T cells: T helper cells (CD4) are responsible for cellular immunity and for helping B cells to produce neutralising antibodies; cytotoxic or killer T cells (CD8) directly kill infected cells—aided by helper T cells; other T cells (including T-17 (Th17) cells) drive the inflammatory responses that help to control infections; and regulatory T cells (T regs) help to contain the immune response, to prevent over reaction and damage to tissues.

CD4 T cells ensure all these components work together by secreting small short acting cytokines that bind to receptors on target cells. Importantly, all B and T cell types have immunological memory after a first encounter with a pathogen. This enables a faster effective response after a second encounter with the same pathogen or one that is closely related (cross reaction).

Preliminary studies from the US and Europe recently documented T cells specific to SARS-CoV-2 in people with acute covid-19 and in those recovering from infection. They report helper and killer T cells specific to SARS CoV-2 in people with and without antibodies. More unexpectedly, they found specific T cells in people with no history of
exposure to SARS-CoV-2—individuals who had repeatedly swabbed negative for the virus. These cells have even been found in stored blood taken before the pandemic (2015-18). Finally, the studies identified strong T cell memory responses in people recovering from covid-19. Memory cells are critical for protective and enduring immunity.

What are the implications of these early findings? Principally, these studies show that a good T cell immune response and immunological memory accompany natural exposure to or infection with SARS-CoV-2, that evidence of these responses is present in some people who have apparently never encountered the virus, and that T cell immune responses can exist in the absence of detectable antibodies.

Collectively, these features suggest that candidate vaccines should aim to stimulate both B cell (neutralising) antibodies and T cell antiviral responses. Early phase clinical trials of candidate vaccines developed in Oxford, UK, and in China do show concomitant B cell neutralising antibodies and antiviral T cells in vaccinated healthy volunteers, improving prospects for protective immunity. This combined response is a feature of many successful vaccines, including vaccines against varicella (chickenpox), influenza, measles, and hepatitis B.

Immune memory

That some “virus naive” participants in early studies had pre-existing memory helper (50% of participants) and killer T (20%) cells with potential activity against SARS-CoV-2 is intriguing. These cells might arise from cross reactions to other circulating coronaviruses, such as some common cold viruses, and might be a welcome hint of possible background immunity to covid-19 in populations at risk—even in the absence of antibodies.

Any cellular immune memory for SARS CoV-2 in the population could enhance responses to vaccines and might also give a vaccination programme a head start towards herd immunity. Herd immunity is population resistance to spread of an infection, achieved when a high enough proportion of individuals are immune, usually through vaccination.

Pre-existing memory helper T cells specific to SARS-CoV-2 could boost the production of neutralising IgG antibodies in the blood of newly exposed people and could also enhance antibody protection at mucosal surfaces through IgA in saliva, tears, or nasal secretions. Such IgA antibodies act as a protective barrier at common viral entry points. Research is now required to further characterise these possible immune pathways including memory B and T cells in mucosal tissues.
Research should also explore the role of regulatory T cells in severe covid-19, particularly cytokine storm syndrome16 and the documented association between high titres of IgG antibodies and poorer disease outcomes including death17 these might reflect ineffective control of inflammation by regulatory T cells.

Recent findings on the role of T cells in covid-19 give us cause to be cautiously optimistic that cellular immune responses could be a valuable ally in global efforts to control this and future pandemics.

Competing interests: The BMJ has judged that there are no disqualifying financial ties to commercial companies. The authors declare the following other interests: None

The BMJ policy on financial interests is here: https://www.bmj.com/sites/default/files/attachments/resources/2016/03/16-current-bmj-education-coi-form.pdf.”

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide licence to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any third party to do any or all of the above.

Provenance and peer review: Commissioned, not peer reviewed

REFERENCES

