Supplementary Information

Use of an optofluidic microreactor and Cu nanoparticles synthesized in ionic liquid and embedded in TiO_2 for an efficient photoreduction of CO_2 to methanol

Jonathan Albo, Muhammad I. Qadir, Mario Samperi, Jesum Alves Fernandes, Imanol de Pedro, Jairton Dupont

* e-mail: jonathan.albo@unican.es

Figure S1. Schematic representation of the preparation of the light-responsive papers.

Figure S2. (a) Inner parts, and (b) images of the micro-optofluidic reactor.

Figure S3. Raman spectra of TiO₂ and Cu/TiO₂ samples.

Figure S4. The X-ray powder diffraction patterns and composition of (a) 0.8% Cu/TiO₂, (b) 2% Cu/TiO₂, (c) 6.8% Cu/TiO₂ and, (d) Cu nanoparticles.

Sample	Composition (%)					
	Anatase	Rutile	CuO	Cu_2O	Си	
Cu	-	-	52	46	2	
0.8% Cu/TiO ₂	80	20	-	-	-	
2% Cu/TiO ₂	77	19	2	2	-	
6.8% Cu/TiO ₂	65	16	13	6	-	

Table S1. Crystalline phase of Cu and Cu/TiO₂ from PXRD.

Figure S6. Scanning electron transmission microscopy (STEM) images and EDX mapping of (a) TiO_2 , (b) 0.8% Cu/TiO₂, (c) 2% Cu/TiO₂ and (d) 6.8% Cu/TiO₂ and (e) Cu NPs.

Figure S7. TEM images and EDX spectra of (a) 0.8% Cu/TiO₂, (b) 2% Cu/TiO₂ and (c) 6.8% Cu/TiO₂.

Table S2. XPS fittings for Cu 2p region. These data were extracted from Cu 2p region fittings, and they illustrate the main differences between the samples reported in this work. Therefore, slightly different values can be found in different reports depend on the fitting model applied. In this work, we used: GL(30) line shape, U2-Touguard as background type and FWHM constrain between 0.9 to 4 eV.

	Cu ₂ O			CuO			
	2p _{3/2} / eV	FWHM / eV	atom%	$2p_{3/2}/\ eV$	FWHM / eV	atom%	
0.8 Cu/TiO ₂	932.5	2.3	82.9	934.5	2.1	17.1	
2%Cu/TiO ₂	932.5	2.3	56.2	934.8	2.8	43.8	
6.8%Cu/TiO ₂	932.7	2.3	32.3	934.7	3.5	77.7	

Figure S8. Cu 2p region deconvolution for (a) 0.8% Cu/TiO₂, (b) 2% Cu/TiO₂ and (c) 6.8% Cu/TiO₂. (d) Cu NPs oxidation states ratio and FWHM for fitting associate Cu^{2+} (data extract from Table S1).

Figure S9. FTIR spectra of (a) 0.8% Cu/TiO₂, (b) 2% Cu/TiO₂ and 6.8% Cu/TiO₂.

Figure S10. BET N₂-physisorption isotherms for bare TiO₂ and Cu/TiO₂ composites.

Table S3. Textural properties of bare TiO_2 and Cu/TiO_2 samples.

Sample	$SBET^{a} (m^{2} \cdot g^{-1})$	Vpore ^a (cm ³ ·g ⁻¹)
TiO_2	56.7	0.106
0.8%Cu/TiO ₂	58.6	0.110
2%Cu/ TiO ₂	56.0	0.104
6.8% Cu/ TiO ₂	46.8	0.097

^a Determined by BET multipoint method and BJH method.

Table S4. Summary of literature reports on the photocatalytic synthesis of CH_3OH from at Cu containing TiO_2 photocatalysts.

Photocatalyst	Light source	Reaction media/ Reactor configuration	<i>r</i> (µmol·g ⁻¹ ·h ⁻¹)	AQY (%)	Other products	Ref.,year
Cu2.5	UV 1200 mW LED (365 nm, 5 mW·cm ⁻²)	0.5 M KHCO ₃ /OFM ^a	167.5	3.7	НСООН,	This work, 2020
	UV 1200 mW LED (365 nm, 10 mW·cm ⁻²)	0.5 M KHCO ₃ /OFM (two compartments)	230.3	2.5		
	Vis 1200 mW LED (450 nm, 5 mW·cm ⁻²)	0.5 M KHCO ₃ /OFM	36.7	0.7	C ₂ H ₅ OH	
	Vis 1200 mW LED (450 nm, 10 mW·cm ⁻²)	0.5 M KHCO ₃ /OFM (two- compartment)	43.1	0.4		
2 wt% Cu/TiO ₂	UV 20 W lamp	0.1 M NaHCO ₃ / Pyrex closed chamber	12.4	-	-	[1], 2019
Fe-N-TiO ₂ /CPO- Cu-27	Vis 70 W Hg lamp (350-600 nm, 85 mW⋅cm ⁻²)	H ₂ O vapor / Continuous flow Pyrex vessel	2.2	-	CH4	[2], 2019
Cu porphyrin/Ti- MCM-48	UV-Vis 500W Xe lamp (33 mW⋅cm ⁻²)	0.1 M NaOH-Na2SO3/Quartz glass reactor (inside irradiation)	49.5	-	-	[3], 2018
2 wt% Cu/TiO ₂	UV-A 8 W lamp (350 nm, 0.12 mW⋅cm ⁻²)	0.2 M KOH/Gas recirculation quartz reactor	19.7	-	CH4, C2H4, C3H6O	
	Vis 20 W LED ($0.02 \ \mu W \cdot cm^{-2}$)	ACN ^b -TEOA ^c / Gas recirculation quartz reactor	352.9	-	CH4, C2H4	[4], 2018
0.5 wt% Cu/TiO ₂	UV Hg lamp (365 nm)	ACN ^b - BZA ^d /-	64.1	-	HCOOH, HCHO, CH4	[5], 2018
3 wt% Cu-C/TiO ₂	UV lamp (254-365 nm)	Seawater/Batch pyrex annular	577	-	-	[6] 2018
NPs	Natural sunlight	reactor	188	-	-	[0], 2010
TiO ₂ /CuInS ₂ (3.1 mol%) core-shell NFs ^e	Vis 350W Solar Xe arc lamp	2 M H ₂ SO ₄ /Pyrex reactor	0.86	-	CH ₄	[7], 2018
3 wt% Cu-C/TiO ₂	UV lamp (365 nm, 120 mW⋅cm ⁻²)	0.2 M NaOH/Stirred Pyrex annular reactor	518.6	-	-	[8], 2017
	Natural sunlight		177	-	-	
3 wt% Cu g- C ₃ N ₄ /TiO ₂	Vis 500 W Xe lamp	1 M NoOU/Dreeve class	429	-	HCOOH	
	UV Hg lamp (254 nm, 5.4 mW·cm ⁻²)	reactor	102.3	-	НСООН	[9], 2017
1.5 wt% CuO- TiO ₂ NRs ^g	UV LED (365 nm)	H ₂ O/OFM	36.2	-	C ₂ H ₅ OH	[10], 2017
1 wt% Cu- In ₂ O ₃ /TiO ₂	UV 500 W Hg lamp (365 nm, 25 mW·cm ⁻²)	H ₂ O-H ₂ /Batch photoreactor	68	-	CH ₄	[11], 2016
CuFe ₂ O ₄ /TiO ₂	Vis 500 W Xe lamp $(24 \text{ mW} \cdot \text{cm}^{-2})$	0.07 M KOH/Continuous- flow reactor	81.4	-	-	[12], 2016
3 wt%CuO/TiO ₂	UV 500 W Hg lamp (365 nm $4.2 \text{ mW} \cdot \text{cm}^{-2}$)	0.2 M KHCO ₃ -0.1 M Na ₂ SO ₂ /Quartz reactor	2.1	-	C ₂ H ₅ OH	[13], 2016
Pt/CuAlGaO ₄ - Pt/SrTiO ₃ :Rh (1:1)	Vis 300 W Sunlight Xe lamp $(90 \text{ mW} \cdot \text{cm}^{-2})$	2 mM FeCl ₂ /Twin photoreactor	0.5	0.002	-	[14], 2015
CuFe ₂ O ₄ /TiO ₂	Vis 500 W Xe lamp (320-400 nm, 24 mW⋅cm ⁻²)	0.07 M KOH- Na ₂ S/Continuous-flow quartz reactor	24.4	-	-	[15], 2015

Cu-TiO ₂ /ZSM-5	UV 14 W lamp (254 nm, 0.97 mW⋅cm ⁻²)	0.1 M NaHCO ₃ /Inside illumination	50.1	-	-	[16], 2015
0.5 wt% Cu/TiO ₂ monoliths	UV 200 W Hg lamp (33.42 mW·cm ⁻²)	H ₂ O vapor/Cylindrical Pyrex	1	-	C2H4O,	[17]. 2014
	Vis 500W halogen lamp $(68.35 \text{ mW} \cdot \text{cm}^{-2})$	glass reactor	0.06	-	C ₂ H ₅ OH	[-•], -•-•
1 wt% Cu/TiO ₂ NPs	UV 18 W Hg lamp (254 nm)	0.2 M NaOH/Quartz reactor	0.3	-	CO, HCHO, CH4	[18], 2014
1 wt% CuTiO ₂ /SiO ₂	UV 400 W Hg lamp	H ₂ O/Pyrex batch gas solid reactor	0.003	-	CH4, C2H4O, C3H6O	[19], 2013
Cu/TiO ₂ /mol. sieve	UV 250 W Hg lamp	0.2 N NaOH/Quartz reactor (external irradiation)	0.7	-	$\begin{array}{c} CH_4\\ C_2H_2O_4,\\ C_2H_4O_2\end{array}$	[20], 2011
2 wt% Cu- Ce/TiO2	UV 125 W lamp (365 nm)	0.2 M NaOH/Quartz reactor high-pressure reactor	11.3	-	-	[21], 2011
2 wt% Cu/	UV 400 W halide lamp	0.1 N NaOH/Quartz cell	627	_	_	[22] 2009
TiO ₂ /SBA-15	(365 nm)	(inner irradiation)	027			[22], 2009
3 wt% CuO/TiO ₂	UV tubular lamp (365 nm, 2.45 mW⋅cm ⁻²)	1 M KHCO ₃ /Pyrex stainless steel vessel	450	-	НСООН	[23], 2009
1.2 wt% Cu/TiO ₂	UV Hg lamp (365 nm, 1.6 mW·cm ⁻²	H ₂ O/Optical fiber quartz reactor	0.45		-	[24], 2005
3 wt%CuO/TiO ₂	UV 10 W lamp (415-700 nm, 2.45 mW⋅cm ⁻²)	1 M KHCO ₃ /Quartz cell	442.5	19.23	-	[25], 2005
1.2 wt% Cu/TiO ₂	UV Hg lamp (365 nm, 16 W·cm ⁻²)	H ₂ O/Optical-fiber photo reactor	0.45	-	-	[26], 2005
2 wt% Cu/TiO ₂	UV-C Hg lamp (254 nm)	0.2 N NaOH/Cylindrical quartz reactor	20	-	-	[27], 2004
2 wt% Cu/TiO ₂	UV 8 W Hg lamp (>254 nm)	0.2 N NaOH/Cylindrical quartz reactor	40	-	-	[28], 2004
Fe-0.03wt% Cu- K/DAY ^h)- Pt/K ₂ Ti ₆ O ₁₃ (1:1)	Concentrated sunlight (62 mW⋅cm ⁻²)	H2O/Optical quartz tube cell	4.83	-	HCOOH, HCHO, CH4, C ₂ H5OH	[29], 2003
2.0 wt% Cu/TiO ₂ NPs ^f	UV 8W Hg lamp (254 nm)	0.2 N NaOH/Quartz reactor (inner-irradiated)	19.6	10.02	-	[30], 2002
Cu/TiO2 rutile	UV 75 W Hg lamp (>280 nm)	H ₂ O/Quartz cell	0.0024	-	CO, CH ₄	[31], 1995
3 wt% Cu/TiO ₂	Vis 500 W Xe lamp	0.01 M KHCO ₃ /Cylindral pyrex cell	1.32	-	СО, НСНО, НСООН	[32], 1992

^a Optofluidic microreactor; ^b Acetonitrile; ^c Triethanolamine; ^d Benzylamine; ^e Nanofibers; ^f Nanoparticles; ^g Nanorods; ^h Dealuminized Y-type zeolite.

References

[1] Q. Luo, Y. Cao, Z. Liu, B. Feng, Q. Zhou, N. Li, A feasible process for removal and utilization of CO_2 in thermal power plants by MDEA+DMSO scrubbing and Cu/TiO₂ photocatalytic reduction, Appl. Therm. Eng. 153 (2019) 369–378. https://doi.org/10.1016/j.applthermaleng.2019.02.049.

[2] A. khalilzadeh, A. Shariati, Fe-N-TiO₂/CPO-Cu-27 nanocomposite for superior CO₂ photoreduction performance under visible light irradiation, Sol. Energy. 186 (2019) 166–174. https://doi.org/10.1016/j.solener.2019.05.009. [3] S. Nadeem, A. Mumtaz, M. Mumtaz, M. I. A. Mutalib, M. S. Shaharun, B. Abdullah, Visible light driven CO₂ reduction to methanol by Cu-porphyrin impregnated mesoporous Ti-MCM-48, J. Mol. Liq. 272 (2018) 656–667. https://doi.org/10.1016/j.molliq.2018.09.077.

[4] J. O. Olowoyo, M. Kumar, T. Dash, S. Saran, S. Bhandari, U. Kumar, Self-organized copper impregnation and doping in TiO₂ with enhanced photocatalytic conversion of H₂O and CO₂ to fuel, Int. J. Hydrogen Energ. 43 (2018) 19468–19480. https://doi.org/10.1016/j.ijhydene.2018.08.209.

[5] T. Yang, Q. Yu, H. Wang, Photocatalytic Reduction of CO₂ to CH₃OH coupling with the oxidation of amine to imine, Catal. Lett. 148 (2018) 2382–2390. <u>https://doi.org/10.1007/s10562-018-2412-6</u>.

[6] Y. N. Kavil, Y. A. Shaban, R. K. Al Farawati, M. I. Orif, M. Zobidi, S. U. M. Khan, Efficient photocatalytic reduction of CO₂ present in seawater into methanol over Cu/C-Co-doped TiO₂ nanocatalyst under UV and natural sunlight, Water Air Soil Pollut. (2018) 229-236. https://doi.org/10.1007/s11270-018-3881-3.

[7] F. Xu, J. Zhang, B. Zhu, J. Yu, J. Xu, CuInS₂ sensitized TiO₂ hybrid nanofibers for improved photocatalytic CO₂ reduction, Appl. Catal. B-Environ. 230 (2018) 194-202. <u>https://doi.org/10.1016/j.apcatb.2018.02.042</u>.

[8] Y. N. Kavil, Y. A. Shaban, R. K. Al Farawati, M. I. Orif, M. Zobidi, S. U.M. Khan, Photocatalytic conversion of CO₂ into methanol over Cu-C/TiO₂ nanoparticles under UV light and natural sunlight, J. Photoch. Photobio. A., 347 (2017) 244–253. https://doi.org/10.1016/j.jphotochem.2017.07.046.

[9] D. O. Adekoya, M. Tahir, N. A. S. Amin, g-C₃N₄/(Cu/TiO₂) nanocomposite for enhanced photoreduction of CO₂ to CH₃OH and HCOOH under UV/visible light, J. CO2 Util. 18 (2017) 261–274. https://doi.org/10.1016/j.jcou.2017.02.004.

[10] M. Cheng, S. Yang, R. Chen, X. Zhu, Q. Liao, Y. Huang, Copper-decorated TiO₂ nanorod thin films in optofluidic planar reactors for efficient photocatalytic reduction of CO₂, Int. J. Hydrogen Energ. 42(15) (2017) 9722–9732. <u>https://doi.org/10.1016/j.ijhydene.2017.01.126</u>.

[11] M. Tahir, B. Tahir, N. A. S. Amina, H. Alias, Selective photocatalytic reduction of CO₂ by H₂O/H₂ to CH₄ and CH₃OH over Cu-promoted In₂O₃/TiO₂ nanocatalyst, Appl. Surf. Sci. 389 (2016) 46–55. <u>https://doi.org/10.1016/j.apsusc.2016.06.155</u>.

[12] M. M. R. Khan, M. R. Uddin, H. Abdullah, K. M. R. Karim, A. Yousuf, C. K. Cheng, H. R. Ong, Preparation and characterization of CuFe₂O₄/TiO₂ photocatalyst for the conversion of CO₂ into methanol under visible light, International Journal of Chemical and Molecular Engineering. 10 (2016). <u>https://doi.org/10.10.5281/zenodo.1126852</u>.

[13] H. Li, C. Li, L. Han, C. Li, S. Zhang, Photocatalytic reduction of CO₂ with H₂O on CuO/TiO₂ catalysts, Energ. Source Part A. 38(3) (2016) 420-426. https://doi.org/10.1080/15567036.2011.598910.

[14] Y.-H. Cheng, V.-H. Nguyen, H.-Y. Chan, J. C.S. Wu, W.-H. Wang, Photo-enhanced hydrogenation of CO₂ to mimic photosynthesis by CO co-feed in a novel twin reactor, Appl. Energ. 147 (2015) 318–324. <u>https://doi.org/10.1016/j.apenergy.2015.02.085</u>.

[15] M. R. Uddin, M. R. Khan, M. W. Rahman, A. Yousuf, C. K. Cheng, Photocatalytic reduction of CO₂ into methanol over CuFe₂O₄/TiO₂ under visible light irradiation, Reac. Kinet. Mech. Cat. 116 (2015) 589–604. <u>https://doi.org/10.1007/s11144-015-0911-7</u>.

[16] J.-J. Wang, Y.-H. Jing, T. Ouyang, Q. Zhang, C.-T. Chang, Photocatalytic reduction of CO₂ to energy products using Cu–TiO₂/ZSM-5 and Co–TiO₂/ZSM-5 under low energy irradiation, Catal. Commun. 59 (2015) 69-72. <u>https://doi.org/10.1016/j.catcom.2014.09.030</u>.

[17] O. Oluwafunmilola, M. M. Maroto-Valera, Copper based TiO₂ honeycomb monoliths for CO₂ photoreduction, Catal. Sci. Technol. 4 (2014) 1631–1637. https://doi.org/10.1039/C3CY00991B.

[18] Z. Q. He, L. X. Jiang, J. Han, L. N. Wen, J. M. Chen, S. Song, Activity and selectivity of Cu and Ni doped TiO_2 in the photocatalytic reduction of CO_2 with H_2O under UV-light irradiation, Asian J. Chem. 26 (15) (2014) 4759-4766. https://doi.org/10.14233/ajchem.2014.16199.

[19] M. Bellardita, A. Di Paola, E. García-López, V. Loddo, G. Marcì, L. Palmisano, Photocatalytic CO₂ reduction in gas-solid regime in the presence of bare, SiO₂ supported or Culoaded TiO₂ samples, Curr. Org. Chem. 17 (2013) 2440-2448. <u>https://doi.org/ 10.2174/13852728113179990057.</u>

[20] B. Srinivas, B. Shubhamangala, K. Lalitha, P. A. K. Reddy, V. D. Kumari, M. Subrahmanyam, B. R. De, Photocatalytic reduction of CO₂ over Cu-TiO₂/molecular sieve 5A composite. Photochem. Photobiol. 87 (2011) 995-1001. https://doi.org/10.2174/13852728113179990057.

[21] D. Luo, Y. Bi, W. Kan, N. Zhang, S. Hong, Copper and cerium co-doped titanium dioxide on catalytic photo reduction of carbon dioxide with water: Experimental and theoretical studies, J. Mol. Struct. 994 (2011) 325-331. <u>https://doi.org/10.1016/j.molstruc.2011.03.044</u>.

[22] H.-C. Yang, H.-Y. Lin, Y.-S. Chien, J. C.-S. Wu, H.-H. Wu, Mesoporous TiO₂/SBA-15, and Cu/TiO₂/SBA-15 composite photocatalysts for photoreduction of CO₂ to methanol, Catal Lett. 131 (2009) 381–387. <u>https://doi.org/10.1007/s10562-009-0076-y</u>.

[23] Slamet, H.W. Nasution, E. Purnama, K. Riyani, J. Gunlazuardi, Effect of copper species in a photocatalytic synthesis of methanol from carbon dioxide over copper-doped titania catalysts, World Applied Sciences Journal 6 (1) (2009) 112-122. ISSN 1818-4952. [24] J. C.S. Wu, H.-M. Lin, C.-L. Lai, Photo reduction of CO₂ to methanol using optical-fiber photoreactor, Appl. Catal. A-Gen. 296 (2005) 194–200. https://doi.org/10.1016/j.apcata.2005.08.021.

[25] Slamet, H. W. Nasution, E. Purnama, S. Kosela, J. Gunlazuardi, Photocatalytic reduction of CO₂ on copper-doped titania catalysts prepared by improved-impregnation method, Catal. Commun. 6(5) (2005) 313–319. <u>https://doi.org/10.1016/j.catcom.2005.01.011</u>.

[26] J. C. S. Wu, H.-M. Lin, Photo reduction of CO₂ to methanol via TiO₂ photocatalyst, Int. J. Photoenergy. (2005) 115-119. <u>https://doi.org/10.1155/S1110662X05000176</u>.

[27] I.-H. Tseng, J. C.S. Wu, H.-Y. Chou, Effects of sol-gel procedures on the photocatalysis of Cu/TiO₂ in CO₂ photoreduction, J. Catal. 221 (2004) 432–440. https://doi.org/10.1016/j.jcat.2003.09.002.

[28] I.-H. Tseng, J. C.-S. Wu, Chemical states of metal-loaded titania in the photoreduction of CO₂, Catal. Today. 97 (2004) 113–119. <u>https://doi.org/10.1016/j.cattod.2004.03.063</u>.

[29] G. Guan, T. Kida, A. Yoshida, Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst, Appl. Catal. B-Environ. 41 (2003) 387–396. https://doi.org/10.1016/S0926-3373(02)00174-1.

[30] I.-H. Tseng, W-C. Chang, J. C. S. Wu, Photoreduction of CO₂ using sol–gel derived titania and titania-supported copper catalysts, Appl. Catal. B-Environ. 37 (1) (2002) 37-48. https://doi.org/10.1016/S0926-3373(01)00322-8.

[31] M. Anpo, H. Yamashita, Y. Ichihashi, S. Ehara, Photocatalytic reduction of CO₂ with H₂O on various titanium oxide catalysts, J. Electroanal. Chem. 396 (1995) 21-26. <u>https://doi.org/10.1016/0022-0728(95)04141-A</u>.

[32] K. Hirano, K. Inoue, T. Yatsu, Photocatalysed reduction of CO₂ in aqueous TiO₂ suspension mixed with copper powder, J. Photochern. Photobiol. A: Chem. 64 (1992) 255-258. https://doi.org/10.1016/1010-6030(92)85112-8.