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Abstract

This paper gives a brief overview of some configurations in which high-
frequency wave propagation modelled by Helmholtz equation gives rise to
solutions that vary rapidly across thin layers. The configurations are
grouped according to their mathematical structure and tractability and
one of them concerns a famous open problem of mathematical physics.

1 Introduction

High-frequency asymptotics in the frequency domain has been studied inten-
sively in St Petersburg for many decades, and much of the early work is reviewed
in [19]. Meanwhile, the idea of applying systematic boundary layer theory in
this area was pioneered in [2]. This paper is a sequel to [1], upon which we will
rely for much of the background and detailed arguments.

Boundary layer approximations to the two-dimensional Helmholtz equation

∇2φ+ k2φ = 0 (1)

arise when the complex potential φ represents modulated plane waves with
large real wavenumber k. The simplest ansatz is to write φ ∼ eikxA, where the
complex amplitude A has an asymptotic expansion in inverse powers of k, with
x ∼ k−λ1 , y ∼ k−λ2 and 1 + λ1 = 2λ2. To lowest order, this gives the so-called
parabolic wave equation

2i
∂A

∂x
+
∂2A

∂y2
= 0. (2)

This is a complexification of the convection/conduction equation for heat flow
in a thermal boundary layer. As we will see, (2) can be used to model a two-
dimensional beam of light in the same way that the real version of (2) can model
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a plume of heat. However, we caution that solutions of (2) will hardly ever be
uniform approximations to solutions of (1), especially if x and/or y has infinite
range. Moreover, there are many more intricate asymptotic representations for
thin layers, such as the Friedlander-Keller expansion

φ ∼ eikx+ik1/3u(x,y)A (x, y; k) , (3)

where A no longer satisfies (2) to lowest order (see [3]) and we will see how such
expansions arise naturally in Section 3.

A simple fundamental solution of (2) takes the form

A = e−2i[λ(y−y0)+λ2(x−x0)], (4)

where λ, x0, y0 are constants with λ being a Fourier transform variable, and we
will see that superposition of such functions with weight f (λ) lead to many use-
ful exact solutions of (2). Another fundamental solution is the Green’s function
or point source solution

A = (x− x0)
−1/2

ei(y−y0)2/2(x−x0), (5)

which can be obtained by taking f (λ) = 1 and integrating (4) along the real λ-

axis with an appropriate definition of (x− x0)
1/2

. We note that when x0 = y0 =
0 in (4) and f (λ) is fairly general, the resulting superposition is closely related
to weighting (5) with g (y0) and setting x0 = 0; indeed, f and g are Fourier
transforms of each other. Almost all the solutions we will list in Sections 2 to 4
will involve superpositions of (4) and (5).

We remark that since (2) is invariant under effectively the same one-parameter
groups as the heat equation, we can refer to [4] to note, for example, that if

A (x, y) satisfies (2), then so does the function e−λy+iλ2x/2A (x, y + iλx) .
We will begin in Section 2 by briefly reviewing some well-known solutions of

(2) that are localised away from any boundaries in the (x, y) plane. These have
all been described in some detail in [1] and we will only emphasise aspects that
are relevant to Sections 3 and 4. Then, in Section 3, we will consider thin layers
that are adjacent to prescribed boundaries and hence can be part of “modal so-
lutions” in closed domains. This Section will build up to the ”Fock-Leontovich”
solution for (2) that models irradiation of a parabola which is locally tangent
to the x-axis by a plane wave propagating along this axis. This problem acts as
a paradigm for the one to be discussed in Section 4, namely the long-standing
question of diffraction of a whispering gallery wave at an inflection point of a
boundary. This is the so-called “Popov” problem which has attracted the at-
tention of many researchers since the pioneering paper [5]. We will also make
some conjectures about the solution in the light of recent numerical evidence.
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2 Thin Layers with no Boundaries

2.1 Gaussian Beams

No superposition is needed to model a Gaussian beam. All we need to do is set
x0 = iX0 with X0 real, large and positive in (5), so that A is a Gaussian beam
with amplitude proportional to exp

(
−(y − y0)2/2X0

)
, at least for |x| � X0,

|y − y0| ∼ X1/2
0 . However, any such representation fails to be a uniformly valid

approximation to a solution of (1) when x → ∞. As described in [1], such
beams spread laterally and eventually match with a multiple of the outgoing

wave solution of (1) given by
∂

∂x
H

(1)
0

(
k
√
x2 + y2

)
, where H

(1)
0 is the Hankel

function of the first kind, which decays like
(
x2 + y2

)−1/4
. Many of the thin

layers to be described later suffer from such nonuniformity.1

2.2 Shadow Boundaries

We can either seek a similarity solution of (2) of the form A = A
(
y/
√
x
)

or
weight (4) with a function proportional to λ−1 and integrate with respect to λ
over a suitable contour in the complex λ-plane to deduce that∫ y/

√
2x

−∞
eit

2

dt =
√
πeiπ/4

(
1− 1√

π
e−iπ/4Fr

(
y/
√

2x
))

, (6)

where Fr is the Fresnel integral, also satisfies (2); it tends to
√
πeiπ/4 as y →

+∞ (the illuminated region) and to zero as y → −∞ (the shadow) and its
y-derivative is proportional to a Gaussian beam for appropriate values of x. We
will see in Section 3 that the birth of a shadow boundary can be a complicated
matter when it is initiated by a grazing ray.

2.3 Thin Layers in Regions Bounded by an Ellipse

We now describe two solutions of (2) that decay as |y| → ∞ as in a Gaus-
sian beam but are both components of a high-frequency eigensolution of the
Helmholtz equation in an ellipse. Hence they are called modes, even though
they do not comply with a boundary condition at the ellipse. They arise from
superimposing solutions of the form (5) rewritten as

(x+ 2i)
−1/2

exp
(
−2i (λ+ iy/2)

2
/ (x+ 2i)

)
with a weighting λme−λ

2/2, which gives the solution

A =
(
x2 + 4

)−1/4
ei(y

2x/2(x2+4)−i(m+1/2) tan−1(x/2))Dm

(
2y

(x2 + 4)
1/2

)
, (7)

1We remark that Gaussian beams also describe the thin layers that are present near a
flat plate lying along the positive x-axis when it is irradiated by a field eikx, assuming the
boundary conditions are other than Neumann conditions. However they are not uniformly
valid near the origin.
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where the parabolic cylinder function Dm(z) = 2−m/2e−y
2/4Hm

(
y/
√

2
)

and

Hm is the Hermite polynomial of degree m. We note that as |y| → ∞,

|A| ∼

(
y

(x2 + 4)
1/4

)m
e−y

2/(x2+4).

As described in [1] this solution can be “modalised” by taking hints from the
Mathieu functions that arise when Helmholtz’ equation is solved by separating
the variables in elliptic coordinates to give

A =

√
c

(c2 − x2)
1/4

(
c+ x

c− x

)m
2 + 1

4

exp
(
−iy2x/2

(
c2 − x2

))
Dm

(
eiπ/4

√
2cy

(c2 − x2)
1/2

)
,

(8)
where c is real and positive. This ”focussing mode” represents a thin layer
solution of (2) that lies close to the major axis of an ellipse whose foci are at
x = ±c. This phenomenon of a “terminating beam” is associated with the
focusing of rays emanating from the ends of the major axis of the ellipse and it
shows that small perturbations of perfect foci need not necessarily lead to the
caustics to be described shortly.

If we replace c by ic in (8) we retrieve the solution

A =

√
c

(c2 + x2)
1/4

exp
(
−iy2x/2

(
c2 + x2

)
− i (m+ 1) tan−1

(x
c

))
× Dm

(
y
√

2c

(c2 + x2)
1/2

)
. (9)

This represents a thin layer that lies along and terminates at the ends of the
minor axis and it results from the concentration of rays that bounce repeatedly
at the boundary; hence (9) is called a “bouncing ball mode”. In fact there exist
many more thin layer solutions of (2) that arise at the boundaries of the regions
within which the modes in an ellipse have real rays. These boundaries are not
straight and this leads us to study thin layers with non-zero curvature.

2.4 Caustics

Caustics are familiar thin layers because of their observability in, say, coffee
cups on a sunny day. They model the smooth transition that occurs at the
envelopes of the rays that underpin geometrical optics and hence they are in-
evitably curved. Thus it is convenient to rewrite (1) in orthogonal curvilinear
coordinates and, to do this, we assume for simplicity that the envelope y = f(x)
is smooth and has no vertical tangents. Then we let s measure the distance
from some fixed point on the envelope to the point (X, f(X)) where X is such
that f ′(X)(y − f(X)) + x − X = 0, and n is a coordinate along the normal

whose distance from the envelope is
(
(y− f(X))2 + (x−X)2

) 1
2 ; the sign of the
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square root is such that y increases when n increases and vice versa. Elementary
geometry gives that the metrics in (x, y) and (s, n) are related by

dx2 + dy2 = dn2 + (1− κn)2ds2, (10)

where κ(s) is the curvature of the envelope, which is positive when the normal
n > 0 passes through the centre of curvature; we also assume n < κ−1. In these
coordinates, Helmholtz equation becomes

1

(1− nκ)

(
∂

∂n

(
(1− nκ)

∂φ

∂n

)
+

∂

∂s

(
1

(1− nκ)

∂φ

∂s

))
+ k2φ =(

1

(1− nκ)
2

∂2

∂s2
+

∂2

∂n2
+

nκ′

(1− nκ)
3

∂

∂s
− κ

(1− nκ)

∂

∂n
+ k2

)
φ = 0, (11)

in contrast to the notation in [1], [10]. If there are no rapid variations in the
s-direction and n is small, φ is proportional to e±iks to lowest order.

However, there are much more interesting solutions in which φ ∼ eiksA (s, n)
as k →∞. In this case, to lowest order

∂2A

∂n2
− 2k2nκA = 0,

so that, with n = k−2/3N , the physically realistic solution for A is a multiple,
which may depend on s, of the Airy function

Ai
(

(2κ)
1/3

N
)

=
1

2πi

∫ ∞
−∞

exp
(
i (2κ)

1/3
Nλ+ iλ3/3

)
dλ, (12)

the shadow region being N → −∞ when κ > 0. This result was derived
systematically in [24], [23]. Also it is shown in [1] that (12) can be written in
local Cartesian coordinates (X.Y ) near s = 0 as a superposition of plane waves
given by (2). The result is proportional to∫ ∞

−∞
exp(−iλY − iλ2X/2− iκ(0)λ3/6)dλ, (13)

where Y − 1

2
κ(0)X2 = N = k

2
3n, X = S = k1/3s. However the change in metric

introduces a pre-factor in the relation between eiks and eikx.
We will now evaluate the multiple of the Airy function that determines the

enhanced amplitude at a caustic. To do this, we must match (12) with the ray
expansion corresponding to a prescribed remote source of illumination with s, n
of O(1). The technical complications that arise have been described in detail in
[2], where a different coordinate system from ours is employed, and in [19]; hence
we will only summarise the basic ideas here. For definiteness we take κ > 0 so
that the real rays are in n < 0. Near the caustic where s∗, |n| ∼ 1

2κ(s∗)(s∗−s)2,
ray theory reveals that φ comprises fields of the form

I±

|s∗ − s| 12
exp

(
ik

(
s∗ ± 2

3

(
2κ (s∗)

1
2 (−n)

3
2

)))
, (14)
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where I± are the amplitudes of the incoming and outgoing fields respectively,
the former being prescribed. In order for a superposition of these fields to
yield a function proportional to (12) as N = k−

2
3n → ∞, we recall that

Ai(−z) ∼ π− 1
2 (−z)− 1

4 sin

(
2

3
(−z) 3

2 +
π

4

)
as z → −∞. Hence we infer that

(i) I+ = −e iπ2 I−, which reflects the fact that there is a phase change of π
2 as

a ray changes from being incoming to outgoing and

(ii) the Airy function in (12) is multiplied by the factor

1

2
I+(s∗)k

1
6π

1
2 (2κ(s∗))

1
3 eiks

∗− iπ4 ,

which reveals that the caustic amplifies the field by k
1
6 .

We emphasise that both these results are consequences of the fact that φ is
exponentially small inside the caustic.

2.5 Cusped Caustics

The commonest singularity that can occur in a caustic is a cusp described locally

by, say, |y| =
(

2

3
x

)3/2

, x > 0. Indeed, this cusp can arise when we consider

the envelope of Gaussian beams, as described in [1]. To analyse this situation
and those in the following sections, we therefore consider solutions of (11) that
are localised near a curve

y +
γ

m
xm = 0

in Cartesian coordinates, with m greater than 1. Then, for small x, y, s and n
we can write

s ∼ x+O (xm) ,

n ∼ y +
γ

m
xm + o (xm) , (15)

κ ∼ −γ (m− 1)xm−2 + o
(
xm−2

)
.

Hence, when we again write φ = eiksA (s, n), we find that the dominant terms
in (11) for large k are, after those of O

(
k2
)

have been removed, those arising
from the first two terms.

If we assume n ∼ O (kα), s ∼ O
(
kβ
)

where α, β are negative and analogous

to the parameters λ1, λ2 introduced after (1), then κ ∼ k(m−2)β and the relevant
terms balance when

k1−β ∼ kα+β(m−2)+2 ∼ k2α.

Thus α = m/ (1− 2m), β = 1/ (1− 2m) and, to lowest order, (11) reduces to

∂2A

∂n2
+ 2i

∂A

∂s
+ 2 (m− 1) γnsm−2A = 0, (16)
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where, for the rest of this section, n, s are scaled variables. For our cusped caus-

tics, m = 3/2, γ =

(
2

3

)1/2

and n and s scale with k−3/4 and k−1/2 respectively,

as described in more detail in [1]. Since A decays as |n| → ∞, we can take the

Fourier transform Ã =

∫ ∞
−∞

Aeiλndn to give

−λ2Ã+ 2i
∂Ã

∂s
+ iγs−1/2 ∂Ã

∂λ
= 0. (17)

The characteristic equations are

ds

2
=

dλ

γs−1/2
=

i

λ2

dÃ

Ã
,

so that the general solution for Ã is

Ã = f
(
λ− γ

4
s1/2

)
exp

[
i

6γ2

(
λ4 + γs1/2λ3

)]
, (18)

where the function f is arbitrary. In our case it is determined by matching as
s→∞ with the upper/lower branches of the cusped caustic, which is described
by (12) (further details of this matching are given in [1]). This means that f is
a constant and A is thus proportional to∫ ∞

−∞
exp

[
i

6γ2

(
λ4 + γs1/2λ3

)
− inλ

]
dλ.

We note that when we add a constant to λ and make use of (15), we retrieve
the Pearcey integral (2.89) of [1]. In the light of Section 3.1, we expect an
increase in amplitude as the cusp is approached and the analysis in [1] shows

that this increase is of O(k
3
4 ).

As observed in [1], there is no noticeable thin layer near the negative x-axis,
but there are thin layers of exponentially small amplitude around the Stokes lines

y = ±
(
−2

3
x

)3/2

. This is not surprising in view of the decay of the incoming

Airy function (12).
In the next section we will consider the dramatic effect that modality can

have on these solutions.

3 Thin Layers Adjacent to Boundaries

3.1 The Birth of Creeping Waves

As explained in Section 2.4, the asymptotic behaviour of solution (12) as κN →
−∞ comprises two waves that can be matched to incoming and outgoing wave
fields described by geometrical optics. The latter can be used to model the
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birth of a creeping wave field at a convex boundary at which A or
∂A

∂n
vanishes,

depending whether the boundary is hard or soft. However, this cannot happen
unless (12) is modified and this can be done by seeking waves that are weakly
modulated in the s-direction in the form

φ ∼ e
i

(
ks+k

1
3 u(s)

)
A (s) ; (19)

it is shown in [10] that the lowest order terms in the asymptotic expansion for
large k preclude the function u from depending on n. Then the leading order
terms in (11) must be such that a balance occurs in which

∂2A

∂n2
+ 2

(
−k4/3 du

ds
− k2nκ

)
A = 0.

Hence we can satisfy boundary conditions on N = 0 if we set
du

ds
= 2−

1
3κ

2
3σ,

where, again with n = k−
2
3N ,

∂2A

∂N2
+ 2

(
−κN − 2−

1
3κ

2
3σ
)
A = 0 (20)

and σ is a positive zero of A or
∂A

∂N
.

As remarked earlier, (19) is an example of a Friedlander-Keller ansatz, which
will often be used throughout the rest of the paper. We remark that the creeping
ray field for plane wave irradiation of a circular cylinder can be, with some
effort, extracted from the explicit exact solution for arbitrary k given in [6].
The amplitude of the creeping field turns out to be proportional to the one
sixth power of the inverse of the radius of the circle, in contrast to the one third
power that arises for a caustic.

3.2 Whispering Gallery Waves

When κ > 0, the preceding approach applies to whispering gallery waves, for

which the wave field as N → +∞ is exponentially small, of O
(
e−

2
3 (2κ)1/2N3/2

)
.

The implications of (20) for the high-frequency spectrum for the Helmholtz
equation in a closed region are discussed in [1]. We remark that only a singly-
infinite number of modes emerge at this lowest order of approximation and the
two-dimensionality of the spectrum needs to be revealed by tracking the field
around the boundary, assumed smooth and convex, and applying periodicity.
The only reason we mention these waves explicitly here is because of interest
in the behaviour of such waves near an inflection point where the boundary
changes from being concave to convex, and this will be addressed in the final
section. A stepping stone in this direction is the problem of grazing diffraction.
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3.3 Grazing Diffraction and Fock-Leontovich Theory

The problem of solving (1) subject to zero Dirichlet or Neumann data on a
convex scatterer under plane wave irradiation has been studied extensively (see
for example [7],[6]). It is convenient to subtract out the incident field eikx and
write

φ = φsc + eikx,

and we will, for simplicity, only consider the case when

φsc = −eikx (21)

at the scatterer, whose local shape at the grazing point is parabolic. Our strat-

egy is now to solve (16), with m = 2, subject to eiksA = −eikx on y +
1

2
γx2 = 0,

where x and y have been scaled with k−1/3 and k−2/3, respectively. We also
require A → 0 as (y + 1

2γx
2) → +∞ and, crucially, that A matches with the

incoming specularly reflected field generated at the boundary for x < 0. Thus
we require

eiksA = −ei(ks−γ
2s3/6)

i.e. A = −e−iγ
2s3/6 on y +

1

2
γx2 = 0, (22)

and that eiksA must match with

−

(
−x+

√
x2 + 3y/2γ

3 (x2 + 3y/2γ)
1/2

)1/2

e

(
ik
(
x+ 4

27

(
−x3− 9xy

4γ +(x2+ 3y
2γ )

3/2
)))

as x → −∞ with y + 1
2γx

2 = O(1); this formula comes from a ray theory
calculation as described in [1]. It shows that (22) applies as s → −∞ for
y + 1

2γx
2 of O(1).

The way is now open to again convert to inner curvilinear coordinates S =
k

1
3 s,N = k

2
3n and solve (16) by taking a Fourier transform in s to give that

Ã =

∫ ∞
−∞

Aeiλsds

satisfies
d2Ã

dN2
+ 2 (λ+ γN) Ã = 0 (23)

with

Ã =

∫ ∞
−∞

eiSλ−γ
2S3/3dS (24)

on N = 0.
In order to write Ã as an Airy function whose inverse transform can be

taken along the real λ-axis, we need to define the cube root of (−γ2) in (24)
such that A → 0 as N → +∞; for the case of the caustic we needed A → 0 as
|N | → ∞ which constrained A to be given by (12), but now the continuation
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of A into N < 0 will grow at infinity. The upshot is that Ã is proportional to
Ai(−21/3e

2iπ
3 (λ+γN), the constant of proportionality being

−2π
( 2

γ2

) 1
3 Ai(−( 2

γ2 )
1
3λ)

Ai(−2
1
3 e

2iπ
3 λ)

.

This leads to the famous Fock-Leontovich solution [8].
From our point of view it is especially interesting that A can be written in

Cartesian coordinates as a plane wave superposition

A =

∫
Γ

p̂(λ)e
−i
(
yλ+ xλ2

2 −
λ3

3

)
dλ, (25)

where γ = 1 for simplicity. This has been described most recently in [9]; here Γ
is no longer the real axis but is a suitable contour in the complex λ-plane and
p̂ is the Pekeris caret function [9], which is known as a ”Fock-type integral” in
the Russian literature, and can be most simply written as

−e
− 2iπ

3

2π

∫ ∞
−∞

eiλt
Ai(t)

Ai(te
2iπ
3 )

dt

where λ has negative imaginary part.
The existence of the explicit inversion of Ã allows us to obtain a compre-

hensive description of the penumbral region that emerges as x → +∞. As
described in [11] and, in terms of matched asymptotic expansions in [9], [10],
this is achieved by taking suitable stationary-phase limits, and results in the
birth of three thin-layer solutions of Helmholtz equation. These layers separate
the illuminated region y > 0 from the deep shadow region described above by a
creeping wave field to lowest order. The upper and lower of the three layers are
not, however, modelled by (2) but rather as the result of a Friedlander-Keller
expansion. As shown in [10], this results in transition layers described by Pekeris

functions of (y/x), with an amplitude that decays as x−
1
2 , while y is of O(k−

1
3 )

rather than the k−
2
3 scaling in the Fock-Leontovich region. Between these tran-

sition layers there is a classical shadow boundary in which y is of O(k−
1
2 ), as in

Section 2.
With the next Section in mind, we conclude by considering how much of

the penumbral structure and deep shadow could have been predicted from (16)
without knowing the explicit transform solution. Two observations can be made:

a) As shown in [10], equation (2.46), a Friedlander-Keller expansion for the
solution of (1) in x > 0, y < 0 is

φ ∼ k−
1
6F (ρ)

τ
1
2

e
i

(
k(ρ+τ)+k

1
3 v(ρ)

)
, (26)

where F, v are unknown functions, ρ is arclength along the scatterer to
the point at which the creeping ray is shed and τ is the distance along
that creeping ray. However, F and v can only be found by matching with
the transform solution.
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b) While we can easily anticipate that there will be a shadow boundary as
in Section 2.2 near the x-axis, we could also rescale x and y with kα and
k2α in (2) to give

∂2A

∂y2
+ 2ik3α ∂A

∂x
= 0, (27)

where 1
3 > α > 1

6 so as to be outside the deep shadow and the shadow
boundary regions. Then a WKB expansion in which

A ∼ Âeik
3αu (28)

gives that u =
y2

2x
and Â = x−

1
2 g
(y
x

)
in conformity with the prediction

at the end of the previous paragraph. Of course we cannot guess that g is

a Pekeris function, but we can see that g(z) ∼ O
(

1

z

)
as z → 0 in order

to match with a Fresnel integral.

We will now consider the problems of the diffraction of a caustic and a
whispering gallery wave at an inflection point in the light of the above discussion.

4 Thin Layers with Inflection Points

The preceding Sections have shown how much easier it is to analyse thin layers
in the absence of boundaries, so we will first consider a caustic whose curvature
changes sign.

4.1 Caustics

Equation (12) shows how caustics with non-zero curvature can be simply mod-
elled starting from (11). When we generalise the derivation to a caustic near
y + 1

3γx
3 = 0, for which κ ∼ −2γx as x → 0 we can, when s is not too small,

scale n with k−
2
3 and retrieve (12). But as s → 0, we must adopt the scalings

that led to (16). We set s = k−
1
5S, n = k−

3
5N , where S, N are new scaled

variables distinct from those in Section 3; this gives, to lowest order,

∂2A

∂N2
+ 2i

∂A

∂S
+ 4γNSA = 0 (29)

and we recall that N is in the positive y-direction for all S. This equation has
appeared many times in the literature, most recently in [20].

Since we are interested in incoming caustics in which, from Section 2.4 and
in the light of the comments made at the end of Section 3.1,

A ∼ (−S)
1
3 Ai

(
(−4γS)

1
3 N

)
(30)
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as S → −∞, the Fourier transform Ã =
∫∞
−∞AeiλNdN satisfies

−λ2Ã+ 2i
∂Ã

∂S
− 4iγS

∂Ã

∂λ
= 0 (31)

with

Ã ∼ (4γ)
− 1

3 exp

(
iλ3

12γS

)
as S → −∞; there is now no ambiguity over cube roots as there was after (24).
The characteristic equations for (31) are

dS

2i
=

dλ

−4iγS
=

dÃ

λ2Ã
, (32)

so that the general solution is

Ã = exp

(
− i

2

(
γ2S5

5
− 2γ(λ+ γS2)S3

3
+ (λ+ γS2)2S + F (λ+ γS2)

))
(33)

for some function F . However, (30), which holds for all sufficiently large negative
values of S, implies that

F (ζ) = − 8

15γ
1
2

ζ
5
2 − 2i

3
ln(4γ). (34)

When we make the choice that (λ+ γS2)
1
2 is positive when (λ+ γS2) > 0 and

equal to i|λ+ γS2| 12 when (λ+ γS2) < 0, the inversion integral for Ã converges
as long as we take the inversion contour Γ along the positive real axis and just
above the negative real axis in the λ-plane. Thus

A =
1

2πi
e−iγ

2S5/5

∫
Γ

1

(λ+ γS2)
1
2

×

exp

−iNλ− i

2

−8
(
λ+ γS2

) 5
2

15γ
1
2

+ S
(
λ+ γS2

)2 − 2γS3

3

(
λ+ γS2

) dλ

(35)
is the solution of (29) subject to (30), assuming uniqueness.

We note that when S → +∞ with N = O(1), then, since (λ + γS2)
5
2 ∼

γ
5
2S5, A will be proportional to Ai

(
(4γS)

1
3 e

iπ
6 N

)
, and the amplitude decays

exponentially in S. We will not analyse (4.1) further here apart from remarking

that, as |N | → ∞, A decays to be of O(|N |− 5
6 ) for S ≤ O(|N |− 1

2 ).

4.2 Diffraction

We now consider the open question that largely motivated the writing of this
paper. This is the solution of (29) in N > 0 and with −∞ < s < ∞, together
with , for simplicity

A = 0 on N = 0 (36)
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and,

A ∼ (−S)
1
3 exp

(
− 3i

5γ
2

1
3 (−γS)

5
3

)
Ai
(

(−4γS)
1
3N + σM

)
(37)

as S → −∞, where σM is the Mth zero of the Airy function.
This is the famous problem proposed by Popov [5] and it has subsequently

been studied by many researchers from around the world (see, for example, some
of the bibliography in [18]). Much research has been focused on the search for
explicit solutions using weighted superpositions of elementary solutions such as
(4),(5). In particular, Popov [15] has proposed a superposition of elementary
solutions of the form

1

(s− s0)
1
2

exp

(
(i

(n− n0)2

2(s− s0)

)
×

exp

(
in

(
1

2
s0(s− s0) +

1

3
(s− s0)2

)
− in0

(
−s0

2
(s− s0)− 1

6
(s− s0)2

))
×

exp

(
i

(
− s

2

24
(s− s0)3 +

s

24
(s− s0)4 − 1

90
(s− s0)5

))
in unscaled coordinates (s, n). Also the well-posedness of the problem has been
proved in [14] and [13].

All this research has strongly suggested that the phase in any superposition
of plane waves of the form (4) should include a fifth power of λ, as discussed in
detail in [17], [18]. For the caustic described above, the phase contains a cubic
power of λ but only asymptotically as S → −∞, and it is possible that a fifth
power would only emerge asymptotically in certain regions. 2

Figure 1: The M=1 mode

The numerical investigations presented in [16] and [21] strongly suggest the
generation of localised beams near the tangent at the inflection point, the num-
ber of beams being the number of zeros in the Airy function describing the
incoming whispering gallery wave. Figures 1 and 2 are contour plots of the
amplitude of the solution of (16), (36) and (37) with m = 3 and γ = 1

2 for the

2The birth of a caustic with an inflection point has been modelled in [1] using a phase
involving fifth powers, but only at the expense of a singularity in the initial phase as a
function of y.
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Figure 2: The M=2 mode

parameter values M = 1, 2 in (37). These previously unpublished results were
obtained by D.Hewett using a modern implementation of the finite-difference
method used in [16] and [21]

As long as s is not too small, the basic problem (16) with m = 3 and A = 0
on n = 0 is, as in the case of the caustic above, amenable to a Friedlander-Keller
ansatz in which u(s) is proportional to σm

∫
(−κ)

2
3 ds, as discussed in (2.29) of

[10]. But when we write down the canonical inner problem in which s = k−
1
5S,

n = k−
3
5N , we retrieve (29) with N ≥ 0. Alas, no obvious transform in either

N or S leads to a tractable problem in this case.
We conclude with two remarks and a conjecture.

(i) The fact that energy can be localised near the tangent at the inflection
point has been demonstrated numerically in [16] and supported analyically
in [22].

(ii) If we anticipate some kind of beam formation near the x-axis then, mo-
tivated by (28), we scale the problem in (x, y) coordinates such that
x ∼ O(kα), y ∼ O(k3α), the parabolic wave equation (2) becomes

∂2A

∂y2
+ 2ik5α ∂A

∂x
= 0, (38)

where, instead of the scaling after (28), 3
5 > α > 1

10 . Now a WKB

expansion A ∼ A∗eik
5αu gives, as at the end of Section 3.3, u =

y2

2x
,

A∗ = x−
1
2G
(y
x

)
, where G for the Popov problem is analogous to the

Pekeris function for the Fock-Leontovich problem, and we expect G(z) to
be bounded as z → 0. It has been conjectured that this function may be
related to the function G0 in equation (4.3) of [12] and to the function A0

in equation (2.17) of [15], which was computed numerically in [16].

(iii) Finally, based on all that has been written above, we make the specu-
lative conjecture that the solution of the Popov problem will involve a
localisation near the x-axis, possibly of the form of a sum of “Gaussian
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beams”

φ ∼
M∑
j=1

cj
e
− (y−yj)

2

2(ix+X0)

√
ix+X0

(39)

where x << X0, |yj | << k−
1
2 and M is the number of zeros in the ampli-

tude of the incoming creeping field.

5 Conclusion

This brief review has emphasised the diversity of high-frequency wave propaga-
tion problems that can be modelled by the parabolic wave equation(2), many
of which are catalogued in [19]. We have concentrated on the derivation of thin
layer solutions of the Helmholtz equation using asymptotic analysis, but we
have not discussed the many important implications it may have for numerical
computations, and vice versa; a clear example of the latter is presented in [25],
while Figures 1 and 2 were an invaluable stimulus and motivation for much of
the current work.

The main implications that have been discussed are

(i) the use of superpositions of elementary solutions of (2) in Cartesian coor-
dinates,

(ii) the catalogue of phenomena that can be described when (2) is written in
curvilinear coordinates, for which pioneering work was done in [8] and [9]
for regions with parabolic boundaries,

(iii) the need for further analytical and numerical investigation of the ”Popov
problem”, concerning which the literature only allows us to make conjec-
tures, albeit fairly confident ones. Of particular practical interest is the
amplitude of the outgoing creeping field.
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