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Abstract AlGaN-based deep ultraviolet LEDs with high Al composition are 

promising for many applications, including air- or water-purification, fluorescence 

sensing, etc. However, to realize their full potential, it is important to understand the 

impact of the point defects on the device performance. Here, we investigate the defects 

in the 265nm AlGaN-based deep ultraviolet LEDs after degradation systematically with 

a combination of different analytical technologies. The results show that point defects 

increase after the degradation. The generated defects during the stress lead to a carrier 

redistribution in the active region and the induced point defects during the degradation 

are located within the multi-quantum wells (MQWs) region, especially in the first 

quantum well near the p side of the LED chip. The dislocation lines in the MQWs region 

were also observed after the degradation, which can lead to the Mg diffusion along the 

dislocation line. These findings are important to understand the defects in AlGaN 

quantum wells and further improve AlGaN-based deep ultraviolet LEDs’ performance. 

Keywords: AlGaN; deep ultraviolet LED; degradation; point defect; multi-

quantum wells 



I. Introduction 

Group III-V aluminum gallium nitride (AlGaN) semiconductors with high Al 

composition are promising for harmless, high-efficiency deep ultraviolet light-emitting 

diodes (DUV LEDs) [1-3]. Compared with conventional mercury gas-discharge lamps, 

AlGaN-based deep ultraviolet LEDs with the emission in UVC wavelength range have 

exceptional properties, such as tunable emission wavelength, low operating voltage, 

and environmental friendliness [4, 5], which have potential applications in air- or water-

purification, high-density data storage, medical diagnostics and disinfection, etc [6-8]. 

Till now, due to the low internal quantum efficiency (IQE) and light extraction 

efficiency (LEE), the maximum external quantum efficiency (EQE) of AlGaN-based 

deep LEDs at 275 nm is just 20.3% [9] and the general EQE of DUV LEDs is only in 

the single-digit percentage, which is far less than InGaN-based blue LEDs (>80%) [10-

15]. Many efforts have been made to reduce the threading dislocations (TDs) of AlGaN 

epitaxial growth [16, 17]. With the reduction of the threading dislocation density in AlN 

template, the highest IQE of AlGaN quantum wells can reach ~80% with the dislocation 

density less than 3108 cm-2 [18, 19].    

Recently, it has been reported that the dominant nonradiative recombination center 

is mainly related to the point defects instead of the threading dislocations for AlGaN 

epilayers [20]. Chichibu et al. have suggested that the point defects (PDs) play an 

important role in the AlxGa1−xN-based LEDs [21, 22]. The point defects (VAl, VN or 

complexes) in AlxGa1−xN would be generated and propagate in or around the active 

region during operation or stress [23, 24]. These point defects can act as non-radiative 

recombination centers in the active layers and increase the Shockley–Read–Hall (SRH) 

recombination, resulting in the decrease of optical power of the LEDs [25, 26]. 

However, how point defects and dislocations influence the device performance and 

what is the real character of these point defects is still not clear. 

In this study, we investigate the defects of AlGaN-based deep ultraviolet LEDs after 

the degradation using cathodoluminescence (CL), capacitance-voltage (C-V), deep-

level transient spectroscopy (DLTS) and aberration-corrected STEM image 



measurements. The results show that high current stress can induce both the dislocation 

and point defects within the active region, especially in the first quantum wells (QWs) 

near the p side of the AlGaN epitaxial structure. The findings are important to 

understand the role of the dislocation and point defects and further improve AlGaN-

based LEDs. 

2. Experimental section 

In this work, the commercially available 265nm deep ultraviolet LEDs with ~ 58% 

Al mole fraction in the AlxGa1-xN MQWs were studied. The chip structure consists of 

a sapphire substrate, AlN buffer layer, a thick AlGaN:Si current spreading layer, three 

periods of AlGaN QWs, a Mg-doped AlGaN electron blocking layer, a p-AlGaN layer 

and a p-GaN contact layer. The UV-C LEDs were stressed at a constant current of 100 

mA (maximum operating current, corresponding to the current density of ~160 A/cm2) 

at room temperature. The C-V characteristics were measured using a Keithley 

Semiconductor Characterization unit with hardware modules of 4200-SCS and a high 

frequency probe station. The DLTS were carried out in the temperature range of 10 K - 

440 K using a DLTS system composed of a Boonton 7200 capacitance meter, an Agilent 

33220A pulse generator, Lake Shore 331 temperature controller and a data acquisition 

system. Afterwards, the metal contacts were removed chemically using a solution of 

VHNO3: VHCI = l:3 and cleaned with deionized water. The CL spectra were measured at 

room temperature by using a Gatan Mono CL4 CL system with different electron 

accelerating voltages. SEM-CL was measured on the AlxGa1−xN -based fresh and 

stressed DUV LED chip at room temperature in the same system. The TEM specimens 

of the LED chip were prepared using a focused ion beam-scanning electron microscope 

system (Helios NanoLab 460 HP). STEM images and EDX mapping were recorded 

using a double aberration corrected transmission electron microscope (JEM-ARM300F, 

JEOL). 

 

 

 



3. Results and discussion 

Since the penetration depth of the electrons increase with increasing the electron 

beam energies [27], to understand the distribution of the radiative or non-radiative 

recombination centers at different depths, we measured the cathodoluminescence 

spectrum with different electron accelerating voltages. In this case, the structural and 

optical properties of different layers in the multilayer structures can be identified. Fig. 

1(a) shows the CL of the fresh LED measured with different energies of the incident 

electrons, where the accelerating voltages are at 3 kV, 5 kV and 7 kV, respectively. This 

allows us to identify the depth dependence of the radiative and non-radiative 

recombination center distributions along the c-axis [0001].  

 

Fig. 1. The CL spectra of DUV LED chip. (a) CL spectra of fresh DUV LEDs measured under 

different electron accelerating voltages, 3 kV, 5 kV and 7 kV. (b) CL spectra of DUV LEDs before 

and after degradation, measured under 7 kV electron accelerating voltage.  

 

When the operation voltages are 3 kV and 5 kV, there is almost no emission from the 

QWs with the corresponding energy 4.65 eV (265 nm), indicating that the majority of 

the collected CL signals are from the regions above the QWs of the UV-C LED chip. 

With increasing the operation voltage to 7 kV, the emission of AlGaN QWs at 4.65 eV 

increase dramatically, suggesting that they are from the quantum well region. Using 

Monte Carlo simulations, the penetration depths of the electrons in the LED chip at 3 

kV, 5 kV, and 7 kV are ~ 50 nm, 130 nm and 180-200 nm, respectively [28, 29]. 



Combining with the TEM image of the chip epitaxial structure (as shown in Fig. S2), 

the CL spectra measured at electron accelerating voltage of 7 kV are in good agreement 

with the quantum well structure. In addition, the peak position at 3.43 eV corresponds 

to the band edge emission peak of GaN and the peak position at 2.32 eV is due to the 

second order diffraction of the main emission peak. The spikes in all the CL spectra 

before and after stress may be related to the impurities in AlGaN materials.  

Using the fresh LED chip as the control sample, the CL spectra of the stressed chip 

were investigated. Fig. 1(b) shows the CL spectra of the fresh and stressed LED 

measured at electron accelerating voltage of 7 kV, the peak intensity from the AlGaN 

quantum well decreases significantly after stress, similar to the previously reported 

results [30]. But the emissions at the lower energies increase after stress. The band edge 

emission peak of GaN and the double diffraction of the main emission peak still exist. 

Besides, an obvious broad emission in the energy range of 2.45 - 3.30 eV appears for 

the stressed sample compared with the control sample, which is related to the increased 

point defects in the quantum well area during the stress.  

To investigate the carrier distribution in the active region for the DUV LED before 

and after the stress, the C–V characteristics were measured at 1 MHz, as shown in the 

inset of Fig. 2(a). The capacitance of the LED increases under a large reverse bias but 

decreases under a small reverse bias after stress. The three steps in the C-V curve in the 

reverse bias become more obvious after stress. In addition, it seems that there is a right 

shift after the degradation, indicating that the effective negative charges in the p-region 

become less, which makes the space charge region move to the p-side. The different 

behavior of capacitance change under reverse bias indicates the redistribution of the 

carriers in the active region after stress. 



 

Fig. 2. (a) The carrier distribution (ACD) for the fresh and stressed DUV LEDs at various reverse 

biases obtained from C–V curves. The inset shows capacitance-voltage (C-V) curves of the fresh 

and stressed DUV LED measured at 1 MHz. (b) Relationship between the reciprocal of the square 

of the capacitance and voltage (from -4 to 0V). Different colors are used for linear fitting to obtain 

the apparent carrier concentration.  

 

Fig. 2(a) shows the apparent carrier distribution (ACD) calculated from the C–V 

curves of DUV LED using the following equation [31], 
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where ε represents the permittivity, A is the area of the junction, Vr is the applied 

reverse bias, and Nm denotes the apparent carrier concentration. The three peaks 

(marked by Arabic numerals) correspond to the three quantum wells of the LED. The 

ACD of the fresh LED is very uniform in the MQWs. But after stress, the carrier 

distribution in the MQWs becomes inhomogeneous, as shown in Fig. 2(a) (red line). 

Furthermore, the change of quantum well near p-region (the first QW, marked 1) is 

more significant than the other two quantum wells, the maximum value of the ACD for 

first QW changes from 1.20×1018 cm-3 to 4.16×1018 cm-3. The I-V characteristic curves 

of the UVC-LED (Fig. 1S(b)) show that the leakage current in the reverse bias region 

and the subthreshold region increase after the stress and the ideality factor calculated 

from the I-V curves also increases after stress, indicating the generation of the point 



defects or dislocation [30]. Accordingly, the increase of the carrier concentration in the 

AlGaN QWs after stress is mainly due to the capture of carriers by defects generated 

during the stress operation.  

To further investigate the variation of the active area near the p-region, the 

relationship between the inverse of the square of the capacitance and voltage (from -4 

V to 0 V) was extracted from C-V curves, which is plotted in Fig. 2(b). Since the active 

area (MQWs) of the LED epitaxial structure is normally undoped, the apparent carrier 

concentration of the first QW area can be obtained by linear fitting 1/C2 – V curve in 

the reverse bias voltage range -4 V to 0 V as below,  
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The results show that the linear fitted average apparent carrier concentration Nm for 

both the fresh and stressed sample can be divided into three voltage sections, -4 V to -

2 V, -2 V to -1 V and -1 V to 0 V, respectively. The apparent carrier concentrations in 

these three regions for the stressed LED are 9.4, 4.8, and 16 times to that of the fresh 

sample. Therefore, the ACD in MQWs had a redistribution process after stress, showing 

an increase trend during the stress, and this behavior is more significant in the top 

quantum well of the active area close to the p-type side. As reported previously, the 

electric current stress would cause the generation of the defects in the AlGaN based 

LED chips [25, 30], and these defects related deep levels can capture the electrons or 

holes [20], resulting in the increase of the ACD in the AlGaN MQWs.  

To further investigate the possible deep levels in the region near the p side, DLTS 

spectra were obtained for the fresh and the stressed samples. We performed two DLTS 

measurements for the fresh and stressed LEDs under different reverse bias voltages: 

one with a filling voltage (VP) of 0 V and a reverse measuring voltage (VR) of -0.5 V 

(corresponding to the depletion region under -0.5 V to 0 V), and the other with a filling 

voltage of 0 V and a reverse measuring voltage of -4 V, as shown in Fig. S3 

(corresponding to the depletion region under -4 V to 0 V).  



 

Fig. 3. (a) The typical capacitance deep-level transient spectroscopy (DLTS) spectra of the fresh and 

stressed DUV LED obtained under the following conditions: reverse bias VR = -0.5 V, filling pulse 

Vp = 0 V, and pulse duration tp = 1 ms at rate window of 500 s-1. (b) Arrhenius plot of the energy 

levels detected in DLTS; T is the temperature, and en is the emission rate corresponding to the 

maximum of the trap peak observed. 

 

Fig. 3(a) shows the DLTS spectra for VP =0 V and VR = -0.5 V before and after stress 

to evaluate the area adjacent to the p side. There are two negative peaks (labeled as E1 

and E2) at 80 and 265 K for the fresh device, respectively. While for the stressed LED, 

there is no E1 signal and E2 shifts toward lower temperature of 233 K. In addition, a 

small positive peak (labeled as H1) appears at ~145 K for the stressed LED, which 

becomes more prominent under a reverse bias voltage of -4V, as shown in Fig. S3. For 

DLTS, a positive peak is related to minority-carriers trap levels, whereas a negative 

peak is related to majority-carriers trap levels [32, 33]. For the unintentionally doped 

AlGaN multi-quantum wells, the minority carriers are the holes and the majority are 

the electrons [32].  

Fig. 3(b) shows the Arrhenius plots of these traps with the parameters listed in Table 

1. During the stress, the activation energy of trap E1 is about 0.010 eV (corresponding 

to the peak at a temperature ~100 K), indicating a shallow character [20], which may 

be related to the point defect P1 in Ref.20. The disappearance of the negative peak E1 

and the emergence of the new positive peak H1 indicates that there may be a donor-

acceptor complex trap in the active area after the stress. The activation energy of the 



trap H1 is ~0.1eV, which is consistent with the activation energy of Mg-related acceptors 

[32], such as MgAl [34] or MgGa [35]. The appearance of the threading dislocations 

through the whole quantum well after stress may cause the Mg diffusion along the 

dislocation line [36], which leads to the Mg-related acceptor traps, such as the deep 

level H1.  

 

Table 1 

Apparent activation energy, capture cross section, and trap concentration of the defects observed in 

the fresh and stressed DUV LED devices. Recording condition: VR = -0.5 V, VP = 0 V and the 

duration of the filling pulse was tp = 1 ms.  

 

The activation energy of the trap E2 is in the range 0.20-0.25 eV, which is related to 

the N vacancies [37]. The trap E2 concentration increases by more than 10 times from 

4.5×1013 cm-3 to 9.9×1014 cm-3 after degradation. The capture-cross section of E2 also 

increases from 4.6× 10-20 cm2 to 8.6× 10-19 cm2. In addition, the shift to the lower 

temperature and the increase of the activation energy indicate that the trapping 

probability of electrons increases after the stress. It needs to be noted that the H1 under 

-4 V bias decreases after stress shown in Fig. S3, indicating that the degradation may 

also lead to other possible donors, such as MgAl-VN, MgGa-VN complex [38], which will 

result in a self-compensation effect. Furthermore, because the formation energy of VAl 

in AlGaN is smaller than that of VGa in GaN, the deep level H2 in Fig. S3 may be related 

to the VAl [20, 39, 40].  

Fig. 4 shows the schematic of the band diagram of the MQWs for the UVC-LED 

with the enlarged images of the first quantum well region (circled with red dotted 

rectangle) before and after stress. According to DLTS results, the generated new donor 

and acceptor related levels in the band gap after stress are depicted in the diagram. 



These electron trap levels generated after stress lead to the decrease of the effective 

negative charge in the p side near quantum wells, which lead to the observed right shift 

of the C-V curve after the degradation (Fig. 2(a)). In addition, the donor-acceptor 

transitions between N vacancies to Mg acceptors after degradation could also result in 

the increase of the deep level emission around 3.0eV for AlGaN materials with the Al 

composition ~ 55% (Fig.1(b)) [41, 42]. However, it has also been reported that Al 

vacancies and related complex are responsible for the deep emission between 2.84 eV 

and 2.92 eV for AlGaN alloy with Al composition 56%-68% [43]. Therefore, the energy 

range of 2.45 - 3.30 eV observed in the CL spectra may be the overall effect of the 

above point defects discussed in the DLTS, which will be further discussed elsewhere. 

 

Fig. 4. (a) Schematic of the band diagram of the studied UV-C LED with space-charge regions at 

the pn-junction. (b)The band diagram of the first quantum well before and after stress, (enlarged 

image of the region circled by red dotted rectangle in Fig. 4(a)). The donor related levels marked as 

‘d’, and the acceptor related levels marked as ‘a’.  

 

To further evaluate the epitaxial structure of the UVC-LED chip intuitively after 

degradation, especially the quantum well area, the cross section of the epitaxial 

structure was characterized by TEM and EDX mapping. Fig. 5(a) shows the HAADF-

STEM image of the MQWs region of the fresh LED, and the inset shows the TEM 

image of the epitaxial structure for the fresh LED. This allows us to directly identify 

the depth dependence of the defects. There are little dislocations or defects in the 

MQWs before the stress. However, after the stress, two dislocation lines appear and 



pass through the whole quantum well region, as shown in Fig. 5(c). To investigate the 

effect of the threading dislocation on the MQWs, the EDX mapping of the MQWs 

region were measured by an overlay of Al (green), Ga (yellow) and N (orange) signals, 

as shown in Fig. 5(b) and 5(d). By comparing the EDX mapping images of the fresh 

and stressed samples, there are some variations of the composition in the first and 

second quantum well and barrier near the p side of the epitaxial structure. The 

composition also changes along the dislocation, as marked with the red circles in Fig. 

5(d). The TEM and EDX mapping results suggest that the MQWs of the LED epitaxial 

structure have been strongly affected after stress, especially close to the p side.  

 

Fig. 5. (a) Schematic of the band diagram of the studied UV-C LED with space-charge regions at 

the pn-junction. (b)The band diagram of the first quantum well before and after stress, (enlarged 

image of the region circled by red dotted rectangle in Fig. 4(a)). The donor related levels marked as 

‘d’, and the acceptor related levels marked as ‘a’.  

 

In general, threading dislocations (TDs) in InGaN/GaN multi-quantum-well (MQW) 



active structures would act as nonradiative recombination centers and degrade the 

emission intensity [44, 45], which strongly contribute to the leakage current of forward 

and reverse I-V regions in LEDs [46, 47]. The electrical and optical properties of the 

InGaN/GaN MQWs tend to decrease with increasing the dislocation densities [48]. But 

for AlGaN/GaN MQWs, the internal quantum efficiency (IQE) of the QWs on AlN bulk 

substrates with a low threading dislocation density (TDD, TDD < 105 cm−2) is almost 

the same as that of QWs on sapphire substrates with a high TDD (approximately 109–

1010 cm−2) [49]. The emission dark spots attributed to TDs were not observed in the CL 

images of AlGaN/AlN QWs in the entire temperature region [20]. The reported results 

suggest that TDs are not the dominant nonradiative recombination centers for AlGaN-

based LEDs. However, here, the TEM results show that the dislocation lines did appear 

in the MQWs region after the stress, which may influence the point defects as well, e.g. 

resulting in the Mg diffusion along the dislocation line and cause some Mg-related 

acceptor traps [36], degrade the AlGaN-based LEDs [50]. 

4. Conclusion 

In this study, we investigated the point defects and dislocations by comparing the 

AlGaN-based ultraviolet LEDs before and after degradation systematically using 

several different analytical techniques, including cathodoluminescence, deep-level 

transient spectroscopy and transmission electron microscope. The results show that the 

electrical current stress induced point defects are located within the multiple quantum 

wells region, especially in the first quantum well near the p side of the LED chip. The 

increased point defects density during the stress will cause a carrier redistribution 

process. In addition, the DLTS results indicate that these relative point defects may act 

as the electron traps and hole traps. Moreover, the TEM (EDX mapping) also provides 

some evidence of the Mg diffusion along the dislocation line and lead to Mg-related 

traps. By investigating the defects of the fresh and the stressed UV-C LED epitaxial 

structure, the failure mechanisms for the stressed sample regarding to the point defects 

and dislocations have been identified. This study is important to further improve the 

performance of AlGaN-based LEDs. 
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