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Abstract

Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease with pe-
riods of flares and remission. Designing personalized treatment strategies for AD is
challenging, given the apparent unpredictability and large variation in AD symptoms
and treatment responses within and across individuals. Better prediction of AD se-
verity over time for individual patients could help to select optimum timing and type
of treatment for improving disease control.

Objective: We aimed to develop a proof of principle mechanistic machine learning
model that predicts the patient-specific evolution of AD severity scores on a daily
basis.

Methods: We designed a probabilistic predictive model and trained it using Bayesian
inference with the longitudinal data from two published clinical studies. The data
consisted of daily recordings of AD severity scores and treatments used by 59 and
334 AD children over 6 months and 16 weeks, respectively. Validation of the predic-
tive model was conducted in a forward-chaining setting.

Results: Our model was able to predict future severity scores at the individual level
and improved chance-level forecast by 60%. Heterogeneous patterns in severity tra-
jectories were captured with patient-specific parameters such as the short-term per-
sistence of AD severity and responsiveness to topical steroids, calcineurin inhibitors
and step-up treatment.

Conclusions: Our proof of principle model successfully predicted the daily evolution
of AD severity scores at an individual level and could inform the design of person-
alized treatment strategies that can be tested in future studies. Our model-based
approach can be applied to other diseases with apparent unpredictability and large

variation in symptoms and treatment responses such as asthma.
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1 | INTRODUCTION

Atopic dermatitis (synonymous with atopic eczema or just eczema;*
AD) is the most common inflammatory skin disease, and is charac-
terized by inflamed, dry and itchy skin? leading to substantial quality
of life impairment and significant socio-economic impact.® AD typi-
cally has a fluctuating course characterized by inflammatory disease
flares followed by periods of remission. Treatment with topical cor-
ticosteroids or calcineurin inhibitors during disease flares is aimed
at controlling symptoms and skin signs, and emollients are typically
used to counteract the dry skin associated with AD.

However, successful control of AD symptoms has been challeng-
ing as responses to AD treatments vary considerably between pa-
tients. Personalized treatment strategies may be more beneficial to
individual patients rather than a “one-size-fits-all” approach to ther-
apy.*® A first step towards developing personalized treatment strat-
egies is to better predict the consequences of possible treatments at
an individual level, rather than at population level, to deal with the
variability across patients.

Prediction of the consequences of treatments at an individual
level is challenging also because of dynamic and sudden fluctua-
tions of AD symptoms. It can be difficult to identify reliable treat-
ment responses, especially if a single end-point is considered, since
the responses to a treatment can vary each time even for the same
patient. Analysing the dynamic responses to the repeated applica-
tion of treatment can help identify consistent treatment effects for
each patient® and ultimately predict whether the chosen treatment
is effective and whether the disease is adequately controlled at an
individual level.

Machine learning has been successfully applied for prediction
tasks. However, typical machine learning models such as artificial
neural networks are often black-boxes, lacking interpretability or
relying on post hoc explanations that are not guaranteed to match
the algorithm's true decision process.”® “Black-box models” may fail

to be accepted by the medical community and AD patients. Existing
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regulations such as the European Union general data protection reg-
ulation also highlight the “pressing importance of human interpret-
ability in algorithm design.”’

Here, we aimed to develop a biologically interpretable mech-
anistic machine learning model that can predict daily evolution of
AD severity scores at an individual level. We applied a model-based
machine learning approach,'® which allowed us to develop Bayesian
machine learning models that can be tailored to the particular con-
text of a given study and the available dataset, and include bio-
logically interpretable mechanistic knowledge. Bayesian machine
learning approach has already been applied to a birth cohort data on
allergic sensitization to uncover latent atopy classes*! or to estimate
asthma misclassification and risk factors in yearly questionnaire
data.? However, it has not been applied to predict daily changes in
disease outcome or in the field of AD.

We hypothesized that it is possible to decipher the apparent un-
predictable dynamics of AD severity scores from each patient's data.
We previously published a mechanistic model of AD pathogenesis
which provided a coherent mechanistic explanation of the dynamic
onset, progression and prevention of AD, as a result of interac-
tions between skin barrier, immune responses and environmental
stressors.*>** Our aim was therefore to adapt the structure of the
published mechanistic model to real patient data (Figure S1), and to
develop a mechanistic Bayesian model tailored to each individual
that can predict the next day's AD severity score given their score
and treatments used on that day.

2 | METHODS

2.1 | General approach
Using the longitudinal data from two published clinical studies'*>*¢
(example raw data shown in Figure S1), we developed and validated

a mechanistic Bayesian model that can predict the next day's AD
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FIGURE 1 Mechanistic Bayesian model of atopic dermatitis (AD) severity dynamics. A: A schematic diagram of the probabilistic model.
The arrows depict the relationships between state variables included in the model. B: A schematic diagram of the published mechanistic
model of AD pathogenesis13 from which the structure of the proposed model was adopted. Flare triggers (P) and AD flares (R) are latent
variables, and AD severity score (S) and treatment applied (T) are the measured variables. The variable, T, corresponds to the daily binary
stepping-up variables in the Flares dataset, and to the combination of the binary variables for the use of stepping-up, topical corticosteroids

and calcineurin inhibitors in the SWET dataset.
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severity score for each patient. Our mechanistic Bayesian model ex-
plicitly described within-patients uncertainties in disease outcomes
using probability distributions, and between-patient heterogeneity
in severity trajectory and treatment responses by patient-depend-
ent parameters.

To develop the model, we firstly defined the underlying pro-
cesses that could generate the data as a probabilistic graphical model
(Figure 1A), which adopted the structure of a previously published
mechanistic model of AD pathogenesis'®'* (Figure 1B). The model
was tailored to the context of the clinical studies in which the data
were collected. We then trained the model (fitted to the data) using
Bayesian inference, that is updating the probability distributions of
the unknown (latent) variables and model parameters through Bayes’
theorem, and validated the model by assessing its predictive perfor-
mance in a forward-chaining setting, where the model was trained
with the first week's data and tested on the second week's data,
then re-trained on the first two weeks’ data and tested on the third
week's data, and so on (Figure S2). The first dataset was used for
model development and internal validation, and the second dataset
to test whether a similar predictive performance could be achieved

with a different cohort of patients.

2.2 | Data

We chose two datasets that included daily recording of symp-
toms and treatments over a moderately long period (details in
Supplementary A).

The first dataset, which we refer to as “Flares dataset”, is a part
of the data collected in an observational study that aimed to iden-
tify the triggers of AD flares for 59 children.!® The Flares dataset in-
cluded daily categorical “bother” scores over 6 to 9 months, totalling
6536 patient-day observations, graded from O (“no bother at all”) to
10 (“the most bother you can imagine”) as a response to the ques-
tion “how much bother did your eczema cause today?”. 38.8% of the
bother score was missing in Flares dataset (Figure S3). The Flares
dataset also included daily binary “stepping-up” variables, that is the
answers to the question “have you had to step-up your treatment
today because your eczema was worse?”. What constituted “step-
ping-up” treatment was defined for each child at the study outset.

The second dataset, which we refer to as “SWET dataset”, is
a part of the data collected in a randomized controlled trial that
evaluated the effects of use of ion-exchange water softeners for
AD control (the softened water eczema trial or SWET) for 334 chil-
dren.!® The SWET dataset included the individual child's daily cat-
egorical bother score over 16 weeks with only 1.9% of the bother
score missing (Figure S4) for a total of 35 854 patient-day obser-
vations. The SWET dataset additionally contained information on
potential risk factors or confounders, such as the presence of filag-
grin mutations, white skin type, age (in years), gender and whether
the patient slept away from home. It also included details of the
treatment used, such as the type of treatment modalities used each

day (topical corticosteroids, calcineurin inhibitors and stepping-up
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treatment), the estimated average dose used for each type of top-
ical corticosteroids (mild, moderate, potent or very potent) and
calcineurin inhibitors (mild or moderate) over the study period, to-
gether with the patient's confidence in the estimated average dose
(“not at all sure”, “not sure”, “sure”, or “very sure”). We used all the
available information in SWET dataset and evaluated the contri-
bution of each factor on daily evolution of the bother score at an

individual level.

2.3 | Mechanistic Bayesian models

We developed a mechanistic Bayesian model that predicts the AD
severity score (S (t+1) for the k-th patient at day t+1, given two
observables, the previous day's score (S, (t) and the treatment ap-
plied (T, (t)) (Figure 1A).

Our model assumed that AD severity (S, (t+1)) is determined
by the temporal accumulation of inflammation caused by AD flares
(R (1), which result from the activation of innate immune receptors
by flares triggers (P®), and is modified by the treatment applied T, @)
(Figure 1B). Flare triggers (P%) and the resulting flares (R, (t)) were
modelled as latent variables. They depend on the complex interac-
tions between the skin barrier, immune responses and environmen-
tal stressors. P® for the k-th patient was assumed to be constant for
the duration of the data collection.

We first modelled the severity score measurement process by as-
suming that a continuous latent severity score,gk (te [O, 10] ,isrounded

to the nearest integer to derive the discrete severity score reported by

patients, S, (t)= Round (gk (t)). We then described the dynamics of

§,< (t) by an exponentially modified Gaussian distribution truncated between
0 and 10, § (t+1)~ Njo 1] <W§k> S (0 + WO T, (t) + Ry (t) + bs, 02 )

The distribution of §,< (t+1) follows a Gaussian autoregressive process

perturbed by exponentially distributed AD flares, R, (t) ~Exp (ﬂ =pW )

which reflects the assumption that flares occur more frequently in the
presence of the flare triggers.

The autoregression is characterized by the patient-dependent

(k)

autocorrelation or persistence of the severity score (w."), patient-de-

s
pendent responsiveness to treatment (w(Tk)), and population-level in-
tercept (bg) and variance (ag). The patient-dependent parameters, w(sk), w$’
and P®, are given the hierarchical priors, logit (wék))NN (”Ws’ ofvs ),

W ~N (ur, 62) and P¥ ~ N* (0, 62), with population mean (4, u7)

and dispersion parameters ("ws’ o7, 6p).

We also developed an extended version of the mechanistic
Bayesian model for SWET dataset (details in Supplementary B). The
extended model allowed us to analyse the effects of potential risk
factors (the presence of filaggrin mutations, age and sleeping away

from home) on the severity score, with their respective weighting

(k) (k) (k)
FLG’ WAg WHam

neity of treatment responsiveness by replacing the term wgo T, ®
with w SU, (&) + w¥,CS, (&) + W) Cl, (t), where SU, (t), CS, () and

S CcS I
Cl, (t) are binary variables that indicate whether the k-th patient

parameters, w ., and .~ We also investigated heteroge-
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stepped-up, applied topical corticosteroids and calcineurin inhibi-

k) (k) (k)
s Weg and wi .

include dose-independent effects (intrin-

)
I

dent effects that are functions of the quantity and the potency of

tors, respectively, with their respective weights, w

The weights, wg?9 and wg(}

sic responsiveness to the treatment bgoq and bg ) and dose-depen-
the treatment (Figure S5).

Our model did not require imputation of missing values for
S, (1), since the absence of measurements is naturally accepted
by the measurement process of S (t) separately modelled from
the dynamics of gk (t). Imputation of missing values for other co-
variates is described in Supplementary C. We conducted prior
predictive checks to define weakly informative priors (details in
Supplementary D).

2.4 | Model fitting

Model training was performed using the Hamiltonian Monte Carlo al-
gorithm in the probabilistic programming language Stan.’” The poste-
rior distribution was sampled by 6 Markov chains for 3000 iterations
(including 50% burn-in). Convergence of the chains was monitored by
inspecting the trace plots, checking the Gelman-Rubin convergence
diagnostic R'8 and computing effective sample sizes. More details of

the inference method are provided in Supplementary E.

2.5 | Model validation

The predictive performance of the model was assessed in a for-
ward-chaining setting. Model calibration (whether forecast prob-
abilities are accurate) was assessed by an ordinal quadratic scoring
rule (ranked probability score, RPS) and local logarithmic scoring
rule (log predictive density, Ipd). These metrics were plotted against
training day (training data size) to produce learning curves. Details
on performance metrics used are described in Supplementary F.
We compared our model to four reference models: a uniform
forecast, S, (t+1) ~ U (0, 10), where each outcome is assigned with
the same probability, a historical forecast where the probability of
each outcome is equal to their relative occurrence in the past, a
Gaussian random walk, S (t+1) ~ N (S, (t), 62), where the next
score is assumed to be around the previous score, and a mixed effect
model without flares

autoregressive model (our triggers),

8 (t+1) ~No 0] (w@” S (0 + WO T, (t) + b, 02 )

3 | RESULTS
3.1 | Model fitting
The model was trained on each of the two datasets, and the con-

vergence was checked. Population-level parameters (parameters

shared across patients) were estimated with a good precision and

their 95% credible interval (in which the parameter lies with 95%
probability) were narrow compared to their prior, did not include O
and were similar for the two datasets, suggesting support for the
model structure (Table S1). Three main model parameters that de-
scribe patient-dependent dynamics of the severity score are the au-
tocorrelation parameter wg‘) for the short-term persistence of the AD
severity score, the parameter w#‘) for the responsiveness to treat-
ment and P® for the amount of flares triggers, of the k-th patient.
w(sk) —1or w(sk) — 0 means that the predicted severity is close to or
does not depend on the previous day's severity, respectively. w(Tk) <0
or qu > 0 implies that the patient is responsive to treatments or
the treatment has an adverse effect on the patient, respectively. A
larger pk suggests more severe and frequent flares. These estimates
greatly varied from one patient to another, confirming their patient
dependence (Figures S6 and S7).

Posterior predictive checks demonstrated that the developed
model captured diverse patterns of the dynamic trajectories of the
severity score, despite the presence of missing values (representa-
tive patients’ score dynamics in Figure 2). Typical trajectories ob-
served included fluctuations of the severity score with a return to a
healthier state (Figure 2A,C) or without (Figure 2B,D).

3.2 | Model validation

We then validated the model to assess its generalizability beyond
the training data. The learning curves demonstrated an improve-
ment in both RPS and Ipd, as more data become available (Figure 3),
confirming that the model learned the dynamic patterns of the
severity scores from the data. Similar or better performance was
achieved with the SWET dataset, compared to the Flares dataset,
confirming the predictive ability of the model on multiple cohorts.
Our model outperformed or performed as well as the four refer-
ence models in terms of RPS and Ipd for both datasets. Our model
demonstrated approximately 60% of improvement in RPS than the
chance-level (uniform) forecast for both Flares and SWET datasets
(Figure 3). For example, we achieved a Ipd of log(0.25) with SWET
dataset, meaning that the model assigns a 25% probability to the
true outcome on average, compared to 9% for a chance-level fore-
cast. Calibration curves (Figure S8) suggested that the predicted
probabilities were reasonably calibrated up to 30%-40% in Flares
dataset and up to 50%-60% in SWET dataset.

Similar results were obtained for a model we developed using
the daily scratch score recorded in the observational study for Flares

dataset (Figure S9). The scratch score was not recorded in SWET.

3.3 | Effects of treatment modalities and risk
factors on the predicted severity scores

The extended model with additional covariates was also success-
fully fit to SWET dataset (Tables S1 and S2). The posterior predictive

checks confirmed that the model could capture diverse patterns of
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FIGURE 2 Fitting of the mechanistic Bayesian model. Posterior predictive distribution of atopic dermatitis (AD) severity score for four
representative patients from Flares dataset. (A, C) Bother score returns to a healthier state. (B, D) Bother score does not improve. The plots
show the time evolution of the posterior predictive probability mass function as a heatmap. Darker colour represents outcomes with higher
probabilities. Black and grey lines show the observed scores and the posterior mean estimate for the missing scores, respectively.

the severity score trajectories, such as large and rapid fluctuations
(Figure 4A), large but slow fluctuations (Figure 4B), and controlled
AD (Figure 4C). The model could not predict previously unseen pat-
terns, such as transitions of the score from 1 to 10 in a day (Figure 4D
at around 70 days), as the model learned the dynamic patterns from
past data.

Analysis of the model parameters suggested that older age, ab-
sence of filaggrin gene mutations and sleeping at home were asso-
ciated with greater improvement (decrease) in severity scores at the
95% credible level (Figure 5A), as the 95% credible interval of the
relevant parameters did not contain 0 and by wjg, <0 (older age de-
creases the severity score), wg ¢ >0 (the presence of filaggrin muta-
tions increases the severity score) and wyme <O (sleeping at home
decreases the severity score). The estimated effects may appear
small in absolute terms, compared to the range of the bother score
(0-10), but their effects on the severity score may become practically
significant as they accumulate over time. White skin type and sex
were not found to be associated with changes in the severity score
at the 95% credible level (Figure 5A; 95% credible interval of wg,, and
Wywhite IN both sides of 0, suggesting that their effects on the severity
score could be both negative and positive).

Further analysis of the parameters, w%‘;/, b(k’ and bg‘; which de-
scribe the dose-independent effects of the treatment on the se-
verity score, demonstrated that none of the treatments appear to
have a significant effect at the population level (grey shaded areas
in Figure 5B spans from negative to positive values). However, the
treatments could have a significant effect at a patient-level. For

example, the parameter estimates for one of the patients (orange

shaded areas in Figure 5B) suggest that the use of corticosteroids
has a significant and consistent effect on the severity score for this
patient at the 95% credible level. That is, the posterior probability for
b<k) (the dose-independent responsiveness to corticosteroids) being
negative (ie the use of corticosteroids reduces the severity score)
is greater than 95%. Interestingly, this 95% criterion for the consis-
tent treatment effect was not met for calcineurin inhibitors (b (")) and
step-up (W W .,) for the same patient. Following this criterion, we con-
firmed S|gn|f|cant effect of corticosteroids in 90 individuals (out of
295 who used corticosteroids) and of step-up in 25 individuals (out
of 284 who used step-up). However, we did not find evidence of an
intrinsic responsiveness in any of the 92 patients who used calci-
neurin inhibitors, although 6 of them show a significant dose-depen-
dent responsiveness.

4 | DISCUSSION

4.1 | Main findings

This study demonstrated a proof-of-concept that predicting the
evolution of eczema severity is possible. We developed a novel
mechanistic Bayesian machine learning model that can predict pa-
tient-specific daily evolution of the AD bother score. The model is
biologically interpretable and describes the mechanistic assumption
that the AD severity is a result of temporal accumulation of flares
(Figure 1). The model learned rich, heterogeneous and dynamic pat-

terns in the daily evolution of AD severity scores that may otherwise
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appear random and noisy (Figures 2 and 4). Our method extracted
information on whether the chosen treatment is effective (respon-
siveness to treatment), and whether the AD score is persistent and
susceptible to flares, at an individual level (Figure 5, Figures S6 and
S7). The use of longitudinal data enabled us to look for consistent
treatment responses within each patient, rather than a population
average response evaluated at a single time-point. We estimated
population-level risk factors associated with slower improvement
of the severity score, such as the presence of a filaggrin mutation
and younger age (Figure 5A). The model was validated using the data
from two published clinical studies to confirm its generalizability and
the possibility to learn and predict the short-term dynamics of AD

severity scores from each patient's data (Figure 3).
4.2 | Strengths of our approach
Our Bayesian approach could be useful to make predictions for

new patients, outside of the two cohorts we considered. For in-

stance, we could use the population posterior distributions of the

patient-dependent parameters obtained in this study as priors for
new patients. The priors will then be updated as more data be-
come available, in order to make personalized and more accurate
predictions.

In addition, our model-based Bayesian approach is appropriate
to develop models for clinical use, especially when the data are not
as controlled as in a clinical trial. Our model explicitly describes un-
certainties in disease outcomes (the severity scores) using probabil-
ity distributions rather than point estimates, as well as uncertainties
in the measurements. This enabled us to deal with the missing data
(about 40% of scores were missing in the Flares dataset) naturally
by simply assuming that the measurement process of the observed
score was absent when the score is missing, while still being able to
infer the dynamics of the latent severity score from the available
data. This method is particularly appropriate for incomplete and
partially missing data, for example when patients miss clinical visits.

The model-based approach allows us to design models by tak-
ing prior clinical and mechanistic knowledge into account, and by
tailoring them to available data and study context. For example, our

model was extended by incorporating the additional information (on
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potential risk factors and the treatment doses) available in SWET
dataset but not in Flares dataset. Similarly, our model could be ex-
panded to include additional predictors such as environmental trig-
gers (eg air pollution, weather), host factors (eg compliance to daily
bathing, allergies) or biological markers.

These features entail that the developed model cannot be made
readily available as a “plug-in” formula, as it is described by a set of
context-dependent equations on probability distributions and pa-
tient-specific parameters that need to be updated to provide per-

sonalized predictions.

4.3 | Limitations of the study and future directions

The datasets we used in this study contained daily measurement
of the bother score, a subjective global measure of distress caused
by AD that has previously been used as a reference for developing
asthma severity instruments'? and validating AD symptom measures
such as POEM.?° While using objective and quantitative measure-
ments would be preferable, this study can serve as a proof-of-con-
cept that predicting the evolution of eczema severity is possible.
When collecting daily measurements of objective severity scores
becomes less challenging, similar models could be developed to pre-
dict scores such as EASI,?! (0)SCORAD?? or their self-assessed ver-
sions. It will allow us to evaluate the dynamics of scores that capture
different aspects of AD symptoms and to compare the predictive
performance for different scores. It is also possible to investigate
longer time horizon with weekly (instead of daily) measurements.
Appropriate evaluation of the effects of data frequency on score dy-
namics prediction will help designing more effective and informative
clinical trials towards personalized medicine.

The predictive capabilities of the model could be potentially im-
proved by incorporating more data, or by using better-quality data,
that is with fewer missing values or more precise information about
treatments. For example, our model assumes that the same quan-
tity of treatment was applied every day, when treatment was used.
This assumption might not always hold in reality and could result in
a difficulty with estimating the dose-dependent responsiveness to
treatments (Table S2). The daily record of the quantity of treatment
applied could resolve this issue and lead to a better estimate of treat-
ment responsiveness.

The model proposed in this paper adopted a structure that was
tailored to the available datasets. The model structure was much
simpler than that of the previously published mechanistic model of
AD pathogenesis.®>'* If the longitudinal measurement for interac-
tions between environmental stressors, the skin barrier and immune
responses becomes feasible in future, such data can be incorporated
to develop a more detailed mechanistic machine learning model that
provides deeper biological interpretation.

The model-based machine learning approach demonstrated here
is applicable to help quantify patient responses to treatment, and
may be suitable as a computational method for therapeutic strat-

ification by identifying treatment responses for each individual.?

The prediction of daily evolution of severity scores could be further
used to suggest optimal treatment strategies for individual patients,
using reinforcement learning for example, in addition to conven-
tional computational methods using optimal control theory and bi-
furcation analysis .>* Our method could be tested further as part of
an intervention using a personalized approach in a future pragmatic
randomized controlled trial and compared with conventional stan-

dard approaches.
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