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Theo Torres,1 Sam Patrick,1 Mauŕıcio Richartz,2 and Silke Weinfurtner1, 3, 4

1School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
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Black holes are like bells; once perturbed they will relax through the emission of characteristic
waves. The frequency spectrum of these waves is independent of the initial perturbation and, hence,
can be thought of as a ’fingerprint’ of the black hole. Since the 1970s scientists have considered
the possibility of using these characteristic modes of oscillation to identify astrophysical black holes.
Inspired by the black hole-fluid analogy, we demonstrate the universality of the black-hole relaxation
process through the observation of characteristic modes emitted by a hydrodynamical vortex flow.
The characteristic frequency spectrum is measured and agrees with theoretical predictions obtained
using techniques developed for astrophysical black holes. Our findings allow for the first identification
of a hydrodynamical vortex flow through its characteristic waves. The flow velocities inferred from
the observed spectrum agree with a direct flow measurement. Our approach establishes a non-
invasive method, applicable to vortex flows in fluids and superfluids alike, to identify the wave-
current interactions and hence the effective field theories describing such systems.

Introduction and motivation. According to General
Relativity, the late stage of the relaxation process of an
astrophysical black hole is expected to depend only on
its mass and angular momentum, and not on the details
of its formation process [1–3]. This opens up the pos-
sibility of Black Hole Spectroscopy : the identification of
the spacetime geometry through the measurement of the
frequency spectrum of gravitational waves emitted by a
newly formed black hole [4–6]. With the recent detec-
tion of gravitational waves, this idea has started to turn
into reality [7, 8]. Motivated by the black hole-fluid anal-
ogy, which implies that universal processes (e.g. Hawking
radiation [9–11] and superradiance [12]) manifest them-
selves similarly in black holes and condensed matter sys-
tems, we apply the black hole spectroscopy idea to a vor-
tex fluid flow.

The analogy, built on the works of Unruh [13] and
Visser [14], relies on the fact that perturbations of some
condensed matter systems, e.g. shallow water waves prop-
agating on the free surface of an irrotational vortex
flow [15], are mathematically equivalent to scalar waves
propagating around a rotating black hole (see [16] for a
review). Such a vortex flow, commonly called a draining
bathtub (DBT) flow, is uniquely described by the velocity
field v(t, r, θ) = v(r) = −D

r r̂ + C
r θ̂. The two parameters,

denoted C (for circulation) and D (for drain), are anal-
ogous to the angular momentum and mass of a rotating
black hole. In fact, the region where the flow is suffi-
ciently fast to trap any wave trying to escape from it is
analogous to the event horizon of a black hole. Similarly,
the region where the flow is sufficiently fast that waves
are dragged along the flow direction is analogous to the
ergosphere of a rotating black hole.

Once perturbed, a vortex flow will relax through the
emission of surface waves that propagate on the air-water
interface. Such waves correspond to small deformations,
δh(t,x), of the unperturbed surface elevation, where t
denotes time and x represents the spatial coordinates on
the two-dimensional free surface. For axisymmetric free
surface vortex, it is convenient to adopt polar coordinates
x = (r, θ) and decompose the perturbations in terms of
its azimuthal components,

δh(t, r, θ) = Re

[∑
m∈Z

δhm(t, r)eimθ

]
, (1)

where the azimuthal number m ∈ Z indicates an m-fold
symmetry with respect to the polar angle θ.

Towards the end of the relaxation process, each az-
imuthal component is well-approximated (in an open sys-
tem) by a superposition of time-decaying modes, called
quasinormal modes (QNMs) [1–3]. Each QNM oscillates
at the characteristic frequency fmn and has an ampli-
tude that decays exponentially in time with a character-
istic timescale of 1/Γmn. The overtone number n ∈ N
classifies the QNMs according to their decay times. The
set of complex frequencies ωQNM(m,n) = 2πfmn + iΓmn
is called the QNM spectrum. For the DBT flow, the
QNMs have been extensively studied and their spectrum
was calculated using various methods [17, 18]. The QNM
spectra of more realistic vortex flows, either due to the
presence of vorticity [19] or dispersion [20], have also been
investigated.

One of the techniques available to estimate the QNM
spectrum of a black hole is based on the properties of
light-rings (LRs) [21, 22]. The LRs of a black hole are
the orbits (i.e. the equilibrium points in the radial direc-
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tion) of massless particles. The relation between QNMs
and LR modes comes from the fact that, in many (but
not all [23]) spacetimes, QNMs can be seen as waves trav-
elling on the unstable orbits and slowly leaking out [2].
For a fluid flow, these modes can also be identified as the
lowest energy modes capable of propagating across the
entire flow (see Supplemental Material [24]). As such,
they constitute the most favourable channel to transfer
energy in and out of the system. While QNMs strongly
rely on the openness of the system, the LR modes, being
independent of the boundary conditions, do not. In par-
ticular, the presence of a non-open boundary condition,
either at infinity or at the horizon, will modify the late-
time behaviour of the relaxation process. More precisely,
the decay times of characteristic waves will be altered by
reflections from the boundaries.

Additionally, their non-oscillatory behaviour will be
further modified by damping in the system and recur-
ring perturbations. The oscillatory part of the LR spec-
trum, f?(m), therefore provides a more robust quantity
to characterise the fluid flow in finite size experiments.
By proving the existence of LR modes in fluid flows1, and
by using their oscillation frequencies to extract flow pa-
rameters, our experiment provides a practical realisation
of the black hole spectroscopy idea. Even though we ex-
pect the analogue of an event horizon to be present inside
the vortex core, our analysis does not require the knowl-
edge of its precise location. Indeed, our calculations are
based on the general relativistic concept of light-rings,
which is independent of the notion of an event horizon
and does not depend on its properties.
Experimental setup. We set up a vortex flow out
of equilibrium to observe the emission of characteristic
modes during its relaxation. We call such a restless
fluid flow an Unruh vortex 2. Our experiment was con-
ducted in a 3 m long and 1.5 m wide rectangular tank
with a 2 cm-radius sink hole at the centre. Water is
pumped continuously from one corner at a flow rate of
15 ± 1 `/min. The sink-hole is covered until the wa-
ter raises to a height of 10.00 ± 0.05 cm. Water is then
allowed to drain, leading to the formation of an Unruh
vortex. We recorded the perturbations of the free surface
when the flow was in a quasi-stationary state at a water
depth of 5.55±0.05 cm. The water elevation was recorded
using the Fast-Chequerboard Demodulation method [25]
and the entire procedure was repeated 25 times.

The resulting Unruh vortex is axisymmetric to a good
approximation, allowing us to perform an azimuthal de-
composition, as in (1), to study its characteristic modes.

1 Even though these are surface water waves and not electromag-
netic waves, we shall still refer to them as LR modes due to the
fluid-gravity analogy.

2 This name comes from the German word “Unruhe” which means
restlessness and was chosen in acknowledgment of W. G. Unruh,
the founder of analogue gravity.

We select specific azimuthal modes by performing a po-
lar Fourier transform and we extract the associated ra-
dial profiles δhm(t, r). Azimuthal modes with m > 0
are co-rotating with the flow while modes with m < 0
are counter-rotating with the flow. By calculating the
time Fourier transform of δhm(t, r), we estimate the
Power Spectral Density (PSD) of each m-mode for r ∈
[7.4 cm, 25 cm]. In Fig. 1 we present the PSDs of a sin-
gle experiment for a range of co- and counter-rotating
modes (see Supplemental Material [24] for data analysis
and flow characterisation).

Results. We can identify two different behaviours de-
pending on the sign of m. For negative m’s, the PSDs are
approximately constant over the window of observation.
The spectral density is peaked around a single frequency,
which allows us to define the position-independent spec-
trum fpeak(m) shown in Fig. 2. This spectrum can be
used twofold. First, by employing a standard Particle
Imaging Velocimetry (PIV) technique, we estimate the
circulation parameter to be C ≈ 151 cm2/s and the drain
parameter to be negligible, i.e. D ≈ 0 cm2/s (see Supple-
mental Material [24]). Using these values we can predict
the characteristic mode spectrum fPIV? (m) using the LR
properties, as shown by the dashed orange curve in Fig. 2.
We observe that the model describing the characteristic
oscillations of an Unruh vortex as LR modes is consistent
with the data. This is the first experimental observation
of the oscillatory part of the LR spectrum.

Second, after having validated our approach, we per-
form analogue black hole spectroscopy to characterise the
fluid flow (as an alternative to PIV). By leaving the flow
parameters C and D unspecified, we look for the best
match (in terms of non-linear regression analysis) be-
tween the experimental spectrum fpeak(m) of counter-
rotating modes and the corresponding theoretical pre-
dictions for the LR spectrum. This reduces the DBT
parameter space from two dimensions to one, constrain-
ing the flow parameters C and D to lie on the red curve
shown in Fig. 3. Any pair of points along this curve
will give the same spectrum, fBM? (m), represented by
the solid black curve in Fig. 2. The region between the
dashed orange curves shown in Fig. 3 represents the 95%
confidence intervals for the values of C and D. This re-
gion overlaps the yellow rectangle which represents the
possible flow parameters found using PIV. Note that, in
this case, the black hole spectroscopy method imposes a
slightly stronger constraint on the circulation parameter
than PIV.

We highlight that in order to uniquely determine C
and D the positive m part of the LR spectrum is also
needed [26]. However, when the flow is characterised by
only one parameter (e.g. purely rotating superfluids), the
counter-rotating LR modes contain all the information
about the fluid velocity. We note that this is effectively
the case in our experiment. Since D � C in our window
of observation, the vortex flow can be considered to be
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FIG. 1. Normalised power spectral densities. The power spectral density is compared with the minimum energy curve
f+
min(m, r), plotted in red, for various m. The maxima of f+

min(m, r) indicate the location of the light-rings, rLR(m), which are
shown in dashed white lines. For m < 0, the spectral density peaks and the minimum energy line are distinguishable for small
radii. For m > 0, we observe two signals whose peaks are radius-dependent. The upper one follows the minimum energy line
and corresponds, most probably, to random noise generated locally. The lower one follows the angular velocity of the fluid flow
according to fα(m, r) = mvθ(r)/(2πr) (orange curve) and is likely sourced by potential vorticity perturbations.

purely rotating and our observations are sufficient to fully
characterise the flow in this region.

Although the LR modes are absent in the PSDs of the
co-rotating modes shown in Fig. 1, two distinct, radius-
dependent, signals are present. We can understand their
origin using the flow parameters previously obtained.
By computing the minimum energy line, f+min(m, r) (red

curve), we observe that one of the signals corresponds to
random noise generated locally. The other signal is re-
lated to the angular velocity of the fluid flow and can be
matched with the curve fα(m, r) = mvθ(r)/(2πr), shown
in orange. This peak lies below the minimum energy and,
hence, corresponds to evanescent modes. A possible ex-
planation for their appearence is that potential vorticity
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FIG. 2. Characteristic spectrum of the Unruh vor-
tex. The frequency spectrum fpeak(m), extracted from the
experimental data and represented by green dots, is com-
pared with the theoretical prediction for the light-ring fre-
quencies, f?(m). The error bars indicate the standard devi-
ation over 25 experiments. The dashed orange curve is the
predicted spectrum, fPIV

? (m), computed for C = 151 cm2/s
and D = 0 cm2/s. These flow parameters were obtained via an
independent flow measurement, in our case Particle Imaging
Velocimetry (PIV). The two spectra agree, confirming the de-
tection of light-ring mode oscillations. The solid black curve,
fBM
? (m), is the non-linear regression of the experimental data

to the draining bathtub vortex model, and provides the values
for C and D presented in the red curve of Fig. 3.

(PV) perturbations act as a source for them [27]. In
irrotational flows (which is the regime in which our ob-
servations are made), PV is carried by the flow as a pas-
sive tracer. Various m components of PV will therefore
source free-surface deformations which are transported
at frequencies fα(m, r). These observations strengthen
our confidence in the flow parameters obtained.

F inal remarks. Our experiment exhibits a new facet
of the fluid-gravity analogy [13–15] which has led to a
better understanding of fundamental phenomena such as
Hawking radiation [28, 29] and superradiance [30, 31].
Besides providing the first observation of light-ring mode
oscillations, this successful demonstration of the prin-
ciple behind black hole spectroscopy paves the way for
real-life applications of the fluid-gravity analogy. This
method can be used as an alternative to the standard
fluid flow visualisation techniques, such as particle imag-
ing velocimetry, that require tracer particles. In partic-
ular, when suitable tracer particles are hardly found or
do not exist, like in superfluids [32], this is a promising

50 100 150

50

100

150

200

250

300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
140 150 160

10

20

30

40

FIG. 3. Flow characterisation. The intensity of the
background image represents the normalised weighted sum
of squared residuals between the experimental spectrum,
fpeak(m), and the theoretical prediction for the light-ring fre-
quencies, f?(m), as a function of the flow parameters. The
red curve represents the family of possible values for C and D
that best match the experimental data (using the method of
weighted least squares). The area delimited by the dashed or-
ange curves represents the 95% bootstrap confidence interval
(see Supplemental Material [24]). It overlaps with the yel-
low rectangle on the bottom right corner, which corresponds
to the flow parameters obtained using Particle Imaging Ve-
locimetry. The spread along the C-direction represents the
95% confidence interval estimated via the likelihood function.
The spread along the D-direction represents the extracted up-
per bound for D. In the top right corner we present a detailed
view of the parameter space where the two flow measurements
overlap.

non-invasive method to characterise fluid flows.
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