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Abstract—Counterfactual (CF) explanations provide a poten-
tially powerful mechanism to deliver meaningful explanations
of AI decisions. CF explanations are convincing when they
reflect causal relationships between variables, because humans
are cause-effect thinkers. Prior work has established a rule
generation framework called CF-MABLAR, which is designed
to generate causal rules that provide CF explanations. However,
in the real-world, an effect is often the result of multiple
causal mechanisms, and rules obtained by CF-MABLAR may
not capture the actual causal mechanism that leads to the
effect, which we called the locally relevant causal mechanism.
Consequently, CF explanations generated by CF-MABLAR
have the risk of containing redundant components, which
reduces the explainability of the obtained CF explanations. To
address this issue, in this paper, we provide a detailed discussion
about two key aspects of generating CF explanations from a
causal perspective: 1) which variables require intervention and
2) what magnitude of an intervention is needed. We propose CF-
MABLAR-local which allows users to generate CF explanations
based on locally relevant causal mechanisms. We conduct
experiments on several real-world data sets to compare CF
explanations generated through different methods, and analyse
the impact of different parameterizations in CF-MABLAR-
local.

Index Terms—Fuzzy, Causality, rules, counterfactual, XAI

I. INTRODUCTION

Counterfactual (CF) explanations provide a potentially
powerful mechanism to deliver meaningful explanations of
AI decisions [1]–[3]. A CF explanation aims to answer how
to change the input of an AI model to obtain an output of the
model which is different from the current one [4], [5]. CF
explanations can provide users with additional information
about a model’s operation and offer guidance based on CF
information [1], [6]. In addition, human explanations are
often CF [2], [7]. Thus, explanations which contain CF
information are in general in line with a human way of
explaining, and can provide a more effective explanation.

A key issue in generating CF explanations is to determine
which variables should be ‘intervened’ on (i.e., have their
values changed). As discussed in [6], the variables to be
changed should be causally related to the target variable, as
human are cause-effect thinkers and we expect explanations
should reflect causal relationships [6], [8], [9].

Within the context of XAI, rule-based systems have been
widely used as they can offer factual explanations using

linguistic, human-accessible rules [10]. Aiming at generating
CF explanations for rule-based models, Stepin et al. [11]
proposed a novel framework for rule-based models based
on correlations between variables. We refer to this as the
Cor-CF framework in this paper. To generate causal CF
explanations using fuzzy rule-based systems, Zhang et al. [6]
proposed the CF Markov blanket rule generation framework
(CF-MABLAR), which achieves causal CF rules generation
by leveraging the Markov blanket information obtained from
a causal graph of a given data set.

However, in the real-world, an effect often arises via
multiple causal mechanisms [12], [13]. Here, the term ‘causal
mechanism’ refers to how a set of variables influences
the target variable through a specific process. Thus, for
different samples, the specific causal mechanism leading to
their respective effects, referred to as the locally relevant
causal mechanism, may be different [12]. For example, both
COVID-19 and flu can lead to a person’s fever. If a patient
with a fever has COVID-19 but does not have flu, the locally
relevant causal mechanism leading to their fever is most
likely the first causal mechanism. In contrast, for another
patient with a fever who only has the flu and not COVID-
19, the locally relevant casual mechanism leading to their
fever is the second causal mechanism.

In some real-world applications, CF explanations are ex-
pected to specifically focus on locally relevant causal mecha-
nisms. In this paper, we refer to such explanations as locally
relevant Causal and Counterfactual Explanations, or simply
‘local CCF explanations’. For example, suppose an AI model
designed to predict the causes of fever is applied in the above
mentioned scenario, and there is a fever patient who has the
flu but not COVID-19. A CF explanation provided by the AI
model based on causal relationships could be: “To cure your
fever, you should: take medication A to treat the flu, and not
take medication B to treat COVID-19.” This CF explanation
can help a doctor understand that the model considered
both flu and COVID-19 when diagnosing a patient’s fever.
However, for the patient, the ‘not take medication B to treat
COVID-19’ is redundant and potentially confusing, because
COVID-19 is not relevant to their situation.

As discussed above, generating local CCF explanations
can avoid redundant information which is unrelated to a



user’s situation. However, how to generate such CF expla-
nations for rule-based systems is still an open problem.
To address this issue, in this paper, we discuss the key
issues in generating such CF explanations, and propose CF-
MABLAR-local. CF-MABLAR-local is designed for scenar-
ios that require local CCF explanations. The main contribu-
tions of this paper are as follows:

1) We analyse and discuss two issues in generating CF
explanations: 1) which variables require intervention,
and 2) what magnitude of an intervention is needed.

2) We propose CF-MABLAR-local designed to generate
local CCF explanations. In addition, to address situ-
ations where the interventions suggested by the CF
explanations obtained by CF-MABLAR may be redun-
dant or unrealistic in the real world, CF-MABLAR-
local provides an alternative method for computing
interventions based on existing samples.

3) We conduct experiments to evaluate CF-MABLAR-
local on several real-world data sets to compare the CF
explanations obtained by CF-MABLAR-local based on
different settings, and analyse the results applicable to
each setting.

The rest of this paper is organised as follows: Section II
provides the background of this paper. Section III provides
a detailed analysis and discussion of the key issues in
generating CF explanations, and introduces the details of
CF-MABLAR-local. Section IV presents and analyses the
experiment results. Section V provides the conclusions.

II. BACKGROUND

In this section, we provide background on causal graphs
and existing causal fuzzy rule-generation frameworks which
focus on different facets of causal relationships.

A. Causal graphs

To intuitively represent causal relationships between vari-
ables, Pearl [14] proposed the concept of causal graph. Fig.
1 shows an example of a causal graph.

Fig. 1. An example of a causal graph

As shown in Fig. 1, a causal graph is directed and acyclic.
Each node within the graph represents a variable. If an edge
exists between two nodes, it indicates a causal relationship
between the corresponding variables, pointing from the cause
to the effect. The weights of edges in a causal graph describe
a notion of the strength of causal link between two variables.

The concept of the latter is non-trivial: it can be interpreted
as the degree of influence of the cause on the effect [15], [16]
or the probability that there is a causal relationship between
the variables [17], depending on the way it is obtained.

For a variable within a causal graph, if all the edges on
a path leading to this variable point toward it, then the path
is a causal path for this variable. If the starting node of a
causal path has no parents in the causal graph, this path is
a complete causal path. Each complete causal path shows
the relationships between the target variable and one set of
its direct and/or indirect causes. Thus, each complete causal
path represents one possible causal mechanism of the target
variable–as captured by the causal graph. The latter is critical
to keep in mind, i.e. in practice, when causal graphs are
generated from data, there is no guarantee that the given
graph is accurate. Of course, the aim is to derive accurate
and complete causal graphs, but where the latter is not the
case, causal paths may be missed and established causal paths
may not actually be real.

B. MABLAR - Markov blanket rule generation framework

To generate rules which reflect causal relationships
between variables, Zhang et al. [18] established the
Markov blanket rule generation framework (MABLAR). The
MABLAR framework has different variants designed to
capture different facets of causal relationships. The standard
variant of the MABLAR framework, i.e., MABLAR-ST, was
originally proposed in [19].

The process of MABLAR-ST contains four steps.
MABLAR-ST identifies a causal graph of the given data set
and identifies the MB of the target variable in Step 1 and 2,
respectively. Then, MABLAR-ST constructs a subset which
only contains variables within the MB of the target variable
in Step 3. Finally, in Step 4, MABLAR-ST generates rules
from the constructed subset using data-driven algorithms
(e.g. the WM algorithm [20]). By removing variables which
are not causally related to the target variable, MABLAR-ST
reduces the risk of generating rules which reflect correlation
between variables and achieves causal rule generation.

C. Markov blanket rule generation using causal weights

To generate rules which can provide explanations that
reveal the locally relevant causal mechanism of a given
sample, Zhang et al. [13] proposed Markov blanket rule
generation using causal weights (MABLAR-CW) as a variant
of the MABLAR framework.

The process of MABLAR-CW contains four steps: Step
1 is to generate a causal weighted graph from a given
data set, extracting causal information from the data set
using established causal discovery algorithms such as ICA-
LiNGAM [21]. In Step 2, MABLAR-CW identifies possible
causal mechanisms by identifying all complete causal paths
of the target variable, because each complete causal path
represents a possible causal mechanism of the target variable



as explained in Section II-A. After identifying all com-
plete causal paths of the target variable within the obtained
causal weighted graph, MABLAR-CW constructs a subset
of the original data set for each completed causal path
which contains only the variables on that path. In Step
3, MABLAR-CW uses the subset corresponding to each
completed causal path to generate a fuzzy sub-system (FSS)
for each completed causal path using data-driven approaches.
Finally, in Step 4, MABLAR-CW assigns a causal score to
each FSS using the causal weights from the obtained causal
weighted graph.

Fig. 2. The structure of a fuzzy system obtained by MABLAR-CW

The overall fuzzy system obtained by MABLAR-CW
is constructed as a set of fuzzy sub-systems akin to an
ensemble, as shown in Fig. 2. In Fig. 2, FSSi represents the
FSS corresponding to the i-th completed causal path. P is the
number of completed causal paths identified by MABLAR-
CW. Ri

j represent the j-th rule of the ith FSS. Ki represents
the number of rules in FSSi. Si represents the causal score
of the ith FSS. By modelling complete causal paths using
a set of fuzzy sub-systems, the fuzzy system obtained by
MABLAR-CW distinctly captures different possible causal
mechanisms reflected in the causal weighted graph.

For a given sample, MABLAR-CW calculates a causal
index of each FSS for the sample by leveraging the rule firing
strength in each FSS and the corresponding causal score (i.e.,
Si). The causal mechanism corresponding to the FSS with the
highest causal index is identified as the locally relevant causal
mechanism for the given sample. More details of MABLAR-
CW can be found in [13], including the calculation of causal
scores and the calculation of causal index.

III. LOCALLY RELEVANT CAUSAL AND
COUNTERFACTUAL EXPLANATION GENERATION –

CF-MABLAR-LOCAL

A. Critical discussion of CF-MABLAR

A CF explanation should answer the following two ques-
tions [6]: 1) which variables require intervention (the ‘which
variables’ question), and 2) what magnitude of an interven-
tion is needed (the ‘what magnitude’ question).

For the ‘which variables’ question, the variables requiring
an intervention should have causal relationships with the
target variable, because only the intervention with these

variables can affect the target variable [6]. Thus, Zhang et
al. [6] proposed CF-MABLAR, designed to generate causal
CF explanations, as shown in Fig. 3 (a). CF-MABLAR
adopts MABLAR-ST (see Section II-B) to capture causal
relationships between variables. Consequently, as shown in
Fig. 3(a), CF-MABLAR generates CF explanations which
focus on the causal relationships between the target variable
and the variables within its Markov blanket. We refer to such
CF explanations as causal CF Markov blanket explanations.

However, as discussed in Section I, in some real-world
scenarios, users may expect a CF explanation to only focus
on the locally relevant causal mechanism. In that scenarios,
local CCF explanations are more suitable than causal CF
Markov blanket causal explanations, because local CCF
explanations avoid redundant information which is unrelated
to the users’ context.

For the ‘what magnitude’ question, according to the
Occam’s razor, CF-MABLAR seeks to find the minimal
intervention on the inputs. To achieve this, CF-MABLAR
adopts the Rule Similarity (RS) index, which measures the
similarity between two rules which have identical variables
in their antecedents [6], [22]. To facilitate discussion, in this
paper, we refer to this method as the RS based method. The
RS index is calculated as follows:

RS(k1, k2) =

D∑
i=1

S(Ak1
i , Ak2

i ), (1)

where RS(k1, k2) represents the similarity between rule k1
and k2. D is the number of inputs. Ak1

i and Ak2
i are the

antecedent fuzzy sets of the i-th input for rule k1 and k2,
respectively. S(Ak1

i , Ak2
i ) is the similarity between Ak1

i and
Ak2

i . In CF-MABLAR, the Jaccard ratio [23] is adopted to
calculate the similarity between two fuzzy sets. Thus,
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A
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i
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i
(x))∫
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A
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i
(x))

. (2)

To ensure that the sample post-intervention achieves the
desired CF output, the RS based method expects that the
firing strength of the rule with the highest firing strength
for the sample post-intervention reaches one [6]. To achieve
this, CF-MABLAR ensures the sample post-intervention has
a membership degree of one for every fuzzy set in the
antecedent of the CF rule. However, in real-world appli-
cations, the firing strength of this rule is not always one.
Consequently, the RS based method may result in redundant
interventions being computed. Also, the RS based method
may generate post-intervention samples which do not exist
in the real world (e.g., a person who is one year old and two
meters tall). In other words, the obtained interventions may
not be actionable.

To address the aforementioned issues arising in CF-
MABLAR, we propose CF-MABLAR-local in the following
subsection.



(a) The process of CF-MABLAR

(b) The process of CF-MABLAR-local using the RS method

(c) The process of CF-MABLAR-local using the Sample-proximity-based method

Fig. 3. Comparison between CF-MABLAR and CF-MABLAR-local (the differences between them are marked in blue)

B. Overview of CF-MABLAR-local

CF-MABLAR-local is designed to generate local CCF
explanations for fuzzy systems.Fig. 3 (b) and (c) show
the process of CF-MABLAR-local using different methods
for establishing interventions, where the components in the
blue rectangle are the key different parts compared to CF-
MABLAR. In Fig. 3, the step ‘establishing the interventions
required’ includes establishing which variables require inter-
vention and to what degree.

CF-MABLAR-local inherits the CF explanation generation
mechanism from CF-MABLAR, which combines factual
rules, interventions, and CF rules to generate the final ex-
planation for the sample (Section III-D shows an illustrative
example). As shown in Fig. 3, compared to CF-MABLAR
which uses MABLAR-ST for causal rule generation, CF-
MABLAR-local adopts MABLAR-CW to generate causal
rules, because, as introduced in Section II-C, a fuzzy system
obtained by MABLAR-CW can reveal the locally relevant
causal mechanism of a given sample.

CF-MABLAR-local requires a single fuzzy system as the
basis for generating CF explanations. However, as shown in
Fig. 2, a fuzzy system generated by MABLAR-CW is an
ensemble of a set of fuzzy sub-systems (FSSs). To address
this issue, for a given sample, CF-MABLAR-local selects the
FSS with the highest causal index as the basis for generating
CF explanations, because, as further detailed in Section II-C,
the FSS with the highest causal index reveals the locally
relevant causal mechanism for the sample.

As shown in Fig. 3 (b), CF-MABLAR-local can adopt the
RS based method to calculate the interventions. However,
as discussed in Section III-A, the RS based method may
result in redundant interventions being computed, and/or
unactionable interventions. To address this issue, as shown in
Fig.3 (c), CF-MABLAR-local provides an alternative method
for establishing interventions based on existing samples.
The following subsection details the alternative method and
analyses the scenarios in which it and the RS based method
are suitable.

C. Establishing interventions based on sample proximity

The principle of the sample-proximity-based intervention
method (the SP based method) is to identify the CF sample
closest to the target sample among all CF samples of the
target–to minimize the intervention. The method relies on
close CF samples being present within the data, in which
case it provides a tangible CF explanation. When no such
samples are in the data, the resulting CF explanations may
be larger (further away) than needed in practice.

Given an input sample xinput = [x1, x2, ..., xd] which
contains d input variables, the CF sample xcf =
[xcf

1 , xcf
2 , ..., xcf

d ] of xinput is obtained as follows:

xcf = argmin
x

dist(x, xinput)

s.t. f(x) = yx,

f(xinput) ̸= yx

(3)

And the intervention diffi for xi is calculated as: diffi =
xcf
i − xi. In (3), f(x) represents the system prediction of x.

yx represents the label of x. dist(·, ·) represents the distance
between two samples. In this paper, we adopt the Euclidean
distance, as it has been widely used. One can adopt another
distance depending on the actual application scenario.

According to the principle of Occam’s Razor, the interven-
tion should be minimized as much as possible. Therefore, as
shown in (3), the SP based method only considers the CF
sample closest to xinput. In addition, to ensure that xinput

can obtain a different (or desired) output after intervention, as
shown in (3), the SP method requires not only that the actual
label of xcf (i.e., yxcf ) differs from the model’s prediction for
xinput (i.e., f(xinput)), but also that the model’s prediction
for xcf is correct. As the interventions obtained by the SP
based method are based on samples that already exist in the
real world, the SP based method reduces the risk of obtaining
unrealistic interventions.

When adopting the SP based method, CF-MABLAR-local
uses the rule which has the highest firing strength of the CF
sample as the CF explanation part in the final explanation.



As noted, the SP based method requires a data set contains
sufficient number of samples, because, when the data set has
limited number of samples, the SP based method may fail
to find the CF sample for a given sample. In such cases, we
recommend using the RS method. In addition, we note that
both the RS based method and the SP based method tend
to intervene on all variables which have causal relationships
(captured by MABLAR-ST/MABLAR-CW) with the target
variable. However, in the real world, it may only be necessary
to intervene on one or a few variables (rather than all) to
achieve the desired counterfactual outcome [9]. For example,
a person who is denied a loan application due to low
education and low income may only need to improve either
their education or income, rather than both, to successfully
obtain the loan. This is worth exploring in future research to
achieve even more precise and concise interventions.

D. Illustrative example

In this subsection, we use the Mammographic mass
(MAM) data set [24] as an example to show the extended
functionality in CF-MABLAR-local, which involves gener-
ating counterfactual explanations focused on locally relevant
causal mechanisms using the SP based method. We choose
the MAM dataset because its limited number of variables
makes it feasible to show the counterfactual explanation gen-
erated by CF-MABLAR-local, as well as its corresponding
causal graph, in this paper.

The MAM data set is used to predict the severity (benign
or malignant) of a mammographic mass [24]. The data
set contains six variables, which are ‘BI-RADS’, ‘Shape’,
‘Age’, ‘Margin’, ‘Density’ and ‘Severity’, respectively. The
‘Severity’ variable is the output variable. The ICA-LiNGAM
algorithm [21] is adopted to generate a causal weighted graph
from the data set. Fig. 4 shows the obtained causal graph.
The target variable is marked as the black node in Fig. 4.

Fig. 4. The causal weighted graph of the MAM data set

As shown in Fig. 4, two possible causal mechanisms are
identified, marked as red-dashed and blue-dotted lines in
Fig. 4, respectively. Consequently, two FSSs are generated,
modelling 1) the ‘BI-RADS → Severity’ and 2) the ‘BI-
RADS → Age → Severity’ causal mechanisms, respectively.

TABLE I
THE SELECTED SAMPLE AND IT CORRESPONDING CF SAMPLE

BI-RADS Age Shape Margin Density Severity
Factual sample 0.0727 0.1282 0 0 0.6667 Benign
CF sample 0.0909 0.6154 0 0 0.6667 Malignant

The locally relevant causal mechanisms may differ across
samples, further influencing the CF explanations generated

by CF-MABLAR-local. Thus, to make sure our selection is
unbiased, we randomly select a sample from the data set
(marked as the factual sample). The value of the factual
sample is shown in Table I (all values have been normalised
to [0, 1]). The sample is classified into ‘Benign’ and the
corresponding factual rule is ‘BI-RADS is low and Age is
low, then class is Benign’. Thus, in this example, the FSS
which models the ‘BI-RADS → Age → Severity’ causal
mechanism is used as the basis model for the CF explanation
generation.

In this example, the SP based method is adopted to
generate CF explanations. There are 169 samples which
have a different label compared to the factual sample and
are correctly classified by the obtained fuzzy system. The
value of the CF sample which is closest to the factual
sample (marked as the CF sample) is also shown in Table I.
Consequently, the intervention of ‘BI-RADS’ is 0.0182 and
the intervention of ‘Age’ is 0.4872. In this case, there is no
need to calculate the intervention of ‘Shape’, ‘Margin’ and
‘Density’, because these variables are not within the locally
relevant mechanism of the factual sample.

The rule with the highest firing strength for the factual
sample after the intervention is ‘The BI-RADS is high and
the Age is high, then class is Malignant’. So, we obtain
the final explanation for the factual sample generated by
CF-MABLAR-local. To make it clear, we divide the final
explanation into three parts: the factual part, the CF part and
the CF conclusion part:

• The factual part: The sample is Benign, because its BI-
RADS is low and its Age is low.

• The CF part: To be Malignant, its BI-RADS would
to be higher by 0.0182 and its Age would to be
higher by 0.4872 .

• The CF conclusion part: In that case, its BI-RADS would
be high, and its Age would be high, and this sample
would be classified Malignant.

IV. EXPERIMENTS

A. Experiment settings

CF-MABLAR-local is specifically designed for fuzzy sys-
tems. Therefore, in this section, it is compared to two other
CF explanation generation frameworks also designed for
fuzzy systems: CF-MABLAR and a correlation-based CF ex-
planation generation framework, i.e., Cor-CF [11], discussed
in Section I. As shown in Fig. 3, CF-MABLAR-local can
use either the RS based method or the SP based method for
the establishing the appropriate intervention. In this section,
we compare both configurations of CF-MABLAR-local. For
clarity, we mark CF-MABLAR-local using the RS based
method and the SP based method as CF-MABLAR-local(RS)
and CF-MABLAR-local(SP), respectively.

The Wang-Mendel algorithm [20] is used in all CF expla-
nation generation frameworks for rule generation, as it pro-
vides a consistent basis for comparison [25]. Trapezoidal and
triangle membership functions are adopted as they facilitate



explainability [26]. They are designed using the data-driven
way demonstrated in [18]. The ICA-LiNGAM algorithm [21]
is adopted by both CF-MABLAR and CF-MABLAR-local to
generate causal weighted graphs, because the ICA algorithm
has low computational complexity, which is well-suited for
repeated experiments [27], [28]. Different causal discovery
algorithms and membership design methods can be adopted
for specific problems.

Five real-world data sets are selected as these data sets
are widely used as benchmarks for rule generation. All
data sets except the Beer3 data set are from the UCI data
repository [29] and the Kaggle website [24]. The Beer3 data
set is available at [30]. Table II summaries the data sets
used in this paper. |D| in Table II represents the number
of input variables. Considering that a data set which is too
small might result the SP based method failing to find CF
samples (as discussed in Section III-C), while an overly large
data set could result in excessive computational overhead
(especially when using the SP based method), this paper
adopts a compromise by selecting data sets with a sample
size between 100 and 1000.

TABLE II
DATA SETS USED IN THIS PAPER

Name Samples Class |D|
Beer3 [30] 400 8 3
Breast [29] 699 2 9
Iris [29] 150 3 4
MAM [24] 830 2 5
Pima Indian Diabetes (PID) [24] 768 2 8

We adopt the average F-score over 5-fold cross validation
as the performance index. For the evaluation of CF explana-
tions, the following three indices are adopted1:

• Validity: Validity is the percentage of samples which
obtain the desired output after intervention [31].

• Average Minimal Intervention (AMI): A better CF ex-
planation should have a lower degree of intervention
[31], which means a good CF explanation should change
the inputs as little as possible. AMI measures the
average amount of intervention for each sample in a
data set.Thus, the AMI index is defined as follows [31]:

AMI =

∑n
j=1

∑d
i=1 |x

j
i − x̄j

i |
n

, (4)

where n is the number of samples requiring intervention
and d is the number of inputs. xj

i and x̄j
i | are the actual

value and the value-post-intervention, respectively, of
the ith input variable of the jth input sample.

• Length of the best CF explanation (CFLength): The
number of conditions in the rules used to provide the
CF explanation, where lower is better [11].

B. Experiment results
All approaches achieve a validity of one in all data sets.

Tables III - V show the remaining evaluation indices for the

1Evaluating evaluations are complex–as part of a forthcoming journal
paper we expect to expand on the indices used here.

different approaches (the values in parentheses represent the
standard deviation). The results of CF-MABLAR-local(RS)
and CF-MABLAR-local(SP) are the same in Table III, be-
cause CF-MABLAR-local(RS) and CF-MABLAR-local(SP)
adopts the same model for prediction. In this paper, the WM
algorithm is adopted to generate rules and all rules in a fuzzy
system obtained by the WM algorithm have the same length.
Consequently, in Table IV, the standard deviations of Cor-
CF and CF-MABLAR are zero in all data sets as they use
a single fuzzy system obtained by the WM algorithm. From
Table III - V, we can make the following observations:

TABLE III
THE F-SCORES ACHIEVED BY EACH APPROACH

Cor-CF CF-MABLAR CF-MABLAR
-local(RS)

CF-MABLAR
-local(SP)

Beer3 0.76(0.05) 0.75(0.02) 0.56(0.02) 0.56(0.02)
Breast 0.84(0.04) 0.86(0.05) 0.92(0.02) 0.92(0.02)
Iris 0.95(0.03) 0.94(0.05) 0.95(0.04) 0.95(0.04)
MAM 0.75(0.06) 0.76(0.04) 0.72(0.06) 0.72(0.08)
PID 0.61(0.02) 0.66(0.03) 0.57(0.02) 0.57(0.02)

TABLE IV
THE AVERAGE CFLENGTH ACHIEVED BY EACH APPROACH

Cor-CF CF-MABLAR CF-MABLAR
-local(RS)

CF-MABLAR
-local(SP)

Beer3 3(0) 3(0) 2.985(0.121) 2.985(0.121)
Breast 10(0) 9(0) 2.415(0.849) 2.415(0.849)
Iris 4(0) 3(0) 2(0) 2(0)
MAM 5(0) 5(0) 2(0) 2(0)
PID 8(0) 5(0) 2.967(0.177) 2.967(0.177)

TABLE V
THE AMI ACHIEVED BY EACH APPROACH

Cor-CF CF-MABLAR CF-MABLAR
-local(RS)

CF-MABLAR
-local(SP)

Beer3 0.32(0.13) 0.32(0.18) 0.57(0.11) 0.16(0.12)
Breast 1.46(0.24) 1.66(0.28) 0.85(0.21) 0.81(0.21)
Iris 0.68(0.30) 0.49(0.28) 0.48(0.27) 0.44(0.19)
MAM 0.72(0.19) 0.95(0.39) 0.22(0.16) 0.21(0.18)
PID 0.45(0.15) 0.37(0.17) 0.27(0.13) 0.20(0.13)

1) All approaches show comparable performance in most
data sets. However, CF-MABLAR-local shows a sig-
nifiant decline on the Beer3 data set. This may be
due to MABLAR-CW adopting the “winner-takes-all”
principle for prediction, which results in much of the
information beneficial for prediction being overlooked,
thereby reducing the prediction performance. Overall,
we consider the performance of different approaches
satisfactory and sufficient to meaningfully consider the
explanations generated by different approaches.

2) Both CF-MABLAR-local(RS) and CF-MABLAR-
local(SP) achieve the shortest CFLength, which indi-
cates that identifying the local causal mechanism of a
given sample can effectively reduce the complexity of
the generated CF explanations, thereby enhancing their
explainability. In addition, both approaches achieve
the lowest AMI, which indicates that identifying the
local causal mechanism of a given sample has the
potential to avoid redundant interventions as discussed
in Section I and III-A.



3) We highlight the comparison between CF-MABLAR-
local(RS) and CF-MABLAR-local(SP). As shown in
Table V, CF-MABLAR-local(SP) achieves lower AMI
values in all data sets compared to CF-MABLAR-
local(RS). As we discussed in Section III-A, the RS
based method has a risk of generating redundant inter-
ventions. This observation supports that the SP based
method reduces this risk by leveraging existing samples
which already fired the expected rule.

V. CONCLUSIONS

To enable users to customize, based on their needs, the
generation of CF explanations provided by a fuzzy system,
we propose CF-MABLAR-local, an extended version of CF-
MABLAR. It not only supports fuzzy system based counter-
factual (CF) explanations based on variables that are causally
related to the target variable, but also supports the generation
of CF explanations which specifically focus on locally rel-
evant causal mechanisms. Furthermore, CF-MABLAR-local
also provides an alternative way of calculating interventions
based on existing samples to reduce the risk of obtaining a
redundant and/or infeasible interventions.

We note that the SP based method requires not only
storing the model itself but also storing all existing (e.g.
training) samples. When the number of these samples be-
comes excessively large, this significantly increases storage
overhead. Furthermore, with increasing numbers of samples,
computational overhead also increases. In future research,
we will focus on ways to meeting the challenges which
arise for larger data sets, such as via selecting representative
samples to optimize storage and computation, thereby re-
ducing resource requirements. Also, as discussed in Section
III-C, a desired counterfactual outcome may only require an
intervention on one or a subset of variables, which is worth
further investigation in the future to generate more concise
CF explanations.
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