Downloaded via 109.151.208.106 on April 29, 2025 at 10:47:00 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

OL Organic
Letters

This article is licensed under CC-BY 4.0 @ @

pubs.acs.org/OrglLett

A Modular and Scalable Route to Protected Cyclopropane Amino

Acid Building Blocks

Charlie T. Swan,* Alex G. Edmonds, Stephen P. Argent, and Nicholas ]. Mitchell*

Cite This: https://doi.org/10.1021/acs.orglett.5c01341

I: I Read Online

ACCESS |

[l Metrics & More |

Article Recommendations |

@ Supporting Information

ABSTRACT: An improved method for the synthesis of noncanonical
cyclopropane amino acids from common laboratory reagents is described,
avoiding the use of neurotoxic oxidants or precious metal catalysts.
Intramolecular isocyanate trapping via a Hofmann rearrangement permits
the synthesis of bicyclic carbamates in an enantioenriched and R
diastereopure manner. Subsequent ring-opening of these species allows
access to cyclopropane amino acids which can be further functionalized

[diastereopure, > 95:5 er] - [R=0,N, ]
via oxidation and Sy2 pathways and incorporated into peptides via solid- H*@®§®®»OH

phase peptide synthesis.

Noncanonical amino acids (ncAAs) are of increasing
interest to medicinal chemists as building blocks for
therapeutic peptides.' This is due to their ability to induce
conformational changes® and enable the fine-tuning of
properties such as stability and permeability, which are
traditionally intrinsic drawbacks of classical peptide therapeu-
tics." Beyond bespoke therapeutics and hormone mimics,
integration of ncAAs within antimicrobial peptides (AMPs)
may also provide effective tools to combat the growing threat
of antimicrobial resistance (AMR), recognized as a global
health and socioeconomic crisis.*

Cyclopropane and its derivatives have been of pharmaceut-
ical interest since the 1930s, with free cyclopropane having
been used as a general anesthetic.” It is the most common
small ring in pharmaceuticals and agrochemicals and the third
most common nonheteroatomic ring system among active
pharmaceutical ingredients (APIs).® Its amino acid derivatives
have been shown to exhibit substantial levels of bioactivity.’
This includes the naturally occurring 1-aminocyclopropane-1-
carboxylic acid (ACC, Figure 1), which has been trialed for use
as a herbicide,'’ and coronatine (Figure 1), a toxin produced
by the bacterium Pseudomonas syringae, containing the
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Figure 1. Natural and synthetic structures containing cyclopropane
amino acids or derived moieties.

© XXXX The Authors. Published by
American Chemical Society

7 ACS Publications

operationally simple, modular cPr-AA synthesis

o _ 0
EtO —/{ H YO N-prot:ecuon divezrssilf":;zuon EtO _4_{ NHPG
S

[3 steps, decagram scale] OH

[modular intermediates]
[single purification step] |

[range of protecting groups]

.,

[application in peptide synthesis]

coronamic acid fragment."" Additionally, synthetic cyclo-
propane amino acids have been incorporated into APIs for
the treatment of Hepatitis C, such as Grazoprevir (Figure 1)
and Simeprevir.'”

These compounds are of particular interest as the tethered
nature of the cyclopropane ring allows for fixed side-chain
orientation, which has been shown to increase enzymatic
stability as well as receptor selectivity.”'*~'> The potential
applications of cyclopropane-containing amino acids, in
conjunction with the emerging modality of peptide therapeu-
tics, motivated us to investigate operationally simple methods
toward these noncanonical residues, while avoiding the use of
transition metals and neurotoxic reagents.

Traditional approaches for the synthesis of cyclopropane
amino acids can be divided into two general categories.:9 (1)
reactions of Cl-equivalents with dehydroamino acids; and (2)
formal bisalkylation of malonic acid derivatives or protected
amino-esters. The former category can be divided into two
subcategories based on the disconnection approach; however,
Corey-Chaykovsky reactivity, 1,3-dipolar cycloaddition, or
carbene/carbenoid chemistry is generally used.'® One
disconnection employs an unsubstituted C1l-equivalent, paired
with a substituted dehydroamino acid or similar,'” while the
second disconnection pattern requires application of a
substituted Cl-equivalent and dehydroalanine unit.'®'>'*7**
However, both methods can suffer from poor diastereo- and
enantioselectivities unless transition-metal catalysts and chiral
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Scheme 1. (a) Synthesis of Versatile Cyclic Carbamate S; (b) Applications of § to the Synthesis of Alkyl Halide and Alcohol
Building Blocks; (c) Synthesis of Protected 2,3-Methanoaspartic Acid 19; (d) Heteroatom Diversification of Alkyl Bromide
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ligands are introduced. This can necessitate the use of
supercritical fluid chromatography (SFC) or other diaster-
eomer/enantiomer separation methods.'***** The reverse
approach usmg a-diazocarbonyls and olefins has also been
implemented.”

The latter category is more varied in its enantio- and
diastereocontrol. Direct alkylation using dihaloalkanes gen-
erally has poor diastereocontrol,””* unless sterically demanding
directing groups are introduced. However, utilizing malonates
in conjunction with epichlorohydrin as an alkylating agent
furnishes a diastereopure bicyclic lactone intermediate (3,
Scheme 1a)**~ applicable to the synthesis of cyclopropane
amino acids. Previous studies have shown that the use of chiral
epoxides in this transformation furnishes chiral cyclopropane
amino acids.”*

We were initially inspired by the work of Ortufio et al,
which identified 2,3-methanohomoserine (15) as a suitable
intermediate for further functionalization to substituted
cyclopropane amino acids.”” We utilized a modified version
of the route developed by Pirrung and co-workers for access to

cyclopropanecarboxamide (4). This followed a malonic acid-
derived process and was desirable, as the stereochemically pure
material could be accessed from either enantiomer of
epichlorohydrin (Scheme 1a). An initial objective for this
methodology was to reduce the number of chromatographic
steps, when compared to previous syntheses.””*’ Gratifyingly,
it was found that lactone 3 could be used without further
purification and amido-ester 4 could be precipitated after the
ring-opening in a yield of 62% over 2 steps. This simple
purification procedure allowed for the synthesis of 4 on
decagram scales (reaction scales of 200 mmol) in a
chromatography-free manner.

Attempts to extend the exocyclic chain to pursue glutamic
acid analogues, using 2-(2-chloroethyl)oxirane 27 in place of
epichlorohydrin, were unsuccessful. In this case, opening of the
intermediate oxetane 28 favored the formation of the less
strained cyclopentanol 29 over the cyclopropane (Scheme 2).
Exposure to acidic conditions failed to afford the bridged
lactone analogue.
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Scheme 2. Cyclopentanol Formation from Epichlorohydrin
Homologue 27
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We envisaged that subjecting 4 to a Hofmann rearrangement
in the absence of O-protection would facilitate intramolecular
trapping to generate cyclic carbamate 5 (Scheme 1la). Prior
work had demonstrated the hydrolysis of N-Boc cyclic
carbamates of this nature to their corresponding protected
amino-alcohols®" in the presence of mild base. This suggested
that these systems possess a moderate degree of electrophilic
character that may permit previously undocumented function-
alization.

Acetonitrile was found to be an appropriate non-
nucleophilic solvent for this transformation and allowed for a
range of oxidants to be trialed. N-Bromosuccinimide (NBS)
afforded the product in a 40% isolated yield, though it was only
applicable to reactions of up to a S mmol scale. For larger
scales, significant drops in yield were observed (30% isolated
on a 50 mmol scale). Rigorous temperature control to negate
initial exotherms was unhelpful in increasing the overall yield
of the reaction. Phenyliodine bis(trifluoroacetate) (PIFA) was
found to be similarly effective for this transformation but was
disfavored due to its high molecular weight and consequent
generation of large quantities of stoichiometric waste.
Trichloroisocyanuric acid (TCCA), in a comparable procedure
to Sammakia and co-workers,> was found to be the most
effective oxidant, furnishing the desired cyclic carbamate § in a
55% yield, which translated well to larger scales (tested up to
75 mmol).

Cyclic carbamate 5 was found to be markedly stable, and
decomposition was only observed in the presence of strong
acid, while no reaction with heteroatomic nucleophiles was
observed. Performing this decomposition in a controlled
manner allowed for a deprotection-chlorination strategy to
afford alkyl chloride 30 as the hydrochloride salt (Scheme 3).

Scheme 3. Preparation of Alkyl Chloride Salt 30 via
Halogenation of S5 under Acidic Conditions
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This is analogous to the ring-opening bromination of cyclic
carbamates documented by Piper and co-workers.”® Milder
acids, such as p-toluenesulfonic acid, did not facilitate this
transformation.

A variety of protecting groups could be applied to S, thus
enhancing its reactivity toward ring-opening (Scheme 1b). The
N-Boc compound 6 could be readily accessed via the reaction
with Boc-anhydride and 4-(dimethylamino)pyridine (DMAP).
While initial experiments to install exocyclic protecting groups
using chloroformates/acid chlorides in the presence of mild
base were unsuccessful, it was found that the cyclic carbamate
was stable to deprotonation with sodium hydride to form a
stable anionic species in solution (dimerization was not

observed). The addition of an excess of protecting group
electrophile could furnish the desired species in good yields.
Even the base-sensitive fluorenylmethoxycarbonyl (Fmoc)
protecting group could be applied to this transformation,
albeit in a diminished yield. Use of the less electrophilic para-
methoxybenzyl chloride did not afford any desired product and
showed only starting materials by NMR spectroscopic analysis.

A significant breakthrough in the construction of substituted
cyclopropane amino acids came in the form of a novel ring-
opening bromination, enabled by the reaction of protected
cyclic carbamates 6—9 with a nucleophilic bromide source.
This was applicable to several of the protected carbamates,
including the sensitive Fmoc example 7, with only the less
electrophilic acetyl example 8 failing to show appreciable
conversion. This bromination was particularly advantageous, as
it negates the requirement for any kind of Appel-type process
on alcohol 18§, instead providing direct access to the
halogenated compound. Reaction with the less nucleophilic
lithium chloride returned only starting material, while reaction
with sodium iodide under Finkelstein-like conditions afforded
ring-opened diene 26 as the major product. This is
hypothesized to occur via initial carbamate ring-opening,
forming an unstable alkyl iodide which eliminates the labile I™
leaving group via a Grob-like process. Extensive attempts to
synthesize the fluorinated derivative were unsuccessful via both
Sx2 (11) and deoxyfluorination (15) approaches. A list of
these attempts is summarized in the Supporting Information.

In addition to ring-opening bromination, the aforemen-
tioned hydrolysis was applicable.”' Besides the N-Boc example
6, it was found that the acetyl protected carbamate 8 could also
be opened to its cyclopropylmethyl alcohol analogue 17. The
failure to ring-open 7 under basic conditions was anticipated
due to the base sensitivity of the Fmoc functionality; however,
comparable sensitivity of the 4-NO,Cbz group was not
anticipated, with 4-nitrobenzyl alcohol observed as the sole
byproduct.

Compounds 11 and 18§ are of particular interest for further
functionalization. Using an analogous method to Wick and co-
workers,>* alcohol 15 could be converted to the 2,3-
methanoaspartic acid derivative 19 (Scheme 1c). The strongly
oxidizing yet functionally tolerant conditions of RuCl;/NalO,
were required due to the presence of both base- and acid-
sensitive functionalities in the starting alcohol. An alternative
and more effective procedure was to initially oxidize alcohol 15
to aldehyde 20 using Dess—Martin periodinane, followed by a
successive oxidation to carboxylic acid 19 under Pinnick
conditions.

Bromide 11 was of particular interest due to the
functionalization opportunities presented by Sy2 chemistry
(Scheme 1d), thus allowing for a single, accessible building
block to afford several amino acid analogues. While 11 was
found to be unstable in the presence of base, affording the
Grob fragmentation product 26, mildly basic and base-free
conditions were well tolerated. This permitted the installation
of a variety of amine- and sulfur-derived functionalities,
including the formation of the fully protected homocysteine
analogue 24. Unsuccessful transformations for both 11 and 15
are documented in the Supporting Information.

The methods outlined in Scheme 1 were applied to bicyclic
phenyl lactone 31 as a potential route to an unreported
cyclopropane analogue of f-phenylalanine (Scheme 4). Ring-
opening with ammonia was slower due to the deactivating
nature of the phenyl substituent; hence, a longer reaction time
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Scheme 4. Synthesis of f-Phenylalaninol Analogue 35
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and greater excess of ammonia was required to access primary
amide 32. The Hofmann rearrangement was particularly
effective on this substrate, and the N-Boc cyclic carbamate
34 was opened in a yield comparable to that of 6.
Unfortunately, access to the f-amino acid was prohibited by
incompatibility with many oxidation conditions (DMP,
Bobbitt’s salt, and Swern, as well as Mn and Cr based
oxidants), with ring-opening to the conjugated diene observed
in many cases. In spite of the inability to oxidize 35 to the acid
oxidation state, the pf-phenylalaninol analogue remains a
compound of interest due to the prevalence of the y-
aminoalcohol moiety and its derivatives within APIs for the
treatment of anxiety and depressive disorders.”> ™"

As the Fmoc protecting group is used extensively for solid-
phase peptide synthesis (SPPS),” it was desirable to develop a
streamlined strategy for the global deprotection and sub-
sequent Fmoc protection of these amino acids to avoid
handling the free zwitterionic species. We found that our
approach could be tethered to the ring-opening of
enantioenriched cyclic carbamate 6, providing us with a one-
pot multi-step procedure to access Fmoc-homoserine analogue
36 in a good yield (average of 86% per step) (Scheme 5). As a

Scheme 5. One-Pot, Multi-Step Ring-Opening, Global
Deprotection and Fmoc-Installation, and the Subsequent
Application of 36 in Solid-Phase Peptide Synthesis
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proof of concept for the application of these cyclopropane
amino acids in SPPS, we synthesized an analogue of the
recently reported, functionality-rich, therapeutic peptide
Osteostatin, replacing the serine residue with 2,3-methano-
homoserine. The analogue was synthesized in 15% yield from
tryptophan-loaded 2-chlorotrityl chloride (CTC) resin.

Quantification of deprotection byproducts allowed for the
coupling efficiencies of 36 to alanine (A) and arginine (R) to
36 (attached to the peptide) to be determined as quantitative
and 68%, respectively,' thus demonstrating outstanding
compatibility with universal, automated Fmoc-SPPS methods.

The cyclopropane protons in the Osteostatin analogue could
be clearly identified within the '"H NMR spectrum, and no
elimination products containing the diene or a second
diastereomer were observed.

In conclusion, we have developed a convenient and effective
strategy to enable access to diversifiable, protected cyclo-
propane amino acids from common laboratory reagents. This
can be achieved both racemically or with excellent stereo-
retention from enantiopure epichlorohydrin. We have shown
the applicability of intramolecular isocyanate trapping in a
Hofmann rearrangement to yield cyclic carbamates as versatile
building-block intermediates. Once protected, these carba-
mates can be further functionalized to their ring-opened
alcohol or bromide analogues, which themselves can be
diversified with heteroatomic nucleophiles. Finally, we have
demonstrated a one-pot, multistep process for the conversion
of an N-Boc cyclic carbamate ethyl ester to an Fmoc-protected
cyclopropane analogue of homoserine, which has been
successfully incorporated into an analogue of the therapeutic
peptide Osteostatin.
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