
REVIEW

Effect of Sodium-Glucose Cotransporter-2 Inhibitors
on Endothelial Function: A Systematic Review
of Preclinical Studies

Afnan S. Alshnbari . Sophie A. Millar . Saoirse E. O’Sullivan .

Iskandar Idris

Received: June 8, 2020
� The Author(s) 2020

ABSTRACT

Introduction: While the beneficial effects of
sodium-glucose cotransporter-2 (SGLT-2) inhi-
bitors on cardiovascular and renal outcomes are
recognized, their direct effects on endothelial
function remain unclear. We, therefore, under-
took a systematic review to evaluate the current
literature in this area.
Methods: Electronic databases (PubMed,
EMBASE, and Medline) were systematically
searched using PRISMA guidelines for studies
involving the in vitro, in vivo, or ex vivo
administration of SGLT-2 inhibitors to animals,
vascular tissue, or vascular endothelial cells.
Results: Of 144 retrieved publications, 24
experimental studies met the inclusion criteria.
Reporting of possible sources of bias were poor,
making the overall risk of bias difficult to assess.

Within the 24 studies, the SGLT-2 inhibitors
canagliflozin, ipragliflozin, empagliflozin,
dapagliflozin, tofogliflozin, and luseogliflozin
were assessed as interventions. Animal model
studies (n = 17) demonstrated that all SGLT-2
inhibitors prevented endothelial dysfunction
and enhanced endothelium-dependent vasore-
laxation in diabetic and non-diabetic models.
In vitro studies (n = 9) using human endothelial
cells indicated a direct anti-inflammatory effect
of dapagliflozin (1–100 nM) and canagliflozin,
(10 lM), while empagliflozin (1 and 10 lM)
improved viability of hyperglycemic cells.
Potential mechanisms of action of the SGLT-2
inhibitors include a reduction in oxidative
stress, modulation of adhesion molecules and
reductions in pro-inflammatory cytokines.
Conclusions: Preclinical studies indicate that
SGLT-2 inhibitors attenuate vascular dysfunc-
tion in preclinical models via a combination of
mechanisms that appear to act independently
of glucose-lowering benefits.
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Key Summary Points

Sodium-glucose cotransporter-2 (SGLT2)
inhibitors function through a novel
mechanism of reducing renal tubular
glucose reabsorption by inhibiting target
SGLT2 receptors present in the renal
tubule.

All studies which have reported
experimental effects of SGLT-2 inhibitors
suggest that this class of drug may exert
‘off-target’ cardiovascular benefits by
modulating vascular endothelial cell
activation and improving endothelial cell
dysfunction, a critical early step in
atherogenesis.

Chronic and acute treatment with
dapagliflozin led to a significant
endothelial-dependent vasorelaxation in
the aorta of diabetic mice, which some
studies suggest may be due to a direct
effect on vascular cells.

The ex vivo and in vitro studies reviewed
here support a possible class effect of
SGLT-2 inhibitors on the regulation of
endothelial function.

Anti-inflammatory effects of SGLT-2
inhibitors have been observed in diabetic
nephropathy models, via a suppression of
the advanced glycation endproducts
(AGEs)-receptor pathway, as well as in
in vitro studies, thereby implicating anti-
inflammatory effects that are independent
of glucose-lowering.

Systemic administration of SGLT-2
inhibitors markedly reduced expression of
pro-inflammatory adhesion markers and
cytokines in diabetic rodent models.

Arguably, the evidence from the
experimental studies reported in this
review points towards SGLT-2 inhibitors
exerting additional benefits beyond their
primary receptor targets in the renal
tubule as well as acting independently of
glucose control.

INTRODUCTION

Diabetes is a major public health problem [1]
with an increasing economic burden worldwide
and a strong link to cardiovascular disease [2].
The insulin resistance associated with type 2
diabetes (T2D) contributes to hyperglycemia,
dyslipidemia, and hypertension, all of which
significantly increase cardiovascular risk [3].
Such cardiovascular risk factors are associated
with impaired endothelial function [4], a sig-
nificant contributing factor to the pathogenesis
of atherosclerotic vascular disease in patients
with T2D [5–7]. Possible mechanisms of hyper-
glycemia-induced endothelial damage include
insulin resistance and inflammation [8]. Nitric
oxide (NO) [produced by endothelial NO syn-
thase (eNOS)] exerts cardio-protective effects by
inducing the relaxation of smooth muscle cells,
thereby preventing several cascades of events,
including migration of leukocytes into arteries,
platelet adhesion, and smooth muscle cell pro-
liferation [4, 9]. In diabetes, however, reduced
eNOS activity and/or elevated reactive oxygen
species (ROS) production reduces NO bioavail-
ability and increases the production of harmful
endothelial-derived vasoactive mediators such
as endothelin-1 and ROS, leading to the pro-
gression of atherosclerosis and hypertension [4].

In recent years landmark clinical studies
have reported the beneficial effects of the
antidiabetic agents glucagon-like peptide-1
(GLP-1) receptor agonists and sodium-glucose
co-transporter-2 (SGLT-2) inhibitors in reducing
the risk of cardiovascular mortality in patients
with T2D [10–12]. The findings of a recent
network meta-analysis revealed that although
both classes of antidiabetic drugs demonstrated
cardiovascular benefits, SGLT-2 inhibitors were
superior in reducing cardiovascular events
compared to GLP-1 receptor agonists which was
more beneficial in reducing the risk of nonfatal
stroke [13].

SGLT-2 expression occurs in both the small
intestine and kidney. These transporters act by
modulating glucose reabsorption in the proxi-
mal renal tubules [14, 15]. Inhibition of SGLT-2
in kidneys facilitates excess urinary glucose
excretion and lowers circulating blood glucose
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levels in patients with diabetes. Although SGLT-
2 expression has not been reported in cardiac
and vascular tissues, recent clinical evidence has
shown considerable reductions in blood pres-
sure and improvement in endothelial function
associated with their use. However, it is unclear
if these effects are just due to the indirect glu-
cose-lowering effect of these antidiabetic drugs
[16, 17]. There is accumulating evidence on the
effect of SGLT-2 inhibitors and their underlying
mechanisms in animal and in vitro models of
endothelial dysfunction [10]. Collectively, these
indicate that SGLT-2 inhibitors are likely to
have a direct influence on the cardiovascular
system.

Consequently, a number of large clinical
studies have been conducted to investigate
endothelial function in patients treated with
SGLT-2 inhibitors. The DEFENCE study found a
significant improvement in endothelial func-
tion in patients with T2D receiving dapagli-
flozin 5 mg/day as an add-on therapy to
metformin 750 mg/day [18]. Similarly, T2D
patients with ischemic heart disease showed a
significant reduction in surrogate markers for
endothelial function following 12 weeks of
dapagliflozin monotherapy [19]. An investiga-
tion by Solini et al. suggested that dapagliflozin
might have a protective cardioprotective effect
in preserving vasodilating capacity [20]. Simi-
larly, Lunder et al. showed that empagliflozin
25 mg/day as add-on therapy to metformin
therapy 2000 mg/day significantly reduced
arterial stiffness in patients with type 1 diabetes
[21]. Furthermore, the findings from a recent
systematic review found that only SGLT-2
inhibitors significantly improved endothelial
function, as assessed by flow-mediated dilation,
in comparison to other classes of antidiabetic
agents [22].

This systematic review was therefore under-
taken to evaluate the effect of SGLT-2 inhibitors
on endothelial function in preclinical models.
The evidence from animal and in vitro studies
will enhance our understanding of the under-
lying molecular mechanisms of SGLT-2 inhibi-
tors on endothelial dysfunction and in turn lead
to the development of novel approaches to
improved management of T2D patients,

especially those with high risk of cardiovascular
events.

METHODOLOGY

Database Search

This systematic review was performed following
the Preferred Reporting Items for Systematic
Review (PRISMA) guidelines [23]. Both the
PubMed and EMBASE (including MEDLINE)
electronic databases were searched from incep-
tion to May 2020 for publications reporting
in vivo, ex vivo, or in vitro evaluation of the
effect of SGLT-2 inhibitors on endothelial
function using the following keywords: ‘‘SGLT-
2’’, ‘‘sodium-glucose co-transporter inhibitor,’’
‘‘dapagliflozin,’’ ‘‘canagliflozin,’’ ‘‘em-
pagliflozin,’’ ‘‘ibragliflozin,’’ ‘‘luseogliflozin,’’
‘‘endothelium,’’ ‘‘vascular,’’ ‘‘endothelial,’’ ‘‘en-
dothelia,’’ ‘‘experimental study,’’ ‘‘in vitro,’’
‘‘in vivo,’’ ‘‘animal,’’ ‘‘mice,’’ ‘‘cell,’’ and ‘‘ex-
vivo.’’ The searches were carried out by two
independent researchers. In addition, the ref-
erences of relevant articles were manually sear-
ched for any additional relevant articles.

This article is based on previously conducted
studies and does not contain any studies with
human participants or animals performed by
any of the authors.

Study Selection and Data Extraction

Eligible studies were included if they were
published in English, involved cell culture or
animal models, assessed endothelial function
evaluated by any method, and used SLGT-2
inhibitors as the intervention at any dose or
duration. Studies were excluded if they were not
in English, involved human clinical trials, did
not use SGLT-2 inhibitors, used other antidia-
betic medications or combined therapies, or if
the study design was non-experimental. Two
independent reviewers performed the extrac-
tion of relevant data.
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Quality and Risk of Bias Assessment

Each eligible study was assessed for quality and
risk of bias by two independent reviewers. For
methodological quality assessment, data on
randomization method, study duration, ran-
dom sequence generation, allocation conceal-
ment, and blinding as well as other risks of bias
information relating to the reporting and attri-
tion bias from each study were extracted.
Assessment of the risk of bias was completed
using the SYRCLE tool [24] for the in vivo
experiments. The internal validity of each study
was assessed by performance bias, detection
bias, and selection bias. The external validity of
the animal population, drug interventions, and
outcomes were assessed. Since the included
studies did not report pre-defined primary and
secondary outcomes, the reporting bias domain
(selective outcome reporting) was not used in
the assessment of the risk of bias. The scoring
was as follows: low risk of bias (reported) was
denoted as ‘L’; high risk of bias (not reported),
as ‘H’; unclear or unknown risk of bias, as ‘?’.
Since the experimental reporting on the
methodology for animal models was generally
considered to be relatively poor [25], other bias
domains of reporting of randomization and
blinding were included. Calculation of sample
size and temperature control reporting were
also included as other risks of bias domains.
These items were scored as ‘yes’ if reported, and
‘no’ if not reported. Due to the substantial
heterogeneity of the studies in terms of design
and interventions, as well as limitations in the
methodology used, a meta-analysis was not
possible, and we present here only a qualitative
systematic review.

RESULTS

Search Findings

A flow chart of the identification of eligible
studies is shown in Fig. 1. A total of 144 articles
were identified through searches of the
PubMed, EMBASE, and MEDLINE electronic
databases. After removal of duplications, 82
articles remained. A further 43 articles were

excluded because they did not meet the inclu-
sion criteria. Therefore, we evaluated the full
text of 39 potentially relevant studies, of which
24 eligible experimental studies were selected
for the final analysis, all of which met the
inclusion criteria.

Study Characteristics

The characteristics of the included studies are
summarized in Tables 1 and 2. Findings on the
SGLT-2 inhibitors canagliflozin, ipragliflozin,
empagliflozin, dapagliflozin, tofogliflozin, and
luseogliflozin were reported.

Animal Models
A total of 18 studies reported in vivo data (13 in
mice and four in rats, and one in rabbit;
Table 1). Twelve studies used diabetic models,
and four studies were performed in atherogenic
models or an obese model. The SGLT-2 inhibi-
tors used were empagliflozin (1–30 mg/kg/day),
dapagliflozin (0.1–7 mg/kg/day), ipragliflozin
(0.1–3 mg/kg/day), canagliflozin (2 studies,
1–30 mg/kg/day), tofogliflozin, and luseogli-
flozin (1–10 mg/kg/day). The duration of treat-
ments ranged from 4 to 12 weeks. The rodents
were aged between 5 weeks and 11 months at
the beginning of the studies. All intervention
administrations were oral gavage except one
which was via intragastric route.

Three of the ex vivo studies included isolated
pulmonary arteries from the thoracic aorta, one
used the abdominal aorta, and one study used
both the pulmonary and coronary arteries.
Three of the ex vivo studies used dapagliflozin
(1.0 nM–10 lM), four used empagliflozin (dose
not reported), and two studies used canagli-
flozin (100 pmol/l–100 lmol/l).

In Vitro Studies
The in vitro studies (n = 9; Table 2) were per-
formed in human umbilical vein endothelial
cells (HUVECs), human aortic endothelial cells
(HAECs), murine endothelial cells, or porcine
coronary artery endothelial cells. The drug
interventions included empagliflozin (6 studies;
0.1–10 lM, 24 h, 3 days or 30 min), dapagli-
flozin (3 studies; 1–100 nM, 3 days or 24 h) and
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canagliflozin (2 studies; 10 lM for 15 or
30 min). Before SGLT-2 inhibitors were added to
the cell culture, the cells were stimulated with
agents, such as tumor necrosis factor-a (TNFa),
palmitate, high glucose, interleukin-1b (IL-1b),

or acetylcholine, for various durations ranging
from 1 to 24 h to induce damage to the cells/
tissue so that any protective effects of the SGLT-
2 inhibitors could be assessed.

Fig. 1 Flow chart of the identification of eligible studies
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Table 1 The effect of sodium-glucose co-transporter-2 inhibitors on endothelial function in animal models

Animal
species

Animal
model

Glyemic
condition

Drug (dose)/route Major finding References

ApoE-/-

mice

T1D Hyperglycemic Empagliflozin (20 mg/

kg/day)/12 weeks/P.O

;MCP-1, VCAM-1,

NADPH oxidase, NOX2,

and p22phox mRNA

expression in the

atherosclerotic aorta

; MCP-1, VCAM-1 mRNA

and macrophage

accumulation expressions in

atherosclerotic lesions in the

aortic root

; MCP-1, VCAM-1, CD68,

NOX2, and p22phox RNA

expression in the abdominal

aorta

; PGE2 and TXB2 plasma

level

; MCP-1, ICAM-1, VCAM-

1 mRNA, CD68, p47phox,

and p22phox expression in

the PVAT

; Impairment of vascular

endothelium-dependent

relaxation in thoracic aortas

in response of acetylcholine

[29]

Dahl salt-

sensitive

rats

Hypertension Euglycemic Dapagliflozin (0.1 mg/

kg/day)/6 weeks/P.O

; VCAM-1, E-selectin and

eNOS protein expression

; NF-jB, MCP1 and IL-6

protein expression

[54]

ApoE-/-

mice

Obesity Euglycemic Empagliflozin (10 mg/

kg/day)/10 weeks/P.O

; Vcam-1 and MCP-1

mRNA

Marginally ; Timp-1 and

Timp-2 expression level in

the aortic root (locally in the

atherosclerotic lesion)

[55]

Rtas Healthy aortic

ring

Euglycemic Canagliflozin (10 lM) : Endothelium-dependent

vasodilation

[36]
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Table 1 continued

Animal
species

Animal
model

Glyemic
condition

Drug (dose)/route Major finding References

ApoE-/-

mice

Obesity Euglycemic Canagliflozin (10 mg/

kg/day)/5 weeks/P.O

; Vcam-1 and MCP-1

mRNA levels in the aortic

root

[56]

db/db

mice

T2D Hyperglycemic Canagliflozin (10 mg/

kg/day)/5 weeks/P.O

; Impairment of vascular

endothelium-dependent

relaxation in thoracic aortas

[32]

C57Bl/6 J

mice

– Euglycemic Dapagliflozin (1.0 lM) ; Impairment of vascular

endothelium-dependent

relaxation in thoracic aortas

[26]

ApoE-/-

mice

Adult/obesity Euglycemic Dapagliflozin (1.0 mg/

kg/day)/4 weeks/P.O

; Impairment of vascular

endothelium-dependent

relaxation in thoracic aortas

[26]

ApoE-/-

mice

Aged/obesity Euglycemic Dapagliflozin (1.0 mg/

kg/day)/4 weeks/P.O

; Impairment of vascular

endothelium-dependent

relaxation in thoracic aortas

; NFjB activation

; P-IjBa protein expression

; ICAM-1 and F4/80 protein

expression

[26]

C57BLKS/

J-leprdb/

Leprdb

mice

T2D Hyperglycemic Dapagliflozin (60 mg/kg

diet; 0.006%)/8 weeks

; Impairment of vascular

endothelium- dependent

relaxation in thoracic aortas

; MCP-1, IL-1b, IL-17, IL-

10, CCL5 and IL-6

circulating markers

[27]

White

rabbits

Aortic smooth

muscle

Euglycemic Dapagliflozin 10, 30, 100,

300, and 1000 lM/30 min

to 1 h

: Vasodilation in a

concentration-dependent

manner

Activation of Kv channels and

PKG, and was independent

of other K? channels,

Ca2? channels, intracellular

Ca2?, and the endothelium

[34]
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Table 1 continued

Animal
species

Animal
model

Glyemic
condition

Drug (dose)/route Major finding References

C57Bl/6J

mice

T1D Hyperglycemic Empagliflozin (10 mg/

kg/day)/ 20 weeks/P.O

; Impairment of vascular

endothelium-dependent

relaxation in thoracic aortas

; ICAM1 and VCAM1

protein level upregulation

[30]

ApoE-/-

mice

Atherosclerosis Euglycemic Empagliflozin (3 mg/

kg/day)/8 weeks/P.O

; TNF-a, IL-6, MCP-1, and

hsCRP circulating levels

[33]

(ZDF)rats T2D Hyperglycemic Empagliflozin (10 mg/

kg/day, 30 mg/kg/day)/

6 weeks/P.O

; Impairment of vascular

endothelium-dependent

relaxation in thoracic aortas

; vascular oxidative stress

[57]

KK/Ay

mice

T2D Hyperglycemic Ipragliflozin and

dapagliflozin: (0.1–1 mg/

kg/day) Tofogliflozin,

canagliflozin,

empagliflozin, and

luseogliflozin: (1–10 mg/

kg/day)/4 weeks/P.O

Improved IL-1b, IL-6, MCP-

1, and TNF-a, ICAM-1,

VCAM-1, and E-selectin

circulation level

[47]

ApoE-/-

mice

T1DM/

obesity

Hyperglycemic Dapagliflozin (1 mg/

kg/day)/12 weeks/via

intragastrical route

; NLRP3, IL-1b, and IL-18

serum level attenuation of

vascular ROS production

; ROS formation and

NLRP3, IL-1b, and IL-18

protein expression in aortic

tissue

[39]

C57Bl/6 J

mice

T1D Hyperglycemic Ipragliflozin (3 mg/kg/day)/

3 weeks/P.O

; ICAM-1, VCAM-1, and

MCP-1 RNA and protein

expression

: impaired Akt &

eNOSSer1177phosphorylation

; 8-OHdG

; Impairment of vascular

endothelium- dependent

relaxation in thoracic aortas

[28]

C57Bl/6J

mice

T1D Hyperglycemic Canagliflozin, (30 mg/

kg/day)/4 weeks/P.O

; Impairment of coronary

vasodilation in the diabetic

group only

[35]
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Experimental Outcomes of SGLT-2
Inhibitors

The Effect of SGLT-2 Inhibitors on Endothelial
Function
It has been shown in both diabetic and nondi-
abetic models that SGLT-2 inhibitors improve
endothelial function in euglycemic and hyper-
glycemic conditions, as summarized in Table 1.
The vascular response was examined in differ-
ent studies to investigate the effects of SGLT-2
inhibitors on endothelial dysfunction and the
proposed mechanism by which they reduce
oxidative stress, namely, the formation of
advanced glycation endproducts (AGEs) and
their receptors (RAGEs), which is involved in
AGE/RAGE signalling and inflammation.

The Direct Effect of SGLT-2 Inhibitors
on Endothelial Cells
The direct involvement of SGLT-2 inhibitors in
different cell lines was assessed, and the results
are summarized in Table 2.

Qualitative and Risk of Bias Assessment

The overall and individual scores for the quali-
tative and risk of bias assessment of in vivo
studies are summarized in the ESM (ESM
Table S1; ESM Figure S1). Most of the included
studies did not report sufficient information for
the assessment of the risk of bias.

Although randomization was reported in six
studies (50%), no detail was reported. Conse-
quently, random allocation, housing, and
assessment of outcome risk of bias were mostly
unclear. Four studies (33%) reported blinding
during the experimentation, three of which

Table 1 continued

Animal
species

Animal
model

Glyemic
condition

Drug (dose)/route Major finding References

C57Bl/6J

mice

Pulmonary

arteries and

coronary

arteries

Hyperglycemic Canaglflozin 100 pmol-

1 nmol/l

; Vascular tone in pulmonary

arteries only

[35]

10 and 100 lmol/l : Coronary vasodilation

(SNP-induced)

db/db

mice

Diabetes/

obesity

Hyperglycemic 0.03% empagliflozin/diet/

10 weeks

; Impairment of vascular

endothelium- dependent

relaxation in thoracic aortas

; elevated aortic superoxide

[58]

Wistar rats T1D Hyperglycemic Empagliflozin (30 or 10 mg/

kg/day)/8 weeks/P.O

; Impairment of vascular

endothelium- dependent

relaxation in thoracic aortas

[31]

Kv Voltage-gated potassium channels, PKG protein kinase G, Akt protein kinase B, ApoE-/- mice apolipoprotein E (Apoe)
knockout, CCL5 chemokine ligand 5, CD68 cluster of differentiation 68, eNOS endothelial nitric oxide synthase, hsCRP
high-sensitivity C-reactive protein, ICAM-1 intercellular adhesion molecule-1, IL-17/10 interleukin-17/-10, MCP-1-
monocyte chemoattractant protein-1, Mmp-2/-9 matrix metalloproteinases-2/-9, NF-jB nuclear factor kappa B, NLRP3
NLR family pyrin domain containing 3, NOX2 NADPH oxidase 2, 8-OHdG 8-Oxo-20-deoxyguanosine, P-IjBa phos-
phorylated- inhibitor of nuclear factor kappa B, PGE2 prostaglandin E2, PVAT perivascular adipose tissue, ROS reactive
oxygen species, SNP sodium nitroprusside, T1D/T2D type 1/type 2 diabetes, Timp-2 tissue inhibitor of metalloproteinases
2, TNF-a tumor necrosis factor alpha, TXB2 thromboxane B2, VCAM-1 vascular cell adhesion molecule-1, P.O oral gavage
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Table 2 The direct effect of sodium-glucose co-transporter-2 inhibitors on endothelial function in cell culture

Cell lines Drug (dose) Stimulant (dose) Major finding References

HCAECs Empagliflozin and

dapagliflozin (1 lM)/2 h

TNFa (10 ng/ml)/

4–24 h

; ROS level in TNFa-stimulated cells [59]

HUVECs Empagliflozin and

dapagliflozin (1 lM)/2 h

TNFa (10 ng/ml)/

4–24 h

: NO bioavailability in TNFa-

stimulated cells

[59]

Porcine

coronary

artery

endothelial

cells

Empagliflozin

(1–100 nmol/l)/30 min

HG (25 mmol/l)

or H2O2 (100 lmol/l)/

24 h

; SA-b-gal in HG-treated cells

; p21 and p16 expression level in

HG-treated cells

; eNOS and VCAM-1 mRNA and

protein expression level in HG-

treated cells

: mRNA SGLT-1 and SGLT-2

expression in H2O2- and HG-

treated ECs

[37]

HAAECs Empagliflozin (50 lM)/

24 h

Statically cultured or

subjected to a steady

wall shear stress of 10

dyne/cm

; Roundness of the cells under static
conditions

; TNFa-associated HAAEC-NB4

cell adhesion under static and flow

conditions

; NB4-HAAEC adhesion under

static and perfused conditions

: HS intensity level under static and

flow culture conditions in

heparinase III-treated cells

[60]

HUVECs Canagliflozin (0–50 lM),

empagliflozin

(0–50 lM),

dapagliflozin

(0–50 lM)/3 days

; DNA synthesis in a dose-dependent

manner by dapagliflozin

; Proliferation in a dose-dependent

manner by three SGLT-2 inhibitors

Canagliflozin disrupts cell cycle

progression, ; cyclin A expression

and the phosphorylation of

retinoblastoma protein

[61]

Murine

endothelial

cells

Empagliflozin (25 nM-

10 lM)/24 h

HG (25 mM)/24 h ; Src-kinase, EGF receptor-kinase,

protein kinase-C and Rho-kinase

: PAR2-mediated vasodilation in

tissues cultured under

hyperglycaemic conditions

[62]
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reported blinding of outcome assessor and one
reported blinding of the examiners to the allo-
cation of animals. Therefore, risk of bias related
to blinding of the examiner and assessor as well
as allocation concealment was assessed as
unclear. Measures to reduce random housing
(performance bias) were reported in two studies
(16%), with a further two studies not reporting
random housing (high risk of bias) and the
remaining eight studies unclear. Only in five of
the studies (42%) were the baseline character-
istics between the control and intervention
group reported. Since the reporting was quite
poor for animal experiments, most of the pos-
sible bias sources were scored as unclear risk
(ESM Table S1). Four studies (33%) reported
details of dropouts to score risk of attrition bias
as low level. None of the studies reported sam-
ple size calculation to explain and justify the
number of animals used per group.

DISCUSSION

The aim of this systematic review was to assess
existing evidence on the protective effects of
SGLT-2 inhibitors on endothelial function in
preclinical models. All of the studies published
to date which have reported on the experi-
mental effects of SGLT-2 inhibitors suggest that
this class of drug may exert cardiovascular
benefits by modulating vascular endothelial cell
activation and improving endothelial cell dys-
function, a critical early step in atherogenesis.

These beneficial effects are likely due to (1)
glucose-lowering effects, thereby preventing
downstream glucotoxicity, such as AGE forma-
tion, AGE/RAGE signalling, reduction of oxida-
tive stress, and inflammation and impairment
of vascular function, and (2) direct effects on
vascular endothelial cells (as summarized in
Fig. 2).

Table 2 continued

Cell lines Drug (dose) Stimulant (dose) Major finding References

HUVECs Canagliflozin (10 lM)/

30 min

IL-1b (10 ng/ml) for

6 h

; IL-6 and MCP-1 protein and

MRNA expression

[45]

HAECs Canagliflozin (10 lM)/

15 min

IL-1b (5 ng/ml) for 4 h ; IL-6 and MCP-1 protein and

mRNA expression

[45]

HUVECs Dapagliflozin

(1.0–5.0 nM)/24 h

Dapagliflozin (100 nM)/

24 h

TNFa (10 ng/ml) or

HG (10–30 mM) for

24 h

; ICAM-1 & VCAM-1 protein levels

: PAI-1 protein

; ICAM-1, PAI-1 mRNA and

protein expression in

hyperglycemia-treated cells

[26]

HUVECs Empagliflozin

(0.1–100 lM)

VEGF (10 ng/ml) for

1 h

Neutral effect of the drug on

endothelial cell proliferation

[35]

HUVECs Empagliflozin (1 or

10 lM)/6 days

Ach (1 lM)/30 min

after cultured under

HG (30 mM)

: viability of hyperglycemic

endothelial cells

[57]

EGF Epidermal growth factor, H202 hydrogen peroxide, HAAECs human abdominal 2a aortic endothelial cells, HAECs
human aortic endothelial cells, HCAECs human coronary artery endothelial cells, HG high glucose, HUVECs human
umbilical vein endothelial cell, NO nitric oxide, PAI-1 plasminogen, PAR-2 proteinase activated receptor 2, SGLT-2
sodium-glucose co-transporter-2
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Chronic and acute treatment with dapagli-
flozin led to a significant endothelial-dependent
vasorelaxation in the aorta of diabetic mice
[26, 27]. These data are consistent with results
from studies that used ipragliflozin [28], empa-
gliflozin [29–31], and canagliflozin [32, 33] in
diabetic mice. Likewise, the findings from
ex vivo studies indicated that various SGLT-2
inhibitors could induce direct vasorelaxation
[26, 34–36]. This beneficial effect on endothelial
cell function points to several potential mech-
anisms of vasodilation, including modulation
of adhesion molecules, attenuation of inflam-
mation, activation of eNOS phosphorylation,
potassium/calcium channel mediation inde-
pendent of the endothelium;,decreased cardiac
macrophage infiltration, and reduced oxidative
stress. This beneficial effect could be due to the
sustained reduction in plasma glucose concen-
tration, which was observed even during shorter
treatment periods, suggesting the reliability and
effectiveness of glucose-lowering therapy with
SGLT-2 inhibitors. However, given that the
ApoE-/- mice used in the study by Gaspari et al.
[26] were nondiabetic and did not exhibit a
change in glucose metabolism induced by
dapagliflozin, it remains uncertain whether this
class of drug exerts a direct effect on blood
vessels [26]. A recent study found a significant
increase in sodium-glucose transporter-1
(SGLT1) and SGLT-2 expression in high glucose-
treated porcine endothelial cells [37]. Thus, it is
possible that the direct effect of SGLT-2 inhibi-
tors, via inhibition of SGLT-2 in the vascular
wall, contributes to improvement in endothe-
lial function.

The ex vivo and in vitro studies reviewed
support a possible class effect of the SGLT-2
inhibitors on the regulation of endothelial
function that includes the reduction of inflam-
matory cytokine secretion and hyperglycemia-
mediated protein expression, as well as
improved viability of hyperglycemic endothe-
lial cells. Overall, the beneficial effects of SGLT-
2 inhibitors on endothelial dysfunction appear
to be consistent across all of the outcomes
measured, such as vascular function and
oxidative stress. None of the studies investi-
gated reported any adverse effects related to
treatment with SGLT-2 inhibitors. Oxidative

stress is known to lead to cell and tissue damage
via the production of ROS, such as active oxy-
gen and free radicals, with oxidative stress
markers, including thiobarbituric acid reactive
substances (TBARS), reported to be significantly
elevated in people with T2D with non-alcoholic
fatty liver disease [38]. In vitro experiments
have demonstrated attenuation of protein
kinase B (Akt) and eNOS phosphorylation in
HUVECs treated with methylglyoxal, the pre-
cursor of AGEs, indicating that this effect seems
to be at least partially attributable to the
improvement in eNOS function in a hyper-
glycemic state [28]. It has been argued that this
anti-oxidant effect is most likely due to the
inhibition of NADPH oxidase activity and a
decreased serum level of the AGE precursor
methylglyoxal [31, 39]. However, the glucose-
lowering effect of SGLT-2 inhibitors in diabetic
mice significantly decreased oxidative stress, as
determined by urinary excretion of 8-oxo-20-
deoxyguanosine and in cardiac and vascular
tissue, whole blood, aorta, and the heart [28].

Inflammation has been implicated in vascu-
lar dysfunction in diabetes [40]. As a result,
several studies have examined the ideal
approach to prevent and manage this inflam-
matory response [41, 42]. Anti-inflammatory
effects of SGLT-2 inhibitors were previously
observed in diabetic nephropathy models, and
subsequently proposed to occur via a suppres-
sion of the RAGE pathways [43]. This, in turn,
has led to many further potential pathways
being proposed, ranging from direct effects on
the expression/release of pro-inflammatory
mediators or indirect effects via oxidative bal-
ance, hyperglycemia-induced cytokine produc-
tion, immune system function, and/or obesity-
related inflammation [44]. Systemic adminis-
tration of the SGLT-2 inhibitors empagliflozin,
ipragliflozin, or luseogliflozin led to markedly
reduced expression of pro-inflammatory adhe-
sion markers and cytokines, such as IL-6,
monocyte chemoattractant protein-1 (MCP-1),
and intercellular adhesion molecule-1 (ICAM-1)
in diabetic rodent models [28, 45–47]. Canagli-
flozin administration inhibited inflammation in
metabolic tissue of mice fed a high-fat diet. In
keeping with these previous observations, an
in vitro study showed that dapagliflozin
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treatment inhibited TNFa induction of ICAM-1
and vascular cell adhesion molecule-1 (VCAM-
1) protein expression in human endothelial
cells [45]. Similarly, dapagliflozin inhibited IL-
1b-stimulated MCP-1 and IL-6 secretion [26].
Taken together these in vivo and in vitro results
strongly suggest direct underlying mechanisms
of action of SGLT-2 inhibitors on endothelial
function that are independent of beneficial
glucose-lowering effects [26].

The doses of SLGT-2 inhibitors used in these
studies were determined from the therapeutic
dose required to reach a peak concentration, or
in the case of in vitro studies, the concentration
that reflected the maximum plasma concentra-
tion. Therefore, for example, canagliflozin,
which reaches a peak concentration of about
7 lmol/l in human plasma, was employed at a
therapeutically relevant concentration of
10 lmol/l, while dapagliflozin and

empagliflozin, which produce peak concentra-
tions of 1–2 lmol/l, were employed at doses of
1 lmol/l [45].

These observations from animal and cell
model experiments are supported by clinical
studies, as a reduction in biomarkers of cardio-
vascular inflammation (namely, highly sensi-
tive C-reactive protein) was observed in diabetic
patients treated with dapagliflozin [48]. The
cardiovascular benefits observed in multiple
clinical trials were seen to occur independently
of glycemic or lipid control [49]. The underlying
pathophysiological mechanisms of the
improved cardiovascular outcomes observed
was hypothesized to be due to the diuretic (and,
therefore, anti-hypertensive) effects of SGLT-2
inhibitors [50]. In addition, the ‘thrifty sub-
strate’ hypothesis proposes a shift in metabo-
lism from glucose and lipids to ketone bodies as
a direct effect of SGLT-2 inhibition [51].

Fig. 2 Summary of potential mechanisms involved in the
protective effects of sodium-glucose co-transporter-2
(SGLT-2) inhibitors on endothelial function. Akt Protein
kinase B, EDHF endothelium-derived hyperpolarizing

factor, NLRP3 NLR family pyrin domain containing 3,
SNP sodium nitroprusside; see footnotes to Tables 1 and 2
for other definitions
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Mudaliar et al. [49] argue that although diuretic
and vascular endothelium effects could have an
impact on cardiovascular improvements, such
considerable benefits are highly unlikely in the
short period of 3 months. Notably, the vascular
dysfunction associated with T2D was initially
thought to occur due to hyperglycemia, as a
result of interactions between various pathways
[52]. Arguably, the evidence from the experi-
mental studies reported in this review point
towards SGLT-2 inhibitors exerting additional
benefits beyond glucose control.

LIMITATIONS

Due to insufficient or poor-quality method-
ological reporting of the included studies, as
well as considerable heterogeneity, the obser-
vations reported should be interpreted with
caution. Furthermore, although well-estab-
lished tools exist for the assessment of
methodology quality of human clinical trials,
there are currently no validated or standardized
grading scales available for the assessment of
methodological quality in animal studies.
Another limitation of our review may be the
inclusion of only published studies, which may
be a potential source of publication bias [53];
unpublished results or conference abstracts may
have reported negative findings.

CONCLUSIONS

In this systematic review, we have demon-
strated that experimental evidence suggests that
SGLT-2 inhibitors are effective at attenuating
vascular dysfunction in preclinical models, with
complex underlying mechanisms that may act
independently to hyperglycemia-related bene-
fits. The evidence from these preclinical studies
supports the demonstrated improved vascular
functional outcomes of human clinical trials.
Further studies are needed to clarify how these
compounds are acting in the vasculature and to
discover their target sites of action.
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Fuentes M, Mora-Fernández C, Navarro-González
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