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Confrontation of rodents by natural predators provides a number of advantages as a 1 

model for traumatic or stressful experience. Using this approach, one of the aims of 2 

this study was to investigate a model for the study of post-traumatic stress disorder 3 

(PTSD)-related behaviour in mice. Moreover, because PTSD can facilitate the 4 

establishment of chronic pain (CP), and in the same way, patients with CP have an 5 

increased tendency to develop PTSD when exposed to a traumatic event, our second 6 

aim was to analyse whether this comorbidity can be verified in the new paradigm. 7 

C57BL/6 male mice underwent chronic constriction injury of the sciatic nerve (CCI), a 8 

model of neuropathic CP, or not (sham groups) and were submitted to different 9 

threatening situations. Threatened mice exhibited enhanced defensive behaviours, as 10 

well as significantly enhanced risk assessment and escape behaviours during context 11 

reexposure. Previous snake exposure reduced open-arm time in the elevated plus-12 

maze test, suggesting an increase in anxiety levels. Sham mice showed fear-induced 13 

antinociception immediately after a second exposure to the snake, but 1 week later, 14 

they exhibited allodynia, suggesting that multiple exposures to the snake led to 15 

increased nociceptive responses. Moreover, after reexposure to the aversive 16 

environment, allodynia was maintained. CCI alone produced intense allodynia, which 17 

was unaltered by exposure to either the snake stimuli or reexposure to the 18 

experimental context. Together, these results specifically parallel the behavioural 19 

symptoms of PTSD, suggesting that the snake/exuvia/reexposure procedure may 20 

constitute a useful animal model to study PTSD. 21 

 22 

Keywords: chronic pain; post-traumatic stress disorder; defensive reaction; pain 23 

modulation; prey versus serpents confrontation paradigm; Epicrates cenchria 24 

crassus. 25 
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 29 

1. INTRODUCTION 30 

Wild venomous (Coimbra et al., 2017a; Calvo et al., 2919a,b) and non-venomous 31 

(Guimarães-Costa et al., 2007; Lobão-Soares et al., 2008; dos Anjos-Garcia et al., 32 
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2019) snakes are increasingly used as threat stimuli in studies of defensive 1 

behaviours, with a particular goal of analysing the potential relationships between 2 

exposure to these predators and animal models of anxiety disorders (Coimbra et al., 3 

2017b).  4 

These studies follow a long history of research using confrontations of laboratory 5 

rats and mice by natural predators such as Felis silvestris catus to elicit defensive 6 

responses and enable their measurement under varying circumstances (e.g. 7 

Blanchard and Blanchard, 1989; Ribeiro-Barbosa et al., 2005). Notably, cat odour 8 

alone can elicit a strong defensive response (Apfelbach et al., 2005; Dielenberg and 9 

McGregor, 2001; Takahashi et al., 2005) and can be used as an unconditioned 10 

stimulus for rapid fear conditioning (Dielenberg and McGregor, 2001; Hubbard et al., 11 

2004). This observation suggests that predators can be used to provide both 12 

unconditioned and conditioned threat stimuli, combinable in ways that potentially 13 

extend the range of paradigms designed to produce behaviours that are similar to 14 

symptoms of various psychopathologies. In fact, snake exposure has been suggested 15 

(Coimbra et al., 2017a; Guimarães-Costa et al., 2007; Lobão-Soares et al., 2008) as 16 

an experimental model of panic attack and used to test novel and established drugs 17 

with panicolytic-like effects (Coimbra et al., 2017b; Paschoalin-Maurin et al., 2018; 18 

Twardowschy et al., 2013; Uribe-Mariño et al., 2012), as well as neuromodulators and 19 

the neural networks underlying the control of defensive behaviour (Almada and 20 

Coimbra, 2015; Almada et al., 2015). 21 

The goal of this study was to determine the effects, in mice, of multiple exposures 22 

to a snake and to stimuli associated with the snake. In this context, an advantage of 23 

using snakes as predator threats is that they shed their skin periodically, producing 24 

exuviae, layers of shed skin. These exuviae provide both snake odour and a visual 25 

stimulus somewhat similar to that of the snake itself, potentially eliciting some degree 26 

of unconditioned defensiveness, an issue evaluated here in Experiment 1. 27 

Simultaneous exposure to both a snake and its exuvia should further increase 28 

responsivity to the exuvia, enhancing defensiveness to a stimulus that already serves 29 

as an unconditioned threat. Thus, Experiment 2 utilises extended snake exposure, 30 

over 4 h, followed at intervals by simultaneous exposure to snake and exuvia and later 31 

by exposure to the exuvia alone, with appropriate measures to determine how this 32 

protocol may alter the expression of individual defensive behaviours. 33 
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The hypothesis of the present work was that mice threatened by a natural predator, 1 

a wild constrictor snake, and reexposed to the aversive context and partial snake cues 2 

would show exacerbated anxiety/fear-related defensive reactions, some of which were 3 

similar to those displayed by post-traumatic stress disorder (PTSD) patients, 4 

potentially providing support for mouse-snake confrontation as a new model to study 5 

PTSD. Since PTSD could facilitate the establishment of chronic pain (CP) (Sharp and 6 

Harvey, 2001; Villano et al., 2007), and in the same way, patients with CP have an 7 

increased tendency to develop PTSD when exposed to a traumatic event (Gibson, 8 

2012), we also hypothesised that chronic neuropathic pain would enhance defensive 9 

responses to the snake and to a conditioned aversive context. The interactive effects 10 

of chronic pain with snake plus conditioned aversive context exposure was evaluated 11 

by examining allodynia and behaviours displayed by prey in the elevated plus-maze 12 

test (EPM), a test of anxiety-like behaviour. 13 

 14 

2. RESULTS 15 

2.1. Results of Experiment 1 16 

The Epicrates cenchria crassus snakes were kept in the open area of the 17 

enclosure, and explored the polygonal arena for snakes versus prey confrontation. 18 

Although it could reach the elevated platforms for escape, they demonstrated a place-19 

preference for the enclosure floor, waiting the approach of their potential prey. Even 20 

being previously fed, they still reacted vigorously when prey were close to them, 21 

threatening their potential prey. In this case, either offensive (with attempt to bite) or 22 

defensive (without bites) strikes were observed, however, no mice were actually 23 

harmed by the snakes. 24 

Risk assessment. Mice exposed either to the exuvia or to the snake exhibited 25 

a higher frequency and duration of risk assessment (Bonferroni's post hoc test, p < 26 

0.05) when compared to non-threatened (control) animals. Moreover, animals 27 

exposed to the snake also showed a higher duration of risk assessment than those 28 

exposed to the exuvia (Figure 1A and B). [One-way ANOVA indicated significant 29 

effects on frequency (F2,20 = 21, p < 0.0001) and duration (F1,20 = 20, p < 0.0001) of 30 

risk assessment.] 31 
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Defensive immobility/freezing. Mice exposed to the snake exhibited a higher 1 

frequency and duration of defensive immobility/freezing (Bonferroni's post hoc test, p 2 

< 0.05) when compared to non-threatened animals or to those exposed to the exuvia 3 

(Figure 1C and D). [One-way ANOVA showed significant effects on frequency (F2,20 = 4 

7.4, p < 0.01) and duration (F1,20 = 8.3, p < 0.01) of defensive immobility.] 5 

Time in protected areas. Mice exposed to the snake spent more time in the 6 

protected areas (Bonferroni's post hoc test, p < 0.05) when compared to non-7 

threatened animals or to those exposed to the exuvia (Figure 1E). [One-way ANOVA 8 

showed significant effect on time spent in protected areas (F1,20 = 14, p < 0.001).] 9 

Escape. Mice exposed either to the exuvia or to the snake showed a higher 10 

frequency of escape behaviour (Bonferroni's post hoc test, p < 0.05) when compared 11 

to non-threatened animals (Figure 1F). [One-way ANOVA indicated a significant effect 12 

on the frequency of escapes (F2,20 = 23, p < 0.0001).] 13 

 14 

2.2. Results of Experiment 2 15 

Threatened mice showed both unconditioned and conditioned fear-induced 16 

defensive responses, and there were no significant effects of nerve injury on the 17 

frequency or duration of risk assessment (Figure 2A and B), frequency or duration of 18 

defensive immobility (Figure 2C and D), time in protected areas (Figure 2E) or escape 19 

behaviour (Figure 2F). 20 

Risk assessment. Both sham and CCI mice exposed to the snake exhibited a 21 

higher frequency and duration of risk assessment (Bonferroni's post hoc test, p < 22 

0.0001) than animals not exposed to the predator. During reexposure to the 23 

experimental context, animals previously exposed to the snake displayed a decrease 24 

in the frequency and duration of risk assessment than they exhibited during exposure 25 

to the predator. However, it is important to highlight that animals previously exposed 26 

to the snake continued to exhibit a higher frequency of risk assessment (Bonferroni's 27 

post hoc test, p < 0.0001) than those never exposed to the predator (Figure 2A and 28 

B). There were significant effects of the following factors: presence of the snake (three-29 

way ANOVA, risk assessment frequency: F1,62 = 188.22, p < 0.0001; duration: F1,62 = 30 

98.48, p < 0.0001), experimental context (risk assessment frequency: F1,62 = 11.06, p 31 
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< 0.01; duration: F1,62 = 15,53, p < 0.001) and the interaction of the snake exposure 1 

and experimental context (i.e. only mice exposed to the snake showed high frequency 2 

and duration of risk assessment during exposure to the experimental context: risk 3 

assessment frequency: F1,62 = 39.45, p < 0.0001; duration: F1,62 = 42.98, p < 0.0001).  4 

Defensive immobility/freezing. Both Sham and CCI animals exposed to the 5 

snake exhibited a higher frequency and duration of defensive immobility than those 6 

not exposed to the predator (Bonferroni's post hoc test, p < 0.0001). During 7 

reexposure to the experimental context, animals previously exposed to the snake 8 

showed reduced frequency and duration of defensive immobility (Bonferroni's post hoc 9 

test, p < 0.001) than they exhibited during exposure to the predator (Figure 2C and D). 10 

There were significant effects of exposure to the snake (three-way ANOVA, defensive 11 

immobility frequency: F1,62 = 22.11, p < 0.0001; duration: F1,62 = 12.31, p < 0.001), 12 

exposure to the experimental context (defensive immobility frequency: F1,62 = 15.03, p 13 

< 0.001; duration: F1,62 = 10.09, p < 0.01) and the interaction of snake exposure and 14 

experimental context, i.e. only mice exposed to the snake showed high frequency and 15 

duration of defensive immobility during exposure to the experimental context: 16 

Defensive immobility frequency: F1,62 = 14.12, p < 0.001, duration: F1,62 = 9.45, p = 17 

0.01). 18 

Time in protected areas. During the reexposure to the experimental context, 19 

animals that were previously exposed to the snake exhibited a decrease in the time 20 

spent in the protected areas (Bonferroni's post hoc test, p < 0.001) when compared to 21 

that shown during exposure to the experimental context (Figure 2E). There were 22 

significant effects of exposure to the snake (three-way ANOVA, F1,62 = 33.02, p < 23 

0.0001) and an interaction of snake exposure and experimental context (i.e. only mice 24 

exposed to the snake showed much time in the protected areas during exposure to 25 

the experimental context: F1,62 = 19.75, p = 0.0001) on time spent in protected areas. 26 

Both sham and CCI animals exposed to the snake spent more time in the protected 27 

areas than those not exposed to the snake (Bonferroni's post hoc test, p < 0.001). 28 

Escape. Furthermore, during the reexposure to the experimental context with 29 

the snake exuvia, a similar panic attack-like response was elicited (Figure 2F). There 30 

was a significant effect of exposure to the snake (three-way ANOVA, F1,62 = 189.08, p 31 

< 0.0001) on the frequency of escape. Both sham and CCI animals exposed to the 32 
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snake exhibited a higher frequency of escape than those that were not threatened by 1 

the predator (Bonferroni's post hoc test, p < 0.0001). 2 

Grooming. Both Sham and CCI mice exposed to the snake exhibited a higher 3 

frequency of grooming than those not exposed to the predator (Bonferroni's post hoc 4 

test, p < 0.05). This high frequency of grooming was maintained during the reexposure 5 

to the experimental context. CCI but not sham mice showed higher grooming durations 6 

during exposure than their non-threatened controls (Bonferroni's post hoc test, p = 7 

0.01). This difference was not significant during reexposure to the experimental 8 

context (Figure 3A and B). There were significant effects of exposure to the snake 9 

(three-way ANOVA, frequency: F1,62 = 6.55, p < 0.05; duration: F1,62 = 22.77, p < 10 

0.0001), as well as an interaction of context with nerve injury (duration: F1,62 = 8.17, p 11 

< 0.05) and an interaction of exposure to the snake, experimental context, and nerve 12 

injury (i.e. only during the snake exposure, CCI threated mice showed much longer 13 

time of grooming when compared to the CCI non-threated group: F1,62 = 5.27, p < 14 

0.05).  15 

Rearing. Sham and CCI animals exposed to the snake exhibited a lower 16 

frequency and duration of rearing than non-threatened mice during exposure 17 

(Bonferroni's post hoc test, p ≤ 0.05) but not reexposure to the context (Figure 3C and 18 

D). There were significant effects of exposure to the snake (three-way ANOVA, 19 

frequency: F1,62 = 16.27, p < 0.001; duration: F1,62 = 3.92, p = 0.05) and of the 20 

experimental context (rearing frequency: F1,62 = 10.57, p ≤ 0.01; duration: F1,62 = 5.18, 21 

p < 0.05). 22 

Crossings in the polygonal arena. Snake-exposed Sham and CCI animals 23 

made fewer crossings than non-threatened rodents during exposure (Bonferroni's post 24 

hoc test, p < 0.0001), but not during reexposure to context only. During reexposure, 25 

mice previously exposed to the predator made more crossings (Bonferroni's post hoc 26 

test, p < 0.01) than they had done while exposed to the snake (Figure 3E). The effect 27 

of snake exposure on crossings was significant (three-way ANOVA, F1,62 = 30.39, p < 28 

0.0001), as was the effect of experimental context (F1,62 = 7.58, p ≤ 0.01) and the 29 

interaction of exposure to snake and experimental context (i.e. only mice exposed to 30 

snakes showed fewer crossings during exposure to the experimental context: F1,62 = 31 

6.38, p < 0.05). 32 
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Ten days after surgery, CCI mice showed a higher nociceptive response, i.e., 1 

allodynia, when compared to themselves prior to surgery and to sham animals after 2 

surgery [two-way ANOVA; effects of the nerve injury procedure (baseline vs. 10 days 3 

after surgery; F1,66 = 33.78, p < 0.0001, Bonferroni's post hoc test, p < 0.001), sham 4 

vs. CCI interaction (F1,66 = 6.04, p < 0.05, Figure 4)]. Importantly, at that point, the 5 

animals had not yet been exposed to the snake; therefore, they were only divided into 6 

two groups according to CCI surgery: sham and CCI. 7 

Considering nociceptive behaviour (evaluated by von Frey test), the effects of 8 

threat and aversive contextual exposure, the sham group exposed to the snake 9 

showed a decreased withdrawal response to mechanical stimulation (i.e., 10 

antinociception) recorded immediately after the exposure to the predator and from 15 11 

to 45 min later. On reexposure to the aversive contextual environment with snake 12 

exuvia, there were significant effects of nerve injury (three-way repeated measures 13 

F1,31 = 46.14, p < 0.0001), snake exposure (F1,31 = 38.88, p < 0.0001) and an interaction 14 

between injury and snake exposure (F1,31 = 41.95, p < 0.0001). This last statistical 15 

effect means that, interestingly, snake-exposed sham animals displayed allodynia 6 16 

days after the last exposure, (i.e., before reexposure), and this hypersensitivity to 17 

mechanical stimuli persisted after reexposure to the aversive contextual environment 18 

(Bonferroni's post hoc test, p < 0.0001). Mice with neuropathic pain displayed a long-19 

lasting allodynia in both situations, i.e., before and after exposure to the predator 20 

(Bonferroni's post hoc test, p < 0.0001) and before and after (Bonferroni's post hoc 21 

test, p < 0.0001) reexposure to the experimental context (Figure 5). During exposure, 22 

there were significant effects of nerve injury (three-way repeated measures MANOVA, 23 

F1,31 = 72.69, p < 0.0001), snake exposure (F1,31 = 14.89, p ≤ 0.001) and time (F5,155 = 24 

9.70, p < 0.0001). There were significant interactions between the following factors: 25 

nerve injury and snake exposure (F1,31 = 13.89, p ≤ 0.001), nerve injury and time (F5,155 26 

= 10.37, p < 0.0001), snake and time (F5,155 = 10.41, p < 0.0001), and among all three 27 

interventions (interaction among snake, nerve injury and time, i.e. Snake-exposed CCI 28 

mice showed allodynia when compared to Snake-exposed Sham mice immediately 29 

after the exposure to the predator and from 15 to 45 min later: F5,155 = 11.08, p < 30 

0.0001). 31 

EPM. Snake-exposed mice spent significantly less time on the open arms than 32 

mice not exposed to the snake (two-way ANOVA, F1,31 = 4.84, p < 0.05; Bonferroni's 33 
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post hoc test, p < 0.05). No other measures (frequencies of entries into the open and 1 

closed arms) showed significant changes to either snake exposure or CCI or the 2 

interaction between them (Figure 6). 3 

 4 

3. DISCUSSION 5 

In the present studies, repeated exposure of mice to a constrictor snake or its 6 

exuvia induced defensive responses related to fear, e.g., defensive immobility, 7 

escape, and increased time spent in protected areas, and to anxiety, such as risk 8 

assessment (Blanchard et al., 1993; Coimbra et al., 2017a; Graeff, 1994; Gray and 9 

McNaughton, 2000; McNaughton, 2011). Such results corroborate our previous data, 10 

in which Swiss or C57BL/6 mice, gerbils and hamsters were confronted by a 11 

constrictor or venomous snake (Almada and Coimbra, 2015; Almada et al., 2015; 12 

Coimbra et al., 2017a,b; Guimarães-Costa et al., 2007; Lobão-Soares et al., 2008; 13 

Twardowschy et al., 2013; Uribe-Mariño et al., 2012) and displayed a range of 14 

defensive responses. In addition, study 1 indicated that the exuvia, alone and without 15 

previous association with the snake, elicited some defence behaviour, albeit at a lower 16 

level than that which was observed (study 2) when the exuvia had previously been 17 

encountered along with the snake. The odour of a predator per se is well established 18 

to be able to cause aversion (Apfelbach et al., 2005; Dielenberg and McGregor, 2001; 19 

Takahashi et al., 2005). Comparisons between the effects of, for example, cat odour 20 

(Mackenzie et al., 2010; Souza and Carobrez, 2016) and snake odour (Dell’Omo and 21 

Allevia, 1994; Carere et al., 1999), in addition to the present effects seen with exuvia, 22 

suggest that the latter include a rather modest unconditioned response (study 1), that 23 

appears to be enhanced when the exuvia have been encountered together with the 24 

snake (study 2). These data, and the enhanced defence behaviours seen in response 25 

to the polygonal arena without the snake after the threatening exposure (performed in 26 

that same polygonal arena), demonstrate that the snake can serve both as 27 

unconditioned stimuli, for defensive conditioning to the exposure context, and to 28 

enhance defensiveness to a cue stimulus (the exuvia) that normally elicits a low but 29 

significant level of defensiveness. 30 

These conditioning effects were somewhat behaviourally specific, largely 31 

involving increased numbers of risk assessment behaviours and escape behaviours 32 
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rather than defensive immobility (freezing). The latter is perhaps unsurprising given 1 

that (1) several days of pre-exposure/habituation to the context had been given before 2 

threat exposure; (2) mice may not exhibit as much freezing behaviour as laboratory 3 

rats (Blanchard et al., 2001); (3) we used a protocol of conditioned fear different from 4 

those commonly used in the literature, in which the unconditioned fear stimuli, usually 5 

foot shocks, are paired with neutral visual and olfactory clues and/or with the 6 

experimental context (aversive environment) where they were presented (Curzon et 7 

al., 2009); (4) the large size of the arena (140 x 62 x 50 cm), coupled with the presence 8 

of routes of escape and avoidance, such as the stairs/elevated platforms and burrow, 9 

may have permitted the animal the selection of other more efficient defensive 10 

behaviours, such as risk assessment and flight behaviour (Blanchard et al., 1989; 11 

McNaughton and Corr, 2004). 12 

Regarding risk assessment, Blanchard et al. (2011) noted that the information 13 

obtained through this behaviour is extremely important in determining the most 14 

appropriate defensive behaviour, such as freezing, if the animal cannot flight, or 15 

escape, when there are safe places for the animal to hide. Importantly, risk 16 

assessment behaviour seems to play a fundamental role in both mild and intense 17 

stress situations since it facilitates the acquisition of information about the threat 18 

stimulus and situation, leading to the intensification of defensive reactions if the 19 

aversive stimulus is identified or to the reduction of those reactions if the threat is not 20 

found (Blanchard et al., 1997). 21 

Both during the exposure to the polygonal arena or in the reexposure to the 22 

experimental context, mice exposed to the snake presented a higher frequency of 23 

grooming than those not threatened by the predator. Although grooming is one of the 24 

most frequently observed motor activities in mice (Fentress, 1988; Reeves et al., 25 

2016), it can be even more frequently exhibited when these animals are exposed to 26 

some types of stressful situations (Kalueff et al., 2016), leading some authors to 27 

consider it a displacement behaviour (Cohen and Price, 1979). 28 

Although the CCI procedure produced consistent effects on the von Frey test, 29 

indicating hypersensitivity to mechanical stimuli, it had very little impact on any of the 30 

measures of responsivity to the snake, nor did it alter behaviour on the EPM test. While 31 

this lack of change in defensive responses or anxiety was unexpected in view of a 32 

range of previous findings suggesting that the sciatic nerve ligature procedure may 33 
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decrease open-arm proportions in the EPM test and other anxiety measures (e.g. 1 

Narita et al., 2006; Zhang et al., 2014), the ligature procedure used here was less 2 

damaging than is often employed (e.g. Zhang et al., 2014), potentially suggesting that 3 

a threshold for the effect of pain on anxiety and defence behaviour may be involved. 4 

Moreover, it is important to highlight that some other studies corroborate our results 5 

showing that neuropathic pain conditions do not evoke anxiety-like behaviours in mice, 6 

evaluated by EPM exposure and other different behavioural tests, 3 and 84 days 7 

following spared nerve injury (SNI) surgery (Pitzer et al., 2019) and 7, 14 and 28 days 8 

after partial sciatic nerve ligature (PNL) (Hasnie et al., 2007). Also, some studies 9 

suggest that much longer duration of pain, such as that verified 16 weeks after SNI in 10 

rats, is required for comorbid anxiety to occur (Seminowicz et al., 2009), if even ever 11 

occurring (Hubbard et al., 2015). It is important to consider that whether or not pain 12 

will influence anxiety-like behaviours may also depend on environmental- or study-13 

related factors, like surgical technique, behavioural assays, and the choice of rodent 14 

sub-strain may also be involved.  15 

Furthermore, although previous reports demonstrated that stress and PTSD 16 

can increase the probability of chronic pain development (Asmundson et al., 2000; 17 

Beck and Clapp, 2011; Dunne-Proctor et al., 2016; Sharp and Harvey, 2001; Sharp, 18 

2004) or increase sensitivity to acute pain stimuli (Greenwood et al., 2016; He et al., 19 

2013; Jennings et al., 2014; Nyland et al., 2015), the present results showed that CCI 20 

mice responded at lower thresholds to von Frey filaments regardless of their exposure 21 

to the snake. However, as the CCI mice responded to the lowest weight von Frey test 22 

filaments (i.e. 0.008g force), a floor effect may have obscured the effects of chronic 23 

stress. 24 

 In contrast, the snake-associated stressors produced striking effects on 25 

withdrawal reflex to mechanical stimuli applied by von Frey’s test performed in the 26 

sham groups. Consistent with previous studies, the snake (Coimbra et al., 2006, 27 

2017a), and later the snake plus its exuvia, induced antinociception responses in sham 28 

animals. In aversive situations, unconditioned fear-induced antinociception (Coimbra 29 

et al., 2006, 2017a; Cornélio et al., 2011; de Freitas et al., 2013, 2014; Heinricher et 30 

al. 2009; Mendes-Gomes and Nunes-de-Souza, 2005, 2009; Mendes-Gomes et al., 31 

2011a,b) has an important adaptive effect, as it permits the exhibition of defensive 32 

reactions, such as freezing and flight/escape behaviour, even when an injury has 33 

occurred, increasing the animal’s chances of survival (Bolles and Fanselow, 1980; 34 
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Butler and Finn 2009). Thus, after threat exposure, the sham (no CCI) group showed 1 

a strong antinociceptive response. However, approximately one week after the initial 2 

direct exposure to the snake and its exuvia and both before and after reexposure to 3 

the aversive experimental context, threatened sham groups responded to the lowest 4 

level of mechanical stimuli, the thinnest von Frey filaments. This observation 5 

represents an unusual set of differences from control levels unfolding over time; an 6 

initial increase in antinociception after exposure to threat stimuli followed later by a 7 

decrease in this initial antinociception, with sham animals showing allodynia that 8 

persisted after an additional reexposure to threat. However, the exposure of rodents 9 

to a single prolonged stressful (SPS) stimulus (Jennings et al., 2014; Zang et al., 10 

2012), another experimental model of PTSD, has already been demonstrated to 11 

induce thermal hyperalgesia and mechanical allodynia, as measured by paw 12 

withdrawal latencies to a heat stimulus and the von Frey test, respectively. These 13 

alterations in nociceptive responses, displayed by rats never previously submitted to 14 

a nociceptive test, were verified as early as 7 days after the initiation of a SPS and 15 

lasted the length of the study, 28 days (Zang et al., 2012). Moreover, although it may 16 

be unknown whether patients with PTSD develop hypersensitivity to non-painful 17 

stimuli, it is known that hyperarousal is one of the key findings in PTSD, and it may 18 

represent a heightened response to an incoming somatosensory stimulus (Moeller-19 

Bertram et al., 2014). 20 

 Unlike the fear-induced antinociception observed in Sham mice, CCI mice did 21 

not exhibit antinociception when exposed the snake, but continued to exhibit allodynia. 22 

Such data corroborate the hypothesis that in some states of chronic pain, inhibition of 23 

descending inhibitory systems and/or activation of the facilitatory pain system may 24 

occur (Heinricher et al., 2009, Jennings et al., 2014). 25 

A number of animal models for PTSD have been proposed (Bertaina-Anglade 26 

et al., 2017; Campos et al., 2013; Goswami et al., 2013; Matar et al., 2006; Perrine et 27 

al., 2016; Sillivan et al., 2017, Schoner et al., 2017; Zang et al., 2012). A common 28 

feature of these models, reflecting attempts to parallel the chronic nature of PTSD, is 29 

that the post-traumatic behavioural response tends to be relatively durable, persisting 30 

past the initial or effective exposure event. However, the persistence seen in these 31 

models typically involves the consistent maintenance of an enhanced responsivity to 32 

stressful events, not an inversion of it, over time. In this context, increased responsivity 33 

to von Frey filaments, for threatened compared to non-threat-exposed mice, may be 34 
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seen as a new and different but also deviant response 6 days following the last 1 

exposure to the predator and its exuvia. Such delayed symptom onset is common in 2 

PTSD and appears to be relatively specific to that diagnosis (e.g. Tomb, 1994). 3 

 There are other findings in this study that suggest a link to PTSD. PTSD 4 

symptoms often include physical reactivity after exposure to traumatic reminders and 5 

heightened startle reactions (Brunello et al., 2001; Nemeroff et al., 2006, van der Kolk, 6 

2001), both of which characterise the predator-exposed animals in this study following 7 

the initial, although not the subsequent, reexposure. In addition, the likelihood of PTSD 8 

appears to vary with the number/types of traumatic experiences to which the individual 9 

is exposed (e.g. Bender et al., 2015; Boasso et al., 2015), with (different types of) 10 

symptoms emerging only after additional exposures to the snake and its exuvia. 11 

Additionally, in PTSD, the emotional response pattern appears to show some degree 12 

of generalisation to different stimuli strongly associated with the traumatic experience 13 

or even with mild stressor stimuli not primarily associated with the trauma, and 14 

exacerbated responsiveness displayed by PTSD patients persists to the traumatic 15 

event itself (Monti and Smith, 1976; Morey et al., 2015; Osborne et al., 1975). 16 

Accordingly, snake exposure reduced time spent in the open-arm of the EPM test, an 17 

environment not associated to the previous aversive place, the enriched polygonal 18 

arena for snakes, where psychologically traumatic emotions were experienced by prey 19 

in the presence of the wild snake. Notably, the present findings of reduced duration of 20 

time spent in open-arms of the  EPM test and increased risk assessment to the threat-21 

associated situation as well as to the threat itself both suggest enhanced anxiety, as 22 

is frequently associated with PTSD (Brunello et al., 2001; Koenen et al., 2003; 23 

Lancaster et al., 2016; Puetz et al., 2015; Sipos et al., 2014). 24 

In humans, the great majority of PTSD symptoms are currently accepted as 25 

mainly subjective (American Psychiatric Association, 2013), and there are no currently 26 

accepted approaches for the measurement of subjective events in animal models to 27 

study PTSD. Nonetheless, it is important to consider the findings outlined above, in 28 

addition to the primary requirement that post-psychological trauma-induced 29 

behavioural changes reflect an aversive/ traumatic event effect on the limbic system 30 

(Paschoalin-Maurin et al., 2018). Thereby, the present findings may reinforce the 31 

traumatic psychological clues, inherent to the present exposure paradigm in which the 32 

mice are exposed to the snake and exuvia, with correspondences between repeated 33 

exposure to different threatening situations and PTSD symptoms. 34 
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In conclusion, this set of psychological parallels between the specifically 1 

behavioural symptoms of PTSD displayed by humans and the aversive stimulus-2 

related panic attack-like behavioural responses displayed by threatened prey 3 

suggests that this snake/exuvia/reexposure procedure may constitute a useful animal 4 

model to study PTSD. In this context, it will be of interest to determine the physiological 5 

and endocrine changes that this paradigm may involve over time, as well as the 6 

potential links between these behaviour changes and other disorders that are 7 

frequently comorbid with PTSD, such as depression and anxiety. 8 

 9 

4. EXPERIMENTAL PROCEDURES 10 

4.1. Animals 11 

Male C57BL/6 mice (N = 23 and 35 for experiments 1 and 2, respectively) from 12 

the animal facility of the Ribeirão Preto Medical School of the University of São Paulo 13 

(FMRP-USP), weighing 28–30 g, were used. The mice were housed five per 14 

homecage (30 x 20 x 15 cm) with food and water available ad libitum in a temperature-15 

controlled room (23 ± 1 ºC) under a 12-h/12-h light/dark cycle (lights on at 7 a.m.). The 16 

predators were wild constrictor rainbow Boidae snakes (Epicrates cenchria crassus; 17 

Reptilia; Boidae), weighing 800–2000 g (N = 2). The snakes were individuals of a 18 

species endemic of the Brazilian Southeast and were maintained in captivity in snake 19 

pits in the animal house of FMRP-USP (licensed by the Brazilian government; Instituto 20 

Brasileiro do Meio Ambiente e de Recursos Naturais Renováveis (IBAMA) Committee 21 

process 1/35/1998/000846-1). Two days before the experiments, the snakes were 22 

moved to a walled sun-lit field with appropriate shelter, grass, and water sources in 23 

the Laboratory of Neuroanatomy and Neuropsychobiology of the Ribeirão Preto 24 

Medical School of the University of São Paulo (LNN-FMRP-USP)/ Behavioural 25 

Neurosciences Institute (INeC) ophidiarium, licensed by the Brazilian government 26 

(IBAMA 3543.6986/2012-SP and 3543.6984/2012-SP processes) and by the São 27 

Paulo State government (Secretaria do Meio Ambiente (SMA)/ Departamento de 28 

Fauna (DeFau) 15.335/2012 process; Mechanisms of Defensive Behaviour and 29 

Unconditioned fear-induced antinociception in Snake-threatened Animals (MEDUSA) 30 

Project, Sistema de Autorização e Informação em Biodiversidade (SISBIO) 31 

authorisation for activities with scientific purposes 41435-1 process; SIGAM 32 

authorisation of installation process 39.043/2017; Sistema Integrado de Gestão 33 
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Ambiental (SIGAM) authorisation for use and handling of wild snakes process 1 

39.044/2017). The snake enclosure in the LNN-FMRP-USP is illuminated by natural 2 

sunlight and fluorescent ultraviolet irradiation (ReptiSun; 20 W; 5UVB; Zoo Med 3 

Laboratories, San Luis Obispo, CA, USA) on rainy days and has artificial waterfalls 4 

and lagoons, natural rocks, and both tropical and artificial plants. The enclosure was 5 

kept under a 12-h/12-h light/dark cycle (lights on from 7:00 AM to 7:00 PM) at a 6 

constant room temperature of 25±1 ºC and 40–70% humidity. The snakes were fed at 7 

two specific times: once every 24 h with mice previously killed in CO2 and once 8 

immediately before the start of each experiment with a live mouse of the same species 9 

and strain used in the study, aiming to decrease the risk of actual attacks. The feeding 10 

of the snake reduced the likelihood of attack, but still intimidating for the mice. The 11 

experiments were performed in accordance with the recommendations of the 12 

Commission of Ethics in Animal Experimentation of FMRP-USP (process 190/2015), 13 

which abides by the ethical principles in animal research adopted by the National 14 

Council for Animal Experimentation Control (CONCEA) and was approved by FMRP-15 

USP Committee for Ethics in Animal Experimentation (CEUA) on 5/2/2016. 16 

 17 

4.2. Experimental Protocol: Experiment 1 18 

Experiment 1 was aimed at determining whether the snake exuvia, with its 19 

natural odour, was able to induce unconditioned fear-like behaviours. Naïve mice were 20 

habituated for two days in a polygonal (rectangular parallelepiped-shaped) transparent 21 

three-dimensional acrylic arena (140 cm in length, 62 cm in width and 50 cm in height) 22 

composed of seven faces, all of which are parallelograms (Coimbra et al., 2017a,b), 23 

with free access to food and water (Figure 7A). The floor of the arena was made of a 24 

transparent acrylic sheet placed on a stainless-steel platform. The floor was divided 25 

by red lines into 20 equal rectangles (4.2-mm width; Pritt mark-it). To minimise 26 

vibratory stimuli, the entire apparatus was placed on a granite surface (150 x 85 x 2 27 

cm) that was elevated 83 cm above the floor of the laboratory. A burrow (shelter box: 28 

10 x 7 x 5 cm) with black acrylic walls was placed in one corner of the arena. The 29 

burrow had one entrance with a 2-cm diameter, allowing the rodents to enter and exit 30 

the burrow. The lid of the burrow was made of translucent acrylic to facilitate the 31 

recording of mouse behaviour inside the burrow. Three translucent acrylic stairs, with 32 

a small platform (7 x 4 x 10.5 cm) at the top, were provided in the arena, one in the 33 
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corner beside the burrow, another in the opposite side, and the third one, in the arena 1 

sidewall (Almada and Coimbra, 2015; Almada et al., 2015). 2 

On the third day, the bedding, food and water were removed from the polygonal 3 

arena, and mice were individually exposed for 10 min to the same arena to which they 4 

had been habituated. However, at this time, the polygonal arena contained a snake 5 

(N = 7 mice/group) or only its exuvia (N = 9 mice/group), i.e., layer of skin shed during 6 

ecdysis, which contains the snake natural odour, without any barrier preventing direct 7 

contact with the predator. A control group (N = 7 mice/group) was similarly habituated 8 

and exposed to the polygonal arena, but not confronted with the snake or its moulted 9 

skin. The exuvia was always put back in the snake cage and kept with the snake for 10 

48 h before the next experiment. It is also important to note that, although different 11 

sample sizes have been used in each experimental group, there were no drop outs or 12 

accidental deaths during the study, and no mouse was harmed by the snakes during 13 

the current investigation. 14 

During exposure to the arena (with or without the predator or its exuvia), the 15 

frequency and/or duration of the following behaviours were recorded: (a) risk 16 

assessment, including (a1) the stretch attend posture, in which the body is stretched 17 

forward but the animal’s hind paws remain in position, followed by retraction to the 18 

original position, (a2) flat back approach, where the mouse slowly moves forward with 19 

the body stretched, and (a3) defensive attention or alertness, which is an interruption 20 

of the ongoing behaviour for less than 6 s to occasionally scan the environment or sniff 21 

the air; (b) defensive immobility or freezing, defined as the absence of movements, 22 

except those related to breathing, for at least 6 s, with the animals potentially 23 

presenting neurovegetative reactions, such as exophthalmia, defecation and/or 24 

micturition; (c) time in protected areas, which were below or on top of the stairs and 25 

inside or on top of the burrow; and (d) escape, which included running or jumping 26 

towards the stairs and/or burrow or other places of the arena without protected areas 27 

(Almada et al., 2015; Blanchard et al., 1993; Coimbra et al., 2017a; Dalvi and Rodgers, 28 

1996; Kalueff and Tuohimaa, 2005; Nunes-de-Souza et al., 2002, Sorregotti et al., 29 

2013). 30 

 31 

4.3. Experimental Protocol: Experiment 2 32 

4.3.1. Model of neuropathic pain 33 
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The animals were submitted to a procedure in which the sciatic nerve was 1 

lesioned by its chronic constriction (CCI) (N = 18), as described by Bennett and Xie 2 

(1988) and modified by Sommer et al. (1995). However, that procedure causes 3 

Wallerian degeneration in the lesioned nerve with several sensorial impairments and 4 

autotomy. For this reason, instead of three or four ligations, the animals received only 5 

one constriction of the peripheral nerve (Dias et al., 2013; Medeiros et al., 2020). The 6 

tension generated in this ligation was mild, only enough to cause a mild ischaemia, 7 

without interrupting blood flow completely.  8 

Before surgery, the animals were anaesthetised with an intraperitoneal injection 9 

of 10% ketamine (100 mg/kg) in 2% xylazine (10 mg/kg). In anaesthetised mice, a 10 

longitudinal incision in the proximal third of the thigh at the dorsolateral region and 11 

trochanter/femur level was made. The longitudinal muscle layer was then gently 12 

divided by blunt dissection with scissors and other microsurgery instruments. A single 13 

ligature with chrome catgut 4-0 thread was performed around the right sciatic nerve 14 

proximal to its trifurcation until the diameter of the nerve was slightly constricted (Dias 15 

et al., 2013). The incision in the skin was sutured with braided silk surgical thread 4-0. 16 

The animals were then treated with an intramuscular injection of penicillin G-benzatine 17 

(120.000UI/0.1 mL) and maintained in post-operative recovery in their home cages. 18 

The sham group (N = 17) underwent the same surgical procedures without CCI. Sham 19 

and CCI mice were never housed together in the same home cages, since studies 20 

demonstrate that hyperalgesia can be observed in “bystander” mice housed and 21 

tested in the same room as mice subjected with inflammatory or neuropathic pain 22 

(Baptista-de-Souza et al., 2015; Langford et al., 2006; Smith et al., 2016). 23 

 24 

4.3.2. Test of mechanical allodynia 25 

To evaluate the nociceptive threshold, von Frey filaments were used (Cunha et 26 

al., 2004; Möller et al., 1998; Prado et al., 2002; Vivancos et al., 2004) in all 27 

experimental groups The mice were individually placed in acrylic cages on a wire grid 28 

floor and a series of von Frey filaments were used to determine the threshold of 29 

response to the mechanical stimulus. Each filament was applied with a mild force for 30 

approximately 3-4 s. If the animal did not shake, lick or withdraw the paw, another 31 

filament with greater diameter and force was used until a response was observed. 32 

Once the animal responded to a determined filament, two other confirmatory 33 

recordings were made with the same filament, with an interval of approximately 10 s 34 
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between each measure. All mice responded when stimulated with a maximum of 9 1 

different filament forces that ranged from 0.008 to 1.4 in grams force. 2 

The von Frey test was performed before the Sham surgery or surgery for 3 

constriction of the sciatic nerve (CCI), and 10 days after surgery. Also, von Frey test 4 

was applied in the 22nd day after surgery, at the following times: 1 h before and 0, 15, 5 

30, 45 and 60 min after exposure to the polygonal arena (with or without the presence 6 

of the predator and its exuvia). In addition, this sequence was repeated before and 7 

after the reexposure to the polygonal arena (with or without the predator’s exuvia). 8 

 9 

4.3.3. Exposure of mice to an aversive environment 10 

Nineteen days after CCI, the mice were habituated in groups of approximately 11 

12 animals, from three different homecages, for two days in the same polygonal arena 12 

enriched with two elevated platforms for escape and a burrow, used in Experiment 1 13 

(see 4.2 and Figure 7A). However, it is important to highlight that we never habituated 14 

together Sham and CCI mice, for the same reasons mentioned in the last sentence of 15 

the item 4.3.1. 16 

Twenty-one days after being submitted to surgery for sciatic nerve lesion, Sham 17 

(n = 8) or CCI (n = 9) mice were individually placed for 4 h in fenestrated transparent 18 

acrylic boxes positioned in the interior of the polygonal arena, and a constrictor snake 19 

(Epicrates cenchria crassus; Reptila; Boidae) was placed on the upper surface of 20 

these boxes (Figure 7B). The snake could move freely on the fenestrated ceiling of 21 

boxes containing each mouse in isolation inside entirely fenestrated chambers. These 22 

chambers were placed side-by-side covering all the surface of the floor of the 23 

polygonal arena. After this procedure, the animals were put back in their homecages. 24 

After 24 h, responses to mechanical stimuli were evaluated (von Frey test) in mice for 25 

a baseline withdrawal response recording, and 1 h later, mice were individually 26 

exposed for 10 min to the enriched polygonal arena with escape elevated platforms 27 

and a burrow, in the presence of the snake and its exuvia, without any barrier to 28 

prevent direct contact between prey and the predator (Figure 7C and 7D). Two control 29 

groups, one with Sham (n = 9) and one with CCI (n = 9) animals, were similarly 30 

exposed to the polygonal arena but not confronted by the snake and its moulted skin. 31 

During arena exposure (with or without the predator and its exuvia), the 32 

frequency and duration of the following behaviours were recorded: risk assessment, 33 

defensive immobility or freezing, time in protected areas and escape (for definition of 34 
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these behaviours, see 4.2). Moreover, the following other behaviours were also 1 

recorded: grooming; rearing, defined as vertical movement against the walls; and 2 

crossings, defined as the frequency of crossings over each rectangle drawn on the 3 

floor of the arena (Almada et al., 2015; Blanchard et al., 1993; Dalvi and Rodgers, 4 

1996; Kalueff and Tuohimaa, 2005; Nunes-de-Souza et al., 2002, Sorregotti et al., 5 

2013). 6 

Immediately after exposure to the polygonal arena, the mice were submitted to 7 

the von Frey test 5 times, with an intertest interval of 15 min. After 6 days, mice that 8 

were confronted by the snake and its exuvia were individually reexposed for 10 min to 9 

the polygonal arena containing only the exuvia (Figure 7E and 7F). Regarding animals 10 

that were not previously confronted by the predator and its exuvia, neither the predator 11 

nor its exuvia were present during the reexposure procedure. During reexposure to 12 

the arena, the frequency and/or duration of the same behaviours recorded during the 13 

initial exposure were recorded. Immediately after reexposure, the mice were again 14 

submitted to the von Frey test 5 times with the same 15-min intertrial intervals. 15 

 16 

4.3.4. Elevated plus-maze (EPM) test 17 

Considering that patients with PTSD tend to be more anxious (Lee et al., 2016), 18 

the present study determined whether the same phenomenon could be observed in 19 

mice after snake confrontation. Twenty-four hours after the reexposure to the aversive 20 

context, the rodents were submitted to the EPM test for 5 min. This animal model of 21 

anxiety was originally described by Handley and Mithani (1984) and Pellow et al. 22 

(1985) using rats as experimental subjects and was subsequently validated for mice 23 

(Lister, 1987; Stephens et al., 1986). This test is based on the natural fear displayed 24 

by rodents of open places and is frequently used to evaluate anxiety-related 25 

behaviours as well as the anxiolytic or anxiogenic properties of drugs. The apparatus 26 

is grey and made with acrylic. The EPM consists of two open (30.7 x 6 x 0.5 cm) and 27 

two closed arms (30.7 x 6 x 15.5 cm) connected to a common central platform (6 x 6 28 

cm) and raised to a height of 38.5 cm above floor level. Anxiety was assessed by 29 

analysing the percentages of open arm entries [(open/total) × 100] and time spent in 30 

the open arms [(open arm time/300) × 100]. The frequency of closed arm entries was 31 

used to measure the locomotor activity. It is important to highlight that the same 32 
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experimenter (that performed all the Experiment 1 and 2) exposed the animals to the 1 

EPM. However, after placing the mouse in the EPM, the researcher left the room, and 2 

the mouse behaviour was video-recorded for a later analysis. 3 

 To summarise the experimental protocol, a timeline of all the experimental 4 

procedures that the mice experienced in Experiment 2 is presented in Table 1. 5 

 6 

4.4. Statistical Analysis 7 

In experiment 1, the data were analysed by one-way analysis of variance 8 

(ANOVA). In experiment 2, the behavioural data were analysed by either a repeated 9 

measure two-way analysis of variance (MANOVA) or three-way MANOVA to evaluate 10 

the effects of the nerve injury (Sham vs. CCI), presence of the snake and its exuvia, 11 

the experimental context (exposure vs. reexposure) and the interaction among these 12 

factors. For the statistical analysis of mechanical allodynia, a three-way repeated 13 

measures MANOVA was used. In all cases, significant effects of ANOVA and 14 

MANOVA were followed by Bonferroni's post hoc test. Values of P ≤ 0.05 were 15 

considered statistically significant. 16 

 17 

Table 1: Timeline of the experimental procedures. Yes indicates that this group of 18 

mice was submitted to the conditions described in the header, whereas No indicates 19 

the opposite. VF1 and VF2-VF6 indicate the first and second to sixth von Frey test 20 

measures. 21 

Day 
Procedur

e 
 

Groups (n) 

 

1st 
VF1/ 

Sham 
or CCI 
surger

y 

10th 
VF
1 

19th and 
20th 

habituatio
n to the 
arena 

21st 
allocatio
n to the 
acrylic 
boxes 
with a 

snake on 
the upper 
surface 
for 4h 

22nd 
VF1/ 

exposur
e to the 
arena 

with the 
snake 
and its 
exuvia 
for 10 
min/ 

VF2-VF6 

28th 
VF1/ 

reexposur
e to the 

arena with 
the exuvia 
for 10 min/ 
VF2-VF6 

29th 
EP
M 
for 
5 

min 

Sham Non-
threated (9) 

 VF and 
Sham 

surgery 
Yes Yes 

Yes, 
but 

without 
snake 

Yes, but 
without 
snake 

Yes, but 
without 
exuvia 

Yes 
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 9 

Figure Captions 10 

Figure 1: Frequency and duration of defensive-like behaviours in a 10-minute period 11 

exhibited by naïve C57BL/6 mice (n = 7-9/group) exposed to a polygonal arena without 12 

(non-threatened) or with a snake or its exuvia. Data are presented as the mean ± 13 

S.E.M., and comparisons between groups were performed using Bonferroni's post hoc 14 

test. aP < 0.05, mice exposed to the snake or to its exuvia vs. non-threatened mice; 15 
bP < 0.05, mice exposed to the snake vs. those exposed to the exuvia. 16 

Figure 2: Frequency and duration of defensive-like behaviours in a 10-minute period 17 

exhibited by C57BL/6 mice (n = 8-9/group), with (CCI) or without (sham) sciatic nerve 18 

constriction, exposed to a polygonal arena without (non-threatened) or with a snake 19 

and its exuvia (threatened) and, 6 days later, reexposed to the aversive experimental 20 

context, i.e., the arena without (non-threatened) or with the exuvia (threatened). Data 21 

are presented as the mean ± S.E.M., and comparisons between groups were 22 

performed using Bonferroni's post hoc test. aP < 0.05, sham threatened group vs. 23 

sham non-threatened group during exposure; bP < 0.05, CCI threatened group vs. CCI 24 

non-threatened group during exposure; cP < 0.05, sham threatened group vs. sham 25 

non-threatened group during reexposure. dP < 0.05, CCI threatened group vs. CCI 26 

non-threatened group during reexposure. eP < 0.001, within-groups comparison, 27 

exposure vs. reexposure. 28 

Figure 3: Frequency and duration of non-defensive-like behaviours in a 10-minute 29 

period exhibited by C57BL/6 mice (n = 8-9/group), with (CCI) or without (sham) sciatic 30 

nerve constriction, exposed to a rectangular arena without (non-threatened) or with a 31 

snake and its exuvia (threatened) and, 6 days later, reexposed to the aversive 32 



33 
 

experimental context, i.e., arena without (non-threatened) or with the exuvia 1 

(threatened). Data are presented as the mean ± S.E.M., and comparisons between 2 

groups were performed using Bonferroni's post hoc test. aP < 0.05, sham threatened 3 

group vs. sham non-threatened group during exposure; bP < 0.05, CCI threatened 4 

group vs. CCI non-threatened group during exposure; cP < 0.05, sham threatened 5 

group vs. sham non-threatened group during reexposure; dP < 0.05, CCI threatened 6 

group vs. CCI non-threatened group during reexposure. eP ≤ 0.05, within-groups 7 

comparison, exposure vs. reexposure. 8 

Figure 4: Withdrawal thresholds to the von Frey filaments in C57BL/6 mice (n = 8-9 

9/group) before and 10 days after being submitted (CCI) or not (sham) to sciatic nerve 10 

constriction. Importantly, an increase in responsivity is shown by a decrease in the 11 

pressure needed to elicit a withdrawal response. Data are presented as the mean ± 12 

S.E.M., and comparisons between groups were performed using Bonferroni's post hoc 13 

test. aP < 0.0001, compared to the baseline measure. bP < 0.05, compared to the sham 14 

group. 15 

Figure 5: Withdrawal thresholds to the von Frey filaments, measured at a number of 16 

time intervals, in C57BL/6 mice (n = 8-9/group) submitted or not to sciatic nerve 17 

constriction (CCI), exposed to the polygonal arena for snakes (without or with a snake 18 

and its exuvia) (A), and 6 days later, reexposed to the experimental context i.e., arena 19 

without (non-threatened) or with the exuvia (threatened) (B). Importantly, an increase 20 

in responsivity is shown by a decrease in the pressure needed to elicit a withdrawal 21 

response. Data are presented as the mean ± S.E.M., and comparisons between 22 

groups were performed using Bonferroni's post hoc test. aP ≤ 0.001 compared to the 23 

baseline measure, obtained before the confrontation to the predator; bP ≤ 0.01, sham 24 

threatened group vs. sham non-threatened group; cP < 0.05, CCI threatened group vs. 25 

sham threatened group; dP < 0.0001, CCI non-threatened group vs. sham non-26 

threatened group. 27 

Figure 6: Percentages of open-arm entries (A) and time (B) and frequency of closed-28 

arms entries (C) of sham and sciatic nerve constriction (CCI) mice (n = 8-9/ group) 29 

exposed to the elevated plus maze (EPM) six days after exposure to a polygonal arena 30 

for snakes (without or with a snake and its exuvia) and one day after reexposure to 31 

the experimental context (arena without or with the exuvia). Data are presented as the 32 



34 
 

mean ± S.E.M., and comparisons between groups were performed using Bonferroni's 1 

post hoc test. aP < 0.05 compared to the sham non-threatened group. bP < 0.05 2 

compared to the CCI non-threatened group. 3 

Figure 7: Photographic documentation of habituation procedure (A); exposure of 4 

C57BL/6 mice, in isolation inside fenestrated and transparent compartments, to the 5 

Epicrates cenchria crassus constrictor snakes (B); and representative aversive 6 

stimulus-induced unconditioned (C and D) and conditioned (E and F) fear-related 7 

behavioural responses displayed by Mus musculus confronted with Epicrates 8 

chenchria crassus in the enriched polygonal arena for snakes. Defensive immobility 9 

(freezing) under an elevated escape platform (C) and inhibitory avoidance and stretch 10 

attend posture after oriented escape to the burrow (D) were displayed by prey during 11 

confrontation with predator. Flat back approach/interactions between prey and the 12 

exuvia (moulted skin with the smell of the snake) (E) and defensive immobility 13 

displayed by prey on the elevated platform (F) were showed by prey during exposure 14 

to the experimental context with the exuvia, but without the predator.   15 


