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A B S T R A C T

Meso‐scale unit cell models are often used to simulate mechanical behaviour of textile composites. Apart from
reliable ways to create meso‐scale geometries, such simulations require reliable meshing algorithms. While the
former is made possible via dedicated textile pre‐processors or high‐fidelity weaving simulations, the meshing
remains quite problematic for complex textiles and geometries. Even though, with a lot of user input, it is pos-
sible to create very complex meshes using meshing pre‐processors, this approach remains infeasible for cases
when a large number of models need to be analysed.
This paper presents a meshing approach based on the combination of local octree‐refinement with surface

smoothing. This allows nearly conformal meshes to be generated for geometries of any complexity which
achieve accuracy comparable to that of conformal meshes. A range of unit cells was analysed using the new
approach and it was shown that the error in local stresses is within 10% of the reference solution and the aver-
age error is below 7%. It was found that the computational cost of the analysis using the new meshing tech-
nique is not considerably higher than for an analysis which uses a conventional conformal mesh yet the
new approach allows analysis of any geometry.
1. Introduction

Most of the numerical methods for modelling of composites with
textile reinforcements rely on meso‐scale modelling techniques. There-
fore, generation of finite element (FE) meshes is an essential step in
these procedures. Generic problems, arising during mesh generation,
have been described in one of the seminal books on tetrahedral mesh-
ing [1] (all‐hexahedral meshing still remains a very challenging prob-
lem [2]) and can be summarised as the requirement on elements to
respect internal and external boundaries, have good shape and not
to be too numerous. These requirements on the meshes are closely
linked to the initial geometry and its features such as curvature of sur-
faces, closeness of the internal and external surfaces to each other and
the overall size of the geometry. Meso‐scale geometries of textile com-
posites contain two of these features: high double curvature of yarn
surfaces and yarns being close to or touching each other as shown in
Fig. 1. The latter often triggers excessive local mesh refinement and
therefore leads to a large number of elements. The aforementioned
problems and also this paper focus only on the meshing itself and leave
aside problems such as generation of CAD geometry and its accuracy
and consistency.
A new technique presented in this paper can create a near‐
conformal mesh for complex geometries ensuring control over the
minimum/maximum size of elements as well as their total number.
The algorithm, which employs local octree refinement of voxel meshes
as well as mesh smoothing, is built into the TexGen textile pre‐
processor [4] which makes it immediately available for many types
of geometries and performs automatic assignment of local fibre orien-
tation and local fibre volume fraction within the yarns. An example of
a mesh generated with this algorithm is shown in Fig. 2.

In principle, a tetrahedral mesh generation algorithm can generate
a mesh for almost any geometry. In practice, the meshing algorithms
often struggle to mesh matrix domains which occur in modelling of
textile composites, in particular narrow regions between two yarns,
because of the limitations on the minimum size of element or on the
total number of elements (from either memory restrictions or solution
time). Setting a mesh tolerance equal to the minimum distance
between the yarns does not always solve the problem as it can create
volumes of odd shape. Alternatively, manual interventions in the
meshing are not desirable as it makes the approach impractical when
a large number of models need to be analysed. The meshing of textile
composite unit cells has been addressed with various approaches.
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Fig. 1. Realistic unit cell of a 3D woven textile (the model used by Green et al. [3]).

Fig. 2. Mesh of a unit cell of a complex 3D woven composite.
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Early research in modelling of textile composites used relatively
simple geometry with no matrix pockets which made mesh generation
relatively simple [5,6]. The next generation of models [7–9] was based
on more realistic models which mainly generated the yarn path using a
more complex curve than a trigonometric or piece‐wise function. This
geometry very often gave complex matrix pockets in between the
yarns which were often enlarged to make the meshing easier [8,9].
However, introduction of these pockets into the model makes it less
realistic not only because of the changed geometry but also because
of the reduction of the yarn volume which needs to be compensated
by increase of intra‐yarn fibre volume fraction. These difficulties with
meshing of complex textile geometries were addressed by several
approaches: voxel meshing [10], mesh‐free methods [11], embedded
meshes (also known as the mesh superposition method) [12] as well
as various manipulations with geometry to achieve a high‐quality con-
formal mesh [13,14].

The embedded mesh approach allows the matrix mesh to be as sim-
ple as a mesh of a domain with no inclusions. A mesh of yarns is gen-
2

erated using a simple mesh sweeping method and then linked to the
domain mesh through a set of linear constraints for the nodes of both
meshes. Ease of meshing comes at a cost of stress and strain disconti-
nuity at the boundary of the two meshes and absence of an actual sur-
face between a yarn and matrix.

Generation of high‐quality conformal meshes requires the issue
with the geometry in the zone where yarns approach each other to
be addressed. Grail et al. [13] employed textile compaction simula-
tions to eliminate the gap between yarns and then re‐meshed each
of the yarns to achieve a conformal mesh. A similar approach was used
by Ha et al. [14] who generated the geometric model with allowed
intersections which were then eliminated using a special algorithm
to create a contact area between yarns. This contact area ensures that
the yarn meshes are conformal in this area and that meshes do not con-
tain ill‐shaped elements. This geometry preparation procedure applied
to a textile with yarns of regular elliptical cross‐section resulted in a
matrix domain which can be meshed with tetrahedral elements. In
summary, both of the approaches rely on a tetrahedral meshing algo-



Fig. 3. Octree refinement process.

Fig. 4. A non-balanced octree mesh for an elliptic inclusion with a maximum level of refinement of 5 and minimum level of refinement of 2 (left); A balanced
octree mesh with 2:1 transition between elements (right).
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rithm to generate a tetrahedral mesh using surface meshes of yarns
and periodic meshes for domain boundaries as input meshes. While
this works in many cases, in the authors’ experience, such software
as Hypermesh, a commercial software for mesh generation, and
TetGen [15], an open‐source software, are not always capable of
generating a mesh mainly due to the constraints imposed to create
periodic boundary meshes. The voxel mesh approach works rela-
tively well for simple textile geometries where voxel elements are
mainly aligned with the yarns and load is applied in the yarn direc-
tion [16]. The voxel mesh accuracy degrades for geometries not
aligned with the voxel mesh therefore more elements or a smooth-
ing technique [17] are required. Increasing the mesh density in a
voxel mesh is very inefficient because of the uniform element size.
This was addressed by Kim and Swan [10] who implemented local
refinement of voxel meshes for textile composites. It was shown
that it is possible to reduce the total number of elements without
3

reducing the accuracy of the FE results. However, this refinement
still had a jagged surface and local stress concentrations owing to
the nature of the voxel mesh. Other studies on voxel meshes (espe-
cially those obtained from medical imaging) employed Laplacian
smoothing and other algorithms to create surfaces which would
be relatively smooth and have a surface close to the original
surface.

This paper combines both of these ideas – local octree refinement
to approximate the boundaries of yarns as closely as possible, followed
by surface smoothing to reduce the effect of stress concentration. The
approach is described in detail in Section 2 which is followed by val-
idation of the technique in Section 3. A particular focus is given in Sec-
tion 4 on comparison of the proposed technique with conventional
conformal meshes in terms of accuracy and computational costs. Sum-
mary and the plans for future developments of the method are given in
Section 5.
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2. Octree mesh refinement and mesh smoothing

2.1. Octree refinement of a voxel mesh

Typically mesh refinement is applied to reduce the numerical error
introduced by mesh discretisation. Experience shows that surfaces
with high curvature need to be discretised with smaller elements
otherwise spurious stress concentrations may occur. The refinement
employed here aims to represent the geometry as closely as possible
but does not aim to have a conformal mesh (where nodes fall exactly
on the surfaces of the internal geometry e.g. yarns). The mesh algo-
rithm starts with a simple voxel mesh generated for a unit cell. A
refinement algorithm is then applied to each voxel. A voxel is refined
by splitting into eight voxels if its nodes belong to different materials.
The dimensions of the new voxels are half that of the original voxels as
shown in Fig. 3. This process is repeated iteratively until a given level
of refinement is achieved.

The mesh obtained using the described refinement procedure can
be conveniently stored in an octree data structure, hence its name “oc-
tree mesh refinement”. An open‐source library p4est [18] was
employed for this purpose. Storing a refined mesh as an octree also
makes it simple to balance the mesh i.e. always have 2:1 transition
between elements instead of an arbitrary transition as shown in
Fig. 4. The mesh refinement implemented in this paper also ensures
that the interface between the materials is always represented by ele-
ments with the highest level of refinement.

The octree refinement in this paper was implemented such that
both the size of elements in the starting voxel mesh and the refined
mesh are proportional to the size of the unit cell as 1/2n where n is
an integer number between the starting level of refinement and the
maximum level of refinement. However, this condition is easy to relax
if a geometry is split into arbitrary domains which are then individu-
ally meshed using the octree technique. Examples of various octree
refinements are shown in Fig. 5. The meshes in this paper will be
referred to by their minimum and maximum levels of refinement
e.g. suffix ‘4‐8’ denotes a mesh with minimum level of refinement of
4 and maximum level of refinement of 8.
Fig. 5. Examples of octree

4

The octree mesh refinement allows the mesh to be as close to the
real interface as needed without creating additional elements away
from an interface. For example, achieving a 1/(28) precision for the
geometry shown in Fig. 5 (‘5_8’ mesh of elliptic inclusion) requires
675,200 elements with the octree mesh refinement instead of
16,777,216 i.e. (28)3 elements for a regular voxel mesh with the same
minimum element size.

None of the meshes shown in Fig. 5 are conformal and have mul-
tiple hanging nodes, i.e. nodes inside a mesh domain but not con-
nected to all the surrounding elements. Multi‐point constraints are
used to enable the continuity of the mesh by constraining the hang-
ing nodes to the nodes of larger neighbouring elements. Since the
octree is balanced all the transitions between elements are 2:1 and
therefore the constraints for hanging nodes which fall on edges of
linear hexahedral elements (e.g. C3D8 in Abaqus) can be written as
[19]:

uhanging � 0:5 uI
master þ uII

master

� � ¼ 0 ð1Þ
For the nodes which fall on faces the constraints are:

uhanging � 0:25 uI
master þ uII

masterþuIII
master þ uIV

master

� � ¼ 0 ð2Þ
where uhanging is the vector of displacement of the hanging node and
ui
master are the vectors of displacement of nodes of a master element.
Constraints similar to (1) and (2) can be written for quadratic

elements.

2.2. Mesh smoothing

After octree mesh refinement the refined meshes still exhibit one of
the main disadvantages of voxel meshes as they have jagged surfaces
which create artificial stress concentrations. The problem can be
resolved by applying a smoothing algorithm to the surface nodes. Pos-
sible smoothing algorithms include Laplacian smoothing and Lapla-
cian Eigen‐decomposition [20]. This work uses Gaussian filtering
method for smoothing of meshes as described e.g. by Taubin [21]:

pi ¼ pi þ λL pið Þ ð3Þ
meshes of an ellipse.



Fig. 6. Example of conformal, voxel, octree-refined and smoothed octree-refined meshes: a. Voxel mesh; b. Conformal mesh (Mesh 1 in Table 1); c. Conformal
mesh (Mesh 3 in Table 1); d. Octree-refined mesh (minimum level of refinement 4, maximum – 7); e. Octree-refined mesh (minimum level of refinement 6,
maximum – 7); f. Smoothed octree-refined mesh (minimum level of refinement – 4, maximum – 7, smoothing parameter 0.3); g. Smoothed octree-refined mesh
(minimum level of refinement – 4, maximum – 8, smoothing parameter 0.3).

Table 1
Convergence of conformal meshes.

Mesh Number of elements Max. stress, MPa bσmax, % NRMSD 1, % (along major axis) NRMSD 2, % (outside of inclusion) NRMSD 3, % (inside inclusion)

1 269,504 33,260 4.43 2.18 0.39 0.068
2 2,183,680 33,930 2.56 0.75 0.32 0.022
3 3,100,188 34,800 – – – –
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where 0 < λ < 1 is a weight and L pið Þ is a Laplacian operator whose
simplest definition can be written as, essentially, a weighted distance
between the node pi and N neighbouring nodes pj:
5

L pið Þ ¼ 1
N

∑
N

j¼1
pj � pi

� �
ð4Þ



Table 2
Convergence of voxel meshes.a

Refinement Number of elements bσmax, % NRMSD 1, % (along major axis) NRMSD 2, % (outside of inclusion) NRMSD 3, % (inside inclusion)

64 × 64 × 64 262,144 25.03 2.03 7.59 5.89
128 × 128 × 128 2,097,152 31.12 1.63 1.30 1.59
256 × 256 × 256 16,777,126 Not feasible to run

a These meshes are equivalent to octree refinement with minimum and maximum refinement equal to: 6 and 6, 7 and 7, 8 and 8.

Table 3
Convergence of octree and smoothed octree meshes.

Refinement Number of elements Max. stress error, % NRMSD 1, % (along
major axis)

NRMSD 2, % (outside of
inclusion)

NRMSD 3, % (inside
inclusion)

Max Min Octree Smoothed Octree Smoothed Octree Smoothed Octree Smoothed

7 4 164,032 31.26 12.09 1.66 1.75 1.32 0.54 1.56 0.53
5 183,296 31.29 12.09 1.64 1.73 1.31 0.52 1.56 0.52
6 376,832 31.32 12.04 1.63 1.72 1.32 0.53 1.56 0.52

8 4 657,280 34.08 8.73 0.47 0.30 0.79 0.39 0.84 0.27
5 675,200 33.93 8.76 0.39 0.16 0.78 0.39 0.83 0.25
6 864,256 33.96 8.76 0.38 0.14 0.78 0.38 0.83 0.25
7 2,555,904 33.91 8.71 0.42 0.17 0.80 0.40 0.82 0.25
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The smoothing operator defined by Eq. (4) is the simplest defini-
tion as it assumes equal weights between the nodes. The operator
can be applied iteratively with coefficient λ taking different values at
each step.

Smoothing algorithms have been applied to smooth voxel meshes
before but always starting with a regular voxel mesh which is often
far from an accurate representation of the boundaries. This leads either
to excessive distortions of elements and geometry or to the significant
reduction of the geometry volume. Applying the smoothing algorithm
to an octree refined mesh resolves the second problem as the elements
on the surface are small and their reduction will not result in a signif-
icant change of volume. Excessive distortion of the elements is avoided
by imposing a threshold on how much a node can move from its orig-
inal position.
Fig. 7. Paths to query local stresses. Path 1 – along major axis of the inclusion,
Path 2 – along an ellipse with sizes 0.025 mm larger than the inclusion, Path 3
– along an ellipse with sizes 0.025 mm smaller than the inclusion. All paths are
in the plane which divides the inclusion in two equal halves.
3. Validation of the new technique

3.1. Model of an elliptic cylinder inclusion

An elliptic cylinder inclusion in a matrix has been selected as the
simplest example to demonstrate the validity of the approach. The
cross‐section of the inclusion was an ellipse with major and minor axes
equal to 0.3 mm and 0.2 mm, respectively. The matrix was modelled as
a cube with a side equal to 1.0 mm. The materials of both the inclusion
and matrix were isotropic with the Young’s moduli equal to 200 and
100 GPa, respectively. The Poisson ratio for both materials was 0.3.
The inclusion and the matrix are assumed to be perfectly bonded at
the interface. The boundary conditions applied to the model were uni-
form displacements 0.1 mm and −0.1 mm applied at two opposite
sides of the cube. Other sides of the cube were free of any loads or
boundary conditions.

The model was meshed using conformal (within Abaqus/CAE),
voxel, octree and smoothed octree meshes. Illustrations of meshes
are given in Fig. 6. Details of these types of meshes are given in Tables
1–3. In all cases, C3D8 elements were used for the analysis. Only one
set of smoothing parameters has been used in this paper (λ = 0.3, 50
iterations).

Three conformal meshes were generated to give a reference solu-
tion which can be used as a benchmark for solutions obtained with
other meshes. Convergence of the meshes was determined using the
following criteria – convergence of maximum von Mises stresses and
normalised root mean square deviation (NRMSD) of local stresses
6

along three paths shown in Fig. 7. The NRMSD was calculated as the
root mean square deviation normalised by the mean value:

NRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E byi � yið Þ2
� �r
E yið Þ ð5Þ

where yi are the values of stresses in the reference model, byi are the val-
ues of stresses in the model of interest and E �ð Þ is mean value of a
vector.

The maximum stresses and NRMSD along three selected paths in
the model converged fast with the conformal mesh refinement as
shown in Table 1. The solution obtained using the most refined confor-
mal mesh consisting of approximately 3.1 × 106 elements was
selected as a reference solution. The maximum stress error in a model,bσmax; is written as a deviation from the value obtained with the refer-
ence mesh, σmax, i.e. bσmax � σmaxð Þ=σmax. The second most refined mesh



Fig. 8. a. Maximum stress error for various meshes; b. Total analysis time (meshing and FE analysis) for various meshes.
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has the maximum stress error of 2.56% while other metrics were all
below 1%.

Two voxel meshes were compared against the selected reference
mesh. The comparison is given in Table 2. The maximum stress error
was found to be up to 30% but it should be pointed out that this error
is the result of stress concentration at one or several elements. The
metrics for average deviations decrease below 2% with increase of
voxel mesh density, as expected, but still do not achieve the accuracy
7

of a conformal mesh with a similar number of elements. While it is pos-
sible to increase the number of elements further, it becomes more com-
putationally expensive to do so.

The mesh convergence of new meshing approaches was recorded
using the same metrics as for conformal and voxel meshes. The
octree‐based meshes were refined by reducing the maximum element
size (increasing the minimum level of refinement from 4 to 7) and
reducing the minimum element size (increasing the maximum level



Fig. 8 (continued)
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of refinement from 7 to 8). The results of the comparison are given in
Fig. 8 and Table 3. Reducing the maximum element size reduces the
difference between the model and the reference solution but this effect
is relatively small. In comparison, both the reduction of the minimum
element size and smoothing have a strong effect on the difference
between the model and the reference solution. The most refined model
(minimum refinement – 7, maximum refinement – 8) has the NRMSD
along three selected paths within 0.5% from the reference solution.
However, the maximum stress error still remains as high as 8.7% even
for the smoothed octree mesh. It is expected that further refinement
would reduce the error but would be impractical because of the com-
putational costs. Fig. 8 also shows total computational costs required
to generate each of the meshes and obtain a corresponding solution.
The costs of obtaining a solution with the reference conformal mesh
is also shown in Fig. 8. It is important to note that obtaining solutions
with octree or smoothed octree meshes was faster than with the con-
formal mesh.

Stress fields obtained with the generated meshes are shown in
Fig. 9. A magnified view of the same stress fields in some of the meshes
is shown in Fig. 10.

It should also be noted that calculation of NRMSD involves several
interpolations which can introduce some errors. The first interpolation
occurs within Abaqus/CAE when points for comparison are queried at
the intersections of the path with the elements. The second interpola-
tion is performed to sample the points from two different meshes to
the same grid.

3.2. Textile composites

Section 3.1 showed the applicability of the octree refinement
and smoothing techniques for the relatively simple case of an ellip-
tical cylinder inclusion. However, the main motivation of the sug-
gested approach is to apply it to various textile composites. For
that purpose, unit cells of a plain weave, a sheared plain weave
and an orthogonal 3D woven composite were generated using Tex-
Gen. Geometry parameters of the unit cells are given in Tables 4
and 5 and the unit cells are shown in Fig. 11. To allow generation
8

of acceptable conformal meshes all of the unit cells had an artificial
gap between yarns.

Similar to the example with an elliptical inclusion, the unit cells of
textile composites were meshed with conformal, voxel, octree and
smoothed octree meshes. The conformal meshes were generated using
TexGen and linear C3D4 elements were used for all of them. C3D8R
elements were used for other meshes. Examples of the meshes are
shown in Fig. 12. The properties of matrix and yarn materials are given
in Table 6.

Convergence studies of conformal meshes were performed for each
of the textiles. The convergence was judged using several metrics –

stress in a selected cross‐section and NRMSD (Eq. (5)) along selected
paths. The paths are shown schematically in Fig. 13. As for the exam-
ple in Section 3.1, the converged solutions obtained with conformal
meshes were selected as the reference solutions for each of the unit
cells.

The following boundary conditions were applied to all unit cells:
uniform displacements of 0.1 mm and −0.1 mm were applied to
two opposite sides in the x‐direction to simulate an extension in this
direction, top surface of the unit cell was constrained in the out‐of‐
plane direction.

Details of convergence studies of the conformal and voxel meshes
are given in Appendix A. As in Section 3.1, the maximum stress error
converges fast for the conformal meshes but NRMSDs for some paths
usually remain above 2%, which can be explained by there being a
more complex stress state in the unit cell of a textile composite than
in the problem with a single inclusion. The voxel meshes converge
more slowly and show up to 11% error in the maximum stress error
and NRMSDs. These errors can be reduced by further refining the
voxel mesh but it would result in large meshes which are prohibitively
expensive to use in a FE analysis.

The solutions obtained with octree and smoothed octree meshes
were compared to the reference solutions and detailed results are
given in Tables 7–9 for plain weave, sheared plain weave and orthog-
onal 3D weave unit cells, accordingly. It was found that reducing the
maximum element size (increasing the minimum level of refinement)
improves accuracy of the solutions more than was observed in Sec-
tion 3.1. Decreasing the minimum element size (increasing the maxi-
mum level of refinement) also has a significant effect on the
accuracy. Smoothing also increases the accuracy of the solutions. In
summary, deviation less than 7% from the reference solution can be
achieved for all these examples. Maximum stress error and NRMSD
along path ‘1’ for all unit cells are shown in Fig. 14. The graphs also
show the difference between the reference mesh and a conformal mesh
with lower refinement. Distributions of von Mises stresses in longitudi-
nal and transverse yarns of the plain weave composite for different
levels of refinement are given in Fig. 15.

Total analysis cost for each of the performed simulations is also
shown in Fig. 14. It can be seen that reducing the minimum element
size, which results in larger meshes, results in growth of the analysis
time. The cost of generating an octree mesh and performing analysis
using this mesh is always lower than for an equivalent smoothing
due to obvious extra operations required for the latter. The actual time
to run the simulations in Abaqus were almost identical for both types
of meshes as it mainly depends on the number of nodes and constraints
rather than on a type of the mesh.

4. Discussion and conclusions

The meshing algorithm presented here can be used for automatic
generation of FE meshes of unit cells of woven composites of arbitrary
complexity. Combination of an octree voxel mesh and mesh smoothing
algorithm helps to create meshes which have accuracy comparable to
equivalent conformal meshes. The octree refinement procedure, which
is used to create the mesh, approximates the internal geometry of the



Fig. 9. Distribution of von Mises stresses (in Pa) in models with elliptical inclusion. The colour schemes are scaled to the minimum and maximum values predicted
by the conformal mesh.
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Fig. 10. Magnified view of stress distributions (in Pa) in some of the meshes.

Table 4
Parameters of plain weave reinforcements.

Yarn spacing, mm Yarn width, mm Fabric thickness, mm Gap size, mm Shear angle, deg

Non-sheared 1.0 0.8 0.2 0.02 0
Sheared 1.0 0.8 0.2 0.02 20

Table 5
Parameters of 3D woven reinforcement.

Number of yarns Number of layers Yarn spacing, mm Yarn width, mm Yarn height, mm Gap size, mm

Warp 3 2 1.0 0.8 0.1 0.02
Weft 2 3 1.0 0.8 0.1 0.02
Binder 1 – 2.5 0.4 0.05 0.02
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unit cell with a given precision without generating an excessive num-
ber of elements. The smoothing algorithm reduces the effect of the
jagged surface of a voxel mesh and reduces stress concentrations.
The main advantage of the technique is its ability to generate a mesh
for geometries which are either not possible to mesh using a conformal
10
mesh or where such a mesh would have an excessive number of
elements.

The proposed method has been applied to several model problems
– a unit cell with an elliptic inclusion and unit cells with plain weave,
sheared plain weave and a 3D woven reinforcement. For all the cases



Fig. 11. Unit cells of selected textiles: non-sheared plain weave, sheared plain weave, and orthogonal 3D woven (from left to right).

Fig. 12. Examples of meshes.

Table 6
Material properties for the unit cells models.

E1, GPa E2 = E3, GPa ν12 ¼ ν13 ν23 G12 = G13, GPa G23, GPa

Yarn 200.0 10.0 0.3 0.3 5.0 5.0
Matrix 3.0 3.0 0.2 0.2 1.25 1.25
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the proposed method was benchmarked against conventional confor-
mal meshes. It was found that the smoothed octree meshes can esti-
mate local stresses along selected paths with an average deviation of
less than 7% when compared to the converged conformal meshes.
The error for the maximum stress was estimated to be within 10%
for selected cross‐sections. Obviously, there might be cases where
the presented method does not result in low error e.g. in areas where
geometrical features were not meshed with sufficient resolution or the
11
smoothing algorithm did not eliminate stress concentrators. However,
it is still expected that average stresses are within an acceptable range
and can be achieved within reasonable time cost.

Total analysis time, i.e. the time required to generate a mesh and to
perform analysis using these meshes, was also compared. The time to
generate octree and smoothed octree meshes increases almost expo-
nentially with reduction of the minimum element size (increasing
maximum level of refinement). However, for the meshes with lower



Fig. 13. Position of the cross-section of interest.

Table 7
Comparison of solutions for the composite with plain weave reinforcement.

Refinement Number of elements bσmax, % NRMSD 1, % (along a
longitudinal yarn)

NRMSD 2, % (between
two longitudinal yarns)

NRMSD 3, % (along a
transverse yarn)

Min Max Octree Smoothed Octree Smoothed Octree Smoothed Octree Smoothed

4 7 976,338 11.72 8.55 13.59 6.03 10.17 8.40 5.22 4.20
5 976,526 11.72 8.55 13.59 6.02 10.17 8.38 5.05 4.01
6 1,033,445 11.72 8.55 9.77 6.02 9.73 8.37 9.91 3.83
7 2,146,689 11.05 5.72 6.18 6.03 9.16 8.30 9.37 3.36
4 8 3,003,344 4.94 3.83 9.12 6.38 4.82 4.82 7.73 6.78
5 4,265,097 4.94 7.38 9.12 6.38 4.82 4.82 7.63 6.68
6 4,314,873 4.94 4.83 7.81 6.38 4.81 4.81 9.43 6.59

Table 8
Comparison of solutions for the composite with sheared plain weave reinforcement.

Refinement Number of elements bσmax, % NRMSD 1, % (along a
longitudinal yarn)

NRMSD 2, % (between
two longitudinal yarns)

NRMSD 3, % (along a
transverse yarn)

Min Max Octree Smoothed Octree Smoothed Octree Smoothed Octree Smoothed

4 7 1,073,907 3.18 2.34 11.02 5.62 8.00 5.62 8.34 1.56
5 1,073,172 0.68 2.30 9.99 5.55 8.00 5.63 8.35 1.55
6 1,111,441 2.59 2.54 9.99 5.55 7.85 5.39 6.69 1.31
7 2,146,689 7.28 1.42 10.90 5.57 8.70 5.73 8.64 1.38
4 8 4,983,316 1.81 1.42 6.61 4.67 4.88 2.95 4.57 2.77
5 4,982,783 1.76 1.42 6.55 4.60 4.89 2.95 4.57 2.76
6 5,012,507 1.76 1.12 5.42 4.60 4.74 2.64 4.54 2.69

Table 9
Comparison of solutions for the composite with orthogonal 3D weave reinforcement.

Refinement Number of elements bσmax, % NRMSD 1, % (along a
longitudinal yarn)

NRMSD 2, % (between two
longitudinal yarns)

Min Max Octree Smoothed Octree Smoothed Octree Smoothed

4 7 1,024,626 8.27 6.16 0.07 0.63 1.58 2.86
5 1,025,458 8.28 6.16 0.07 0.63 1.51 2.80
6 1,060,026 8.28 6.19 0.05 0.50 1.10 2.81
7 2,146,689 8.36 6.28 0.06 0.47 0.98 2.79
4 8 4,638,876 1.32 1.05 0.07 0.32 1.04 1.27
5 4,639,814 1.32 1.05 0.07 0.32 1.02 1.25
6 4,670,811 1.36 1.07 0.05 0.19 0.43 1.10
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level of refinement (as e.g. equal to 7, which was reported here) the
time to generate the mesh is often lower than the time required to
generate a conformal mesh to achieve similar precision. For the
meshes with a high level of refinement, the total analysis time is
quite high because of the time required to generate the mesh and
to pre‐process extra constraints for the hanging nodes. This time will
be improved by employing parallel execution of some parts of the
code.

It also should be mentioned that the precision of the solutions
obtained with smoothed octree meshes can be reduced because of
ill‐shaped elements that can occur from the element smoothing at
some boundaries. This can be improved by converting the octree mesh
12
into a tetrahedral mesh with no hanging nodes [22,23] as shown in
Fig. 16. These tetrahedral meshes can be post‐processed after bound-
ary smoothing to reshape the elements by moving internal nodes to
improve element quality.

In summary, the presented smoothed octree meshes offer automatic
meshing of any complex geometries for which conformal meshes are
not always possible. The resulting mesh is not conformal but follows
the boundary between materials with a selected precision. The octree
refinement of the meshes reduces the computational cost which is
advantageous in analysis of large unit cells. It was shown that the
smoothed octree meshes can achieve precision comparable to confor-
mal meshes.



Fig. 14. Comparison of octree and smoothed octree meshes with the reference solution for: a. the plain weave unit cell; b. sheared plain weave; c. 3D weave.
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Fig. 14 (continued)
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Fig. 14 (continued)
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Fig. 15. Distribution of von Mises stresses (in Pa) in a. longitudinal yarns; b. transverse yarns in various meshes.
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Fig. 16. An example of voxel to tetrahedral conversion using body-centred
cubic (BCC) refinement.
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Table A1
Convergence of conformal meshes for plain weave textile composite.

Number of nodes Maximum stress, MPa bσmax,

1 502,519 2431 0.1
2 855,021 2436 0.0
3 1,630,603 2439 <0.0
4 2,240,350 2447 –

Table A2
Convergence of voxel mesh for plain weave textile composite.

Refinement Number of nodes bσmax, %

64x64x64 274,625 11.05
128x128x128 2,146,689 11.05
256x256x256 16,974,593 Not feasible to run

Table A4
Convergence of voxel mesh for sheared plain weave textile composite.

Refinement Number of nodes bσmax, %

64x64x64 274,625 16.90
128x128x128 2,146,689 7.28
256x256x256 16,974,593 Not feasible to run

Table A5
Convergence of conformal meshes f
composite.

Number of nodes bσmax, %

1 404,855 4.33
2 1,799,105 0.67
3 3,103,719 –

Table A3
Convergence of conformal mesh for sheared plain weave composites.

Number of nodes bσmax, %

1 470,293 4.84
2 803,320 4.84
3 1,539,649 –
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Appendix A

Tables A1–A6.
% NRMSD 1, % NRMSD 2, % NRMSD 3, %

6 6.77 2.03 4.13
6 4.01 2.02 2.62
1 2.88 3.48 3.33

– – –

NRMSD 1, % NRMSD 2, % NRMSD 3, %

18.81 11.52 10.76
6.18 9.16 9.37

NRMSD 1, % NRMSD 2, % NRMSD 3, %

9.68 8.14 16.34
10.90 8.70 8.64

or orthogonal 3D woven textile

NRMSD 1, % NRMSD 2, %

0.14 0.70
0.06 0.33
– –

NRMSD 1, % NRMSD 2, % NRMSD 3, %

2.38 1.94 1.02
3.55 1.33 0.52
– – –



Table A6
Convergence of voxel mesh for orthogonal 3D woven textile composite.

Refinement Number of nodes bσmax, % NRMSD 1, % NRMSD 2, %

64x64x64 274,625 17.11 0.08 1.91
128x128x128 2,146,689 8.36 0.06 0.98
256x256x256 16,974,593 Not feasible to run
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Appendix B. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.compstruct.2020.112757.
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