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ABSTRACT
Antibody-detecting tests for Mycobacterium avium subspecies paratuberculosis (MAP) have a low sensitivity and an imperfect specificity for detection of infection. Sensitivity increases as the disease progresses. Apart from infection status and stage of disease, a number of factors impact test performance. These factors have not yet been studied in dairy cows producing lower volumes of milk with higher solids concentration, such as those managed in low-input, pasture-based production systems. Furthermore, the impact of correcting for these associations on the individual and herd test status is also unknown. The first objective of this study was to examine the relationship between MAP antibody response in milk and milk yield, SCC, fat and protein content and stage of lactation in dairy cows enrolled in the national Johne’s Disease Control Programme (JDCP) in Ireland. The second objective was to examine the impact of correcting the antibody response for these associations on the test status of individual cows and herds, given that individual tests are often used to define a herd status. Data were extracted for herds in the JDCP from January 2014 to December 2015 inclusive consisting of 42,657 milk recordings from 18,569 cows across 187 dairy herds. Two linear regression models were constructed to investigate the association between log-transformed MAP S/P ratio and milk recording data and in primi and pluriparous cows. Days in milk was modelled as a B-spline in each model and cow and herd were included as random effects. Across both models, natural log transformed MAP antibody response was negatively associated with milk yield, positively associated with protein and fat production, and had a curvilinear association with log-transformed SCC. The association between MAP antibody response and DIM varied over the course of the lactation. However, when combined, these variables explained only 5.1% of the variation in the antibody response of the population. After correcting for these associations, 93 pluriparous cows and 20 primiparous cows changed category (negative, suspect or positive). When considered at the herd-test level, out of a total of 531 herd tests, 1 herd changed from negative to positive, whilst 5 herds changed from positive to negative. This study provides useful information to aid in the interpretation of antibody results for herds testing animals for the presence of MAP infection. At an overall population level, correction of the serological response for non-disease associated factors has the potential to change the status of only a small number of cows. At the herd level, the proportion of herds changing status was minimal. However, depending on the implications of a herd-level serological diagnosis, consideration should be given to correcting for these non-disease associated variables within the context of national JD control programmes. 

INTRODUCTION
Bovine paratuberculosis is a chronic infectious disease of cattle caused by Mycobacterium avium subspecies paratuberculosis (MAP) (McAloon et al., 2019a). MAP infection has been associated with reduced milk production (McAloon et al., 2016b), higher cull rates (Hendrick et al., 2005), reduced value for culled animals (Kudahl and Nielsen, 2009, Richardson and More, 2009) and possible adverse effects on fertility (Johnson-Ifearulundu et al., 2000). 
In addition to production and economic effects at the farm level, MAP has been associated with a potential zoonotic effect (Waddell et al., 2016). Consequently, major dairy producing countries have introduced control programmes aimed at national control of the disease (Geraghty et al., 2014; Whittington et al., 2019). In general, national disease control programmes consist of the application of management changes at farm level to reduce within-herd transmission, as well as steps to identify and remove infected individuals from the population (McAloon et al., 2019b). 
Although there are disagreements regarding its efficacy, test-and-cull remains an important part of many international control programmes. In practice, testing most often consists of the application of antibody-detecting tests on either serum or milk. However, antibody-detecting tests for the MAP ‘infected’ state have low sensitivity (Se) and imperfect specificity (Sp) making the interpretation of the test results challenging. As animals progress from “infected” to “infectious” and “affected” stages of the disease, the Se of the indirect tests increase (Nielsen and Toft, 2008). However, apart from stage of disease, a number of other factors are known to impact on the performance of the test. For example, both stage of lactation (Nielsen and Toft, 2012) and factors such as milk yield, protein concentration and SCC (Eisenberg et al., 2015) impact the test value.
[bookmark: _Hlk13755975]Studies to investigate the factors affecting the antibody response in individual cows have been conducted on high yielding dairy cows. However, in a seasonal, pasture-based dairy system such as that operated in Ireland, milk yield is generally lower, with higher protein and fat concentrations (Carty et al., 2017). It is unknown whether associations between milk characteristics and antibody response, as demonstrated in other countries and production systems, hold true for animals with lower milk volumes but higher fat and protein production. Furthermore, whilst studies have examined the impact of these variables on a continuous basis, it is unknown what impact correcting for these variables would have when animals and herds are classified using test cut-offs.
To aid in the interpretation of antibody test values, with the aim of classifying the infection status of animals and herds as accurately as possible, it is important to understand the interaction of different factors on the measured antibody response. The first objective of this study, therefore, was to examine the relationship between the MAP antibody response in milk and milk SCC, yield, fat and protein content, as well as season and stage of lactation in dairy cows enrolled in the national Johne’s Disease Control Programme (JDCP) in Ireland. The second objective was to examine the impact of correcting the antibody response for these associations on the test status of individual cows and herds.

MATERIALS AND METHODS
Data extraction
Animal Health Ireland (AHI) is a not-for-profit organisation that was established to co-ordinate the control of non-regulated animal diseases in Ireland (More et al., 2011). An initial Delphi study identified paratuberculosis as a priority disease for the dairy industry (More et al., 2010). Consequently, a pilot voluntary JDCP was initiated in November 2013 and continued until late 2017 when the Irish Johne’s Control Programme (IJCP) was launched.
The pilot phase of the national control programme required all enrolled herd owners to test all animals greater than 24-months of age with either a serum ELISA (once per year) or a milk ELISA (twice per year), in addition to a veterinary-administered Risk Assessment and Management Plan (RAMP) carried out on farm by a trained practitioner. Data from individual herds are uploaded to the Irish Cattle Breeding Federation (ICBF) database. The ICBF database also includes all milk-recording data for Irish dairy herds. 
Data were extracted from the ICBF database for herds in the pilot JDCP from January 2014 to December 2015 inclusive. All herd and animal identifiers were anonymized.
Statistical analysis
Only the results from antibody tests conducted using the MAP IDEXX Milk ELISA (Mycobacterium paratuberculosis Antibody Test Kit, IDEXX Europe, Hoofddorp, The Netherlands) on milk were used. Under the JDCP guidelines, milk samples from cows < 7 DIM are not used for testing. Records with missing values for SCC, sample to positive (S/P) % of the ELISA test, milk yield, calving dates and recording dates were removed from the dataset. Milk records from animals > 305 DIM were removed prior to extraction of the data. The result of the JD ELISA was interpreted according to the manufacturer’s guidelines: Negative 0-20%, Suspect/Inconclusive: 20-30%, Positive >30%. All tests were conducted on samples collected on the day of milk recording. Therefore, all of the test results had corresponding milk recording data for the day of sample collection.
Histograms of each variable were plotted to examine the distribution of values. Non-normally distributed variables (SCC and S/P %) were natural log transformed, creating two additional variables, lnSCC and log-transformed S/P%. Prior to transformation, visual inspection of the distribution of S/P % showed a range from -13.5% to 137%. Detailed inspection at the lower end of this distribution demonstrated a higher than expected proportion of readings < -2%. Further inspection revealed that the majority of values within this range were from a single test date on a single farm. Therefore, all of the data from that farm on that testing date, and all other recordings < -2% were removed from the dataset as erroneous data. To facilitate log transformation, a constant value (1.76%) was first added to the remainder of the values (to ensure all values were greater than zero). Next, the data were split into pluriparous and primiparous datasets; for all continuous variables, values outside 2 standard deviations from the mean were removed as outliers.
The association between the natural log transformed S/P % and milk yield, DIM, fat and protein yield, parity and lnSCC was investigated with 2 separate mixed effects linear models: primi- and pluriparous cows were modelled separately, owing to the different shapes of their lactation curves. 
All variables were first plotted against the log-transformed S/P % to explore the shape of any associations between variables. Those with curvilinear relationships were offered to the model as linear and quadratic terms. Variables with a more complex non-linear relationship with S/P % were modelled using basis splines. For these variables, the number of knots was chosen to minimize under- and over-fitting the data. To achieve this, the number of knots for the spline was varied from 3 to 15 and the R-squared and Root Mean Squared Error (RMSE) calculated. Then for each given number of knots, 10-fold cross validation was carried out. For each fold in the cross validation, R-squared and RMSE were calculated and the mean across the folds taken as the cross validation R-squared and RMSE for that number of knots. The overall R-squared and RMSE values for each number of knots were plotted and the number of knots for the final model decided upon based on the number that minimized underfitting (i.e. models with higher overall R-squared and lower RMSE selected) and overfitting (i.e. models with which minimized the difference between overall R-squared, RMSE and the cross validation R-squared and RMSE were selected). 
All variables were first screened in a univariable analysis whilst accounting for within-animal and within-herd clustering as random effects. A multivariable linear regression model was then constructed using a forward stepwise approach: variables with a univariable p-value <0.20 were offered to the multivariable model in order of their p-value, with variables with the lowest p-value added first. After the addition of each variable, the p-values of all of the variables in the model were recalculated and those with a p-value <0.05 retained in the model. Confounding was assessed by examining the change in coefficients for each variable after the addition of each new variable to the model. Variables that resulted in a change in coefficient of any other variables of > 20% were declared as confounders. These variables were retained in the model irrespective of their p-value. All two-way interactions of variables significant in the final model were tested with the exception of DIM. Interactions with DIM were not included to avoid increased complexity and potential overfitting of the model that would arise from all possible combinations of variables with each knot in the spline used to fit DIM. Interactions with a p-value <0.05 were retained in the final model.
To illustrate the effect of particular variables, log-transformed S/P ratios were predicted from the model by varying the values for the parameter of interest across the range of values in the population and holding all other variables constant at the median value for the population. To aid interpretation, the predicted log-transformed S/P % was converted to an S/P % by taking the exponential of the predicted value.
Ideally, non-disease associated animal characteristics should not influence a test value. However, if associations between such characteristics and the S/P % exist, a ‘corrected S/P %’ can be calculated for each cow by standardising test scores as if all cows were equal in terms of non-disease associated variables. To achieve this, a corrected S/P % for each cow-reading was calculated by setting all of her characteristics to the median value of the population. First, the S/P % was predicted for each cow from the final multivariable models. For each cow, the component of the real S/P % that was unexplained by the model was calculated by subtracting the real S/P % from the predicted S/P %. Next, the S/P % of a ‘median cow’ was predicted by taking the median of the population for each variable in the dataset. Finally, this value was added to the unexplained S/P % component of each cow in the dataset. These corrected S/P % were classified according to the manufacturer’s instructions: < 20% as negative, 20-30% as suspect and >30% as positive. Finally, the impact of this correction was assessed by calculating the number of cows that changed category as well as the number of herd-tests that changed category, with a herd-test considered positive if at least one animal tests positive.
Ten-fold cross validation was conducted by splitting the data into 10 subsets each containing 10% of the data. Ten models were constructed by leaving out one of the subsets in turn and fitting the model to the remaining 90% of the data. Next, the coefficients of each model were used to predict the values of the remaining 10% data subset. The mean error and coefficient of variation were calculated for each of the 10 models. Finally, the average of the mean error and coefficients of variations of each of the ten folds in the data were compared to the overall model. 
Statistical analysis was conducted in R-studio (R Core Team, 2017) version 1.1.419 using the “lme4” (Bates et al., 2015), “dplyr” (Wickham et al., 2019), “lubridate” (Grolemund and Wickham, 2011) and “splines2” (Wang and Yan, 2017) packages. Data visualization was conducted using the “ggplot2” package (Wickham, 2009).

RESULTS
The initial dataset consisted of 42,657 milk recordings from 18,569 cows across 187 dairy herds over the 24-month period. After removing outliers and missing data, the pluriparous dataset contained 25,945 milk recordings from 12,701 cows; 6,218 cows had 2 recordings; 3,699 cows had 1 recording; with the remainder having between 3 and 6 recordings (Figure S1, Supplementary Material). Of these, 8,271 records were from 2nd lactation cows; 6,148 were from 3rd lactation; 4,387 were from 4th lactation and 7,139 were from cows in their 5th lactation or greater. The primiparous dataset contained 9,949 milk recordings from 6,210 cows; 3,518 cows had 2 recordings; 2,585 cows had 1 recording; with the remainder having between 3 and 4 recordings. Descriptive statistics are shown in Table S1 (Supplementary Material) and the distribution of the raw S/P ratios is shown in Figure S2 (Supplementary Material).
Model 1 – Primiparous model
The results from Model 1 are shown in Table 2. Antibody response decreased linearly with increased milk yield, however, the magnitude of this effect was small across the distribution of milk yields in the population: for every 10L increase in milk yield, the log transformed S/P % declined by 0.5. Figure 1 demonstrates that when milk yield in first lactation animals increased from 10L to 30L, the S/P % decreased from 6% to approximately 1.2%.
<Figure 1 here>
<Table 1 here>
S/P % increased in a curvilinear manner in association with increasing SCC. An increase from a log-transformed SCC of 2.5 to 6 was associated with a corresponding increase in S/P % from 3.0 to approximately 3.9% (Figure 2).
<Figure 2 here>
Figure 3 shows the predicted S/P % by stage of lactation. S/P % dropped rapidly in early lactation up to approximately 100 DIM. After this point, S/P % increased moderately until approximately 225 DIM, after which there was an increase in S/P % until the end of lactation. However, the magnitude of the association was again relatively modest with most of the variation over the course of the lactation spanning 4-6% S/P %.
<Figure 3 here>
Log-transformed S/P % was positively associated with both protein and fat yield with each additional kg protein and fat associated with a 1.2 and 0.20 unit increase in log-transformed S/P % respectively. 
Figures 4 and 5 show predicted S/P % by protein and fat yield respectively. S/P % increased in a curvilinear manner with increasing protein yield, whereas S/P increased linearly with increasing fat yield. 
Model 2 – Pluriparous model
The results from Model 2 are also shown in Table 1. Antibody response also decreased linearly with increasing milk yield: for every 10L increase in milk yield, the log-transformed S/P % declined by 0.4. Figure 1 shows the effect of increasing milk yield from 10L to 40L whilst holding the rest of the variables at the median of the population: the predicted S/P % decreased from 8.7% at 10L to less than 2.5% at 40L.
S/P % increased in a curvilinear manner in association with increased lnSCC. However, the magnitude of this increase was mild, with just over a single point percentage increase across the range of SCCs in the population (Figure 2). 
Figure 3 demonstrates the association between DIM and SP %. S/P % dropped rapidly in early lactation up to approximately 50 DIM. After this point the rate of decline in S/P % was reduced until a nadir at 120 DIM before increasing towards the end of lactation. However, whilst there were significant associations between DIM and S/P %, the magnitude of these changes was small, with most of the variation over the course of the lactation spanning 4.0-6.0% S/P %.
Log-transformed S/P % also increased with parity. The log-transformed S/P % was 0.22 units higher for those cows in 5th or greater lactation. Fat and protein yields were both positively associated with log-transformed S/P %. Each additional kg increase in fat and protein was associated with a 0.65 and 0.13 unit increase in log-transformed S/P % respectively. A positive interaction was also identified between milk yield and protein yield indicating that unit increases in either variable were associated with higher increases in log-transformed S/P % as the value of the other variable increased.
Finally, Figures 4 and 5 show predicted S/P % by protein and fat yield respectively. S/P % increased in a curvilinear manner with increasing protein yield, whereas S/P increased linearly with increasing fat yield.
Impact of corrections on animal and herd-test classification
Table 2 shows the impact of correcting for non-disease-associated variables on the test status of individual animals. On raw interpretation, there were 126 positive tests, 137 suspect tests and 9,686 negative tests in primiparous animals. After correction, 20 animals changed category: 18 from suspect to negative and 2 from positive to suspect. For pluriparous cows, out of 25,945 tested, 447 were positive, 475 were suspect and 25,023 were negative on raw interpretation. After correction, on the initial raw interpretation, 92 animals changed category: 53 changed from suspect to negative; 17 changed from positive to suspect; 18 changed from negative to suspect and 4 changed from suspect to positive. 
<Table 2 here>
Table 3 shows the results of subsequent tests of animals that changed category. In the primiparous model, follow up testing was available for 8 animals. All 8 animals remained in the category to which they were changed to in the initial category change. In the pluriparous model, a subsequent test was available for 44 of the 92 cows that changed category. Overall, 27 cows were negative on a subsequent test, 6 were positive and 11 were suspect.
<Table 3 here>
Table 4 shows the impact of correcting for non-disease associated variables on the herd-test status, with herds classified as positive based on 1 or more animals testing positive. Out of 531 herd tests, 7 changed category with 2 changing from negative to positive and 5 changing from positive to negative. Of these 7, 6 were the result of a single animal changing status, in one case, the change in herd status was the result of 2 animals changing status after correction.
<Table 4 here>
Model cross-validation
Overall, the final models explained 5.1% of the variation in lnS/P % with a mean absolute error (MAE) of 0.50 lnS/P %. Ten-fold cross validation did not reveal overfitting of the models. In the pluriparous models, the mean R-squared across each of the cross validations was 4.7% (R-squared for full pluriparous model = 4.6%), with an average MAE of 0.51 (MAE for full model = 0.51). In the primiparous model, the mean R-squared across each of the cross validations was 4.5% (overall R-squared for full primiparous model 4.3%), with an average 0.51 (MAE for full model = 0.48)
DISCUSSION
Despite questions regarding their efficacy, test-and-cull remains an important aspect of paratuberculosis control programmes at farm level (McAloon et al., 2019b). However, the present study demonstrates that a range of factors other than infection status were associated with the antibody response in milk. 
Milk yield at test day was negatively associated with S/P %, which is in agreement with previous studies. Eisenberg et al. (2015) found that for each 5 kg increase in milk yield the natural log-transformed S/P % decreased by 0.12. In our study, the comparable decrease in milk production were 0.22 and 0.25 for pluri- and primiparous animals, respectively. This observation raises an interesting question regarding previous studies which aimed to quantify the impact of infection on milk production when case definitions are based on milk ELISA. For those studies, it would be expected to observe a decrease in milk production associated with infection status. However, our study raises the possibility of a contradictory and reverse association, i.e., cows with higher milk production have lower antibody values irrespective of infection status. This observation may explain part of the discrepancy between the production losses when infection status is classified using pathogen detection methods versus antibody detecting methods (McAloon et al., 2016). 
The association between DIM and antibody response has also been observed in previous studies. Nielsen et al. (2002) found that the odds of being positive on milk ELISA were highest in the first 2 weeks of lactation, declining to a nadir at 13-28 weeks in lactation before increasing towards the end of lactation. Subsequently, the same authors found that the increase in antibody response at the start of lactation was most pronounced during the first 7 DIM (Nielsen and Toft, 2012).
Eisenberg et al. (2015) modelled DIM as a categorical variable, rather than as a continuous variable as was conducted in this study. Nevertheless, the comparison between the results is noteworthy. Extrapolating from the categorical coefficients in their study, antibody response was highest in the first month of lactation, declining to a nadir between 211-240 days, with an increase towards the end of lactation. More recently, a US study found that the highest antibody response occurred during the first 60 DIM. However, the test value did not increase towards the end of lactation (Machado et al., 2018).
The reason for this observed response is not entirely clear. Nielsen et al. (2012) hypothesized that the increase in antibody response in the first 7 DIM was associated with binding of non-specific proteins to the ELISA plate, resulting in a falsely elevated result, although not all of the effect of yield was accounted for in that study. Other authors have related this observation to milk yield (Eisenberg et al., 2015). On a univariable analysis, it could be assumed that much of the effect of DIM is exerted through its effect on milk yield and solids concentration. However, since milk yield on test day was included as a covariate, this study suggests that DIM exerts an effect on antibody response outside of the effect of milk yield and fat and protein content. Interestingly, an earlier study examining raw IgG content by stage of lactation, found that IgG concentration was at a maximum from 15-49 DIM, reached a nadir from 110 to 219 DIM before increasing again towards the end of lactation, whilst accounting for milk yield as a fixed effect in the multivariable model (Liu et al., 2009).
We found a curvilinear association between milk SCC and S/P % with the largest increase in S/P % observed across the lower range of SCCs. Recently, a similar association has been identified in US dairy cows. When modelling SCC as a categorical variable, there was an almost linear association between increases in SCC category and S/P % (Machado et al., 2018). Similar to our study, this association was also found across the lower range of SCCs, in a range that is generally assumed to not be experiencing mastitis (i.e. <200 cells/mL). Frequently, it has been suggested that animals with MAP infection are likely to succumb to other infections such as mastitis. However, evidence for this association has been weak (McAloon et al., 2019a). Given that the association was primarily observed among the low range of SCCs, we present an alternative hypothesis that this observed association is not necessarily due to MAP infection resulting in immunosuppression and subsequent mastitis infection, but that factors which increase SCC at cow level, irrespective of mastitis status, may also increase the MAP antibody response, irrespective of MAP infection status. Interestingly this relationship has been observed for other diseases, for example ostertagiosis (Sanchez et al., 2004). 
The associations observed between milk solids content and antibody response are also interesting. Both fat and protein content were associated with an increase in log transformed S/P %. Nielsen et al. (2012) observed that antibody responses were increased in very early lactation. These authors hypothesized that this was the result of non-specific protein binding to the plate resulting in false positive test results. Since Irish cattle generally have higher solids concentration than production systems in other countries (Geary et al., 2010), it is possible that this effect is exacerbated in Irish dairy cattle.
The log-transformed S/P % increased with parity, being 0.22 units higher in lactation 5+ compared to 2. When all other variables were held at the median of the population, this equated to just greater than 1%-point increase in S/P %. The association between increasing parity and the S/P % may in some part be explained by the fact that animals that are older are more likely to be seropositive. However, many of the comparisons in this analysis are based on animals that are test negative. Therefore, this association is likely independent of test status, and potentially independent of infection status. An additional explanation for this could be that older cows produce milk with higher immunoglobulin levels as has been observed in other studies (Liu et al., 2009). It has been hypothesized that this relationship could result from greater levels of inflammation in the mammary gland of older cows, resulting in greater leakage of IgG from serum into milk in these animals (Sanchez et al., 2004).	Comment by Simon More: Conor, is this what is meant? I did not find it clear before.
Whilst these variables were found to be statistically significant, the final models had R-squared values of 4- 5%. The finding that only a small proportion of the variation in lnS/P % is explained by factors not directly associated with infection is perhaps expected given that the test is designed to detect differences in infection status only. Nonetheless, correcting for these non-disease associated factors has the potential impact of changing the status of a number of animals. Although, as a proportion of the overall animals tested, the proportion changing category is quite small, when considered as a proportion of animals testing non-negative on raw interpretation it is much higher. Furthermore, the impact of correcting animals at a herd level may be higher given that a single animal might change the test status for an entire herd. In practice these factors need to be balanced against the potential disadvantages of correcting test results such as the feasibility of its implementation and the practical difficulty in correcting, managing and communicating the output of such results. Ultimately, whether test results should be corrected or not should be considered in the context of the implications of such a herd test. 
Whilst we use the term “non-disease associated” and “not directly associated with the disease status” in this study, many of these factors are interrelated to some degree. For example, disease status may play a role in milk production which may then impact on the S/P ratio. Were the true disease status of individuals known, it would be possible to estimate these relationships after correcting for disease status. However, accurately classifying the paratuberculosis infection status of individuals is problematic (McAloon et al., 2019a) and we did not have adequate data to carry out this analysis. It should be noted that the apparent animal-level prevalence in our dataset was 1.8%. Previously, the true animal-level prevalence of paratuberculosis infection in Ireland was estimated at 3% (McAloon et al., 2016a).  Therefore, these findings could be expected to be reflective of uninfected cows.
It should also be noted that cut-offs for a particular test are chosen to optimize detection for the population that the test is applied to. In this case, we applied the same cut-off points to the corrected values as are advised for the uncorrected values. If correction was to become part of normal practice, then cut-off points may need to be optimized for corrected values.
We chose to model primiparous and pluriparous cows separately. This decision was made given the different shape of the lactation curve recognized in primiparous cows. An alternative method would have been to include both cohorts in the same model. However, in order to account for the different shape of the lactation curve in this group, an interaction would have had to have been included between each of the knots in the spline for DIM with each parity group. Due to concerns around overfitting and around increasing complexity of the model, we chose a simpler approach of using two separate models.
Finally, this study utilized data that only included recordings up to 305 days in milk. The availability of data from later stages of lactation may have aided in the generalisability of the study. However, an important focus of this study is to understand these associations in seasonal calving systems. In such systems lactations do not regularly exceed 305 days.
CONCLUSIONS
This study provides useful information to aid in the interpretation of antibody detecting test results for the presence of MAP infection. The MAP antibody response in Irish dairy cattle was negatively associated with milk yield and positively associated with milk fat and protein yield as well as log-transformed SCC. The effect of DIM varied over the course of the lactation. At the overall population level, correction of the antibody response for non-disease associated factors has the potential to change the status of only a small number of cows. At the herd level, the proportion of herds changing status was minimal. However, depending the implications of a herd-level serological diagnosis, consideration should be given to correcting for these non-disease associated variables within the context of national control programmes. 
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Table 1. Results of final multivariable models investigating the association between log-transformed somatic cell count and milk yield, log-transformed SCC, milk constituents, parity and DIM. Separate models were constructed for primi- (Model 1) and pluriparous (Model 2) cows.	Comment by NIELSEN Søren: You need to add the outcome variable, “Mycobacterium avium subsp. paratuberculosis milk ELISA status”

	
	Model 1 - Primiparous model
	Model 2 - Pluriparous model

	Variable
	Estimate
	95% confidence intervals
	SE
	Estimate
	95% confidence intervals
	SE

	Milk yield (kg)
	-0.054
	-0.063, -0.044
	0.005
	-0.055
	-0.061, -0.049
	0.003

	lnSCC
	0.280
	0.101, 0.459
	0.091
	0.181
	0.105, 0.258
	0.039

	lnSCC^2
	-0.024
	-0.044, -0.004
	0.010
	-0.014
	-0.022, -0.006
	0.004

	Protein yield (kg)
	1.155
	0.868, 1.442
	0.147
	0.655
	0.487, 0.822
	0.085

	Fat yield (kg)
	0.196
	0.066, 0.326
	0.066
	0.125
	0.068, 0.183
	0.029

	
	
	
	
	
	
	

	Parity 2
	
	
	
	
	
	

	Parity 3
	
	
	
	0.148
	0.129, 0.167
	0.01

	Parity 4
	
	
	
	0.202
	0.179, 0.225
	0.012

	Parity 5+
	
	
	
	0.223
	0.2, 0.246
	0.012

	
	
	
	
	
	
	

	bSpline(DIM, 1)
	-0.589
	-0.749, -0.430
	0.081
	-0.102
	-0.239, 0.035
	0.07

	bSpline(DIM, 2)
	-0.413
	-0.516, -0.310
	0.053
	-0.137
	-0.213, -0.062
	0.038

	bSpline(DIM, 3)
	-0.47
	-0.623, -0.318
	0.078
	-0.203
	-0.292, -0.114
	0.045

	bSpline(DIM, 4)
	-0.139
	-0.274, -0.005
	0.069
	-0.104
	-0.185, -0.023
	0.041

	bSpline(DIM, 5)
	
	
	
	-0.158
	-0.258, -0.059
	0.051

	bSpline(DIM, 6)
	
	
	
	0.208
	0.097, 0.32
	0.057

	bSpline(DIM, 7)
	
	
	
	0.081
	-0.047, 0.209
	0.065

	
	
	
	
	
	
	

	Milk yield (kg) x Protein yield (kg)
	
	
	
	0.014
	0.009, 0.018
	0.002


SE = Standard Error


Table 2. Impact of correcting for non-disease associated variables on test status of individual animals. Corrected results are predicted from the model after correcting each cow to the median of the population for each of the variables in the final model.	Comment by NIELSEN Søren: “Mycobacterium avium subsp. paratuberculosis milk ELISA status”
	
	
	Raw result

	
	
	Primiparous model
	Pluriparous model

	
	
	Negative
	Suspect
	Positive
	Total
	Negative
	Suspect
	Positive
	Total

	Corrected result
	Negative
	9686
	18
	0
	9704
	25005
	53
	0
	25058

	
	Suspect
	0
	119
	2
	121
	18
	418
	17
	453

	
	Positive
	0
	0
	124
	124
	0
	4
	430
	434

	
	Total
	9686
	137
	126
	9949
	25023
	475
	447
	25945





Table 3 Result of subsequent test for cows that changed category as a result of correcting for non-disease associated variables.	Comment by NIELSEN Søren: Add that it is from milk ELISA
	
	
	Subsequent test result

	
	
	Primiparous model
	Pluriparous model

	
	
	Negative
	Suspect
	Positive
	Negative
	Suspect
	Positive

	Change category 
(raw to corrected)
	Negative to Suspect
	0
	0
	0
	9
	3
	2

	
	Positive to Suspect
	0
	1
	0
	5
	0
	1

	
	Suspect to Negative
	7
	0
	0
	12
	6
	3

	
	Suspect to Positive
	0
	0
	0
	1
	2
	0





Table 4 Impact of correcting for non-disease associated variables on the herd-test status. A herd-tests is considered positive if at least one animal tests positive.

	
	
	Raw result

	
	
	Negative
	Positive

	Corrected result
	Negative
	308
	5

	
	Positive
	2
	216
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Figure captions
Figure 1 Predicted S/P ratio % from both primi- and pluriparous models with increases in milk yield (kg). All other variables in the model are held at the median of the population.

Figure 2 Predicted S/P ratio % from both primi- and pluriparous models with increases in log-transformed somatic cell count. All other variables in the model are held at the median of the population.

Figure 3 Predicted S/P ratio % from both primi- and pluriparous models over the course of the lactation up to 305 days in milk. All other variables in the model are held at the median of the population.

Figure 4 Predicted S/P ratio % from both primi- and pluriparous models with increases in protein yield (kg). All other variables in the model are held at the median of the population.

Figure 5 Predicted S/P ratio % from both primi- and pluriparous models with increases in fat yield (kg). All other variables in the model are held at the median of the population.
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