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Abstract
Objective.The detection of arterial pulsating signals at the skin periphery with
Photoplethysmography (PPG) are easily distorted by motion artifacts. This work explores the
alternatives to the aid of PPG reconstruction with movement sensors (accelerometer and/or
gyroscope) which to date have demonstrated the best pulsating signal reconstruction. Approach. A
generative adversarial network with fully connected layers is proposed for the reconstruction of
distorted PPG signals. Artificial corruption was performed to the clean selected signals from the
BIDMC Heart Rate dataset, processed from the larger MIMIC II waveform database to create the
training, validation and testing sets.Main results. The heart rate (HR) of this dataset was further
extracted to evaluate the performance of the model obtaining a mean absolute error of 1.31 bpm
comparing the HR of the target and reconstructed PPG signals with HR between 70 and 115 bpm.
Significance. The model architecture is effective at reconstructing noisy PPG signals regardless the
length and amplitude of the corruption introduced. The performance over a range of HR (70–115
bpm), indicates a promising approach for real-time PPG signal reconstruction without the aid of
acceleration or angular velocity inputs.

1. Introduction

Nowadays photoplethysmography (PPG) is a versatile wearable technology to monitor a variety of
physiological conditions such as blood oxygen saturation, heart rate (HR), blood pressure, cardiac output,
arterial stiffness and respiration (Allen 2007, Almarshad et al 2022, Charlton et al 2023, Ferizoli et al 2024).
This technology uses two optoelectronic components: a light source and a photodetector, where the light
sources illuminates the skin, and the transmitted or reflected light from the skin tissue is converted into an
electrical signal by the photodetector, to photocurrent linked with the blood volume changes. The waveform
of the signal detected by the photodetector is a peripheral pulse synchronized to each heartbeat. This
waveform comprises pulsating (AC) and non-pulsating (DC) components (Webster 1997, Caizzone et al
2019). The morphology of the pulsating components due to arteries shares the same frequency as the HR,
and the non-pulsating component can be due to the light reflected by static tissues such as bone, venous
blood due to physiological processes such as respiration, vasomotor activity and thermal regulation.
Furthermore, this DC component rises with movement between the sensor and the skin surface, where the
increase in the magnitude of this movement can distort the PPG signal, affecting the accuracy of the
physiological parameters extrapolated from this waveform such as the HR (Pereira et al 2020).
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Numerous techniques have been implemented to tackle motion artifacts. These techniques can involve
either software signal processing tools and/or hardware conditioning. Rudimentary software approaches
extend from the removal of the corrupted segments through manual identification and signal quality
assessment through classification methods (Asgari et al 2009, Sukor et al 2011, Pereira et al 2019). More
robust methods have also been developed to reconstruct the corrupted segments. Combining independent
component analysis and block interleaving with low pass filtering the motion artifact was reduced exploiting
the independence in the periodicity of the PPG signal (Kim and Yoo 2006); iterative motion artifact removal
using the singular spectral analysis algorithm for an accurate estimation of HR and SpO2 values (Salehizadeh
et al 2014); TROIKA (signal decomposiTion for denoising, sparse signal RecOnstruction for hIgh resolution
for spectrum estimation, and spectral peaK tracking with verification) (Zhang et al 2015); robust
preprocessing through wavelet denoising for HR estimation (Mullan et al 2015). PPG signal reconstruction
can be achieved through empirical mode decomposition (EMD) and discrete wavelet
transform (DWT) (Tang et al 2017), obtaining the relevant component of PPG signals when the noise degree
is low. Motion signals from accelerometers and gyroscopes have been used as a reference along with adaptive
filtering for motion artifact removal (Ribeiro et al 2023); auto-regressive model and Kalman filters have been
used for signal reconstruction correlating the signal using the preceding information, and filtering the
sudden movements at the same time (Nooralishahi et al 2019). Deep learning Techniques have also been
implemented to reconstruct PPG signals such as Autoencoders (Lee et al 2019, Jain et al 2024).

Moreover, generative models have become fundamental in the field of imaging, demonstrating
remarkable capabilities in improving image resolution, enhancing visual quality, and addressing specific
challenges such as restoring blurred regions, upscaling low-resolution images, and normalizing staining
colours (Seo et al 2021). For example, enhancing super-resolution performance and computational
efficiency, as seen in PCA-SRGAN (Dou et al 2020), which employs principal component analysis to reduce
the dimensionality of feature maps extracted from low-resolution images. Recent advancements in generative
models have further expanded their potential. For instance, cross-domain translation techniques, as
exemplified by CycleGAN (Dou et al 2020), enable image-to-image translation without the need for paired
datasets, thereby broadening their applicability across diverse imaging domains. Furthermore, the integration
of generative adversarial networks (GANs) with other generative frameworks, such as GPT and diffusion
models, has extended their utility to areas like natural language processing and audio generation (Bengesi
et al 2024). In the biomedical domain, novel implementations like Asymmetric CycleGAN networks have
been utilized for tasks such as smoke removal in endoscopic images (Zhou et al 2024). Similarly, in
photoplethysmogram (PPG) signal reconstruction, Cycle-GANs have been employed to convert PPG signals
into 2D representations for reconstruction using unpaired datasets (Zargari et al 2021). Additionally, Deep
Convolutional GANs (DC-GANs) have been trained on clean PPG signals to generate reconstructed signals
by averaging the predicted and raw data, resulting in improved reconstruction accuracy (Wang et al 2022).

However, the best performance overall in PPG signal reconstruction is still achieved with the aid of an
accelerometer and gyroscope (Zhang et al 2015). Whereas, the signal reconstruction using DC-GANs still
need to average the signal reconstructed with the raw data to improve its reconstruction. Considering these
drawbacks, there is still a need for solutions to receive a corrupted signal and recover the noisy parts without
using any additional parts of the signal or any other dependency from other signals such as ECG. This kind
of approach will be very useful for a real-time application since the read and recovery of the signal can be
done in a semi-continuous way, using a sliding window that the recovery system will process. Furthermore,
this approach would be beneficial for the cases where PPG measurements occur at remote locations inside
the body where with limited space the use of an accelerometer and/or gyroscope would be impossible at the
same location. This frequently happens when using optical fibre probes for physiological measurement
inside the trachea and oesophagus (Kyriacou 2005, Correia et al 2022).

The objective of this current study is to develop a GAN model trained with pairs of clean and noisy
signals and learn to recover a corrupted signal into a clean one. The methodology proposed is fully detailed
in the materials and methods section. It involves the selection of the PPG database, signal quality assessment
of this database to extract all the clean segments, followed by artificial corruption to obtain pairs of
corrupted and clean segments which are the inputs for training, validation and testing of the proposed
network which is a GAN with fully connected layers (FC-GAN). These results are evaluated in section 3 with
Bland–Altman analyses of the extracted HR along with different metrics: Euclidean Distance, signal to noise
ratio (SNR) and mean absolute error (MAE) comparing with ECG and PPG ground truth HR.

2. Materials andmethods

For the development of the learning model to reconstruct the corrupted signals, the pipeline presented in
figure 1 was developed.

2



Physiol. Meas. 46 (2025) 025008 I A Avila Castro et al

Figure 1. Pipeline of the methodology to develop a generative adversarial network with fully connected layers (FC-GAN) model
to denoise the corrupted PPG signals. This work was composed of three main steps: the development of a dataset of clean signals;
and the artificial corruption of those clean signals to create a pair of clean-corrupted signals to train the FC-GAN to learn how to
denoise the signals.

2.1. PPG database
The dataset used in this work was the BIDMC Heart Rate Dataset (Pimentel et al 2017), which is derived
from the larger MIMIC II waveform database. BIDMC Heart Rate Dataset comprises 7949-time series data
segments of 32 s window length from 53 patients. This dataset constitutes PPG signals sampled at 125 Hz
and HR values from ECG signals. The BIDMC dataset was segmented into 8 s segments, resulting in a dataset
with 31 796 segments.

2.2. Signal quality assessment
A signal quality assessment is performed to the BIDMC Heart Rate Dataset to extract the clean PPG signals.
The rationale behind the selection of clean signals is to create a dataset where the noise can be controlled to
generate a pairwise input to the proposed network, a corrupted PPG segment (input to be reconstructed)
along with the corresponding clean PPG segment (ground-truth/target). This dataset with noise control
relies on using clean segments to perform a controlled noise corruption where the target/clean signal is
known. To obtain a set with only clean segments a support vector machine (SVM) classification model was
implemented. This classifier uses five input features extracted from the PPG signals: the variation in Kurtosis,
the variation in Skewness, the variation in the approximate entropy of the cardiac cycles, the Shannon
entropy and the Spectral entropy (Mahmoudzadeh et al 2021). To train and test the SVM classifier, a small
set of 300 segments from BIDMC Heart Rate dataset with noisy and clean signal labels was generated with
manual labelling, identifying the clean and noisy PPG segments with small amplitude DC variations (DC
amplitude of maximum 16% to maximum amplitude overall of the whole segment) and not combined with
other higher-frequency signals. After this labelling criteria, the five features previously mentioned were
extracted for each segment. The training parameters of SVM classifier were a regularization parameter C =
0.1 and random state= 0 and the training and test sets were defined following 75:25 ratio. This trained SVM
classifier model was further applied to the extracted features of the rest of the dataset (31 496 segments after
excluding the number of segments used train and test the SVM classifier). After applying the classification to
the remaining 31 496 segments, clean PPG segments with a confidence score greater than 1.85 were selected
as clean PPG segments, resulting in a clean data set of 11 718 PPG segments.

The confidence of the classified clean segments was increased by only selecting the clean segments with a
confidence score above 1.85. To calculate this score, a decision function was applied to the classifier giving a
score to each segment classified. This score is calculated as the distance that separates the features of each
classified segment from the hyperplane. The larger values mean the features of the segment are farther from
this hyperplane of the support vector model and is classified with higher confidence. The calculated scores
varied from 0.03 to 2.25, where 1.85 demonstrated the score limit for a classification that best approximate
the criteria defined for clean PPG segments.

2.3. Artificial corruption of clean data set
An Artificial Corruption algorithm was implemented on the clean PPG signals previously identified by the
SVM classifier from the BIDMC dataset, to create a new dataset composed of clean and corrupted segments
to be used for training, validation, and testing of the FC-GANmodel. The corruption of the clean signals was
done at three different lengths to the last 2, 4, and 6 s. This algorithm first consisted in the random
generation of a sine wave with a normal distribution of frequencies between 0.01–10 Hz, frequencies usually
observed in PPG motion artifacts (Bagha and Shaw 2011, Rojano and Isaza 2016, Lee et al 2020) and four
different weight amplitudes (1, 0.5, 0.33, and 0.25). Finally, this randomly generated sine wave was added to
the last 250 (2 s), 500 (4 s), and 750 (6 s) data points of the clean segments, resulting in 3 types of corrupted
signals. The SNR of every PPG corrupted signal was determined. It is important to note that the noise from
the randomly generated sine wave corresponds to the range of frequencies 0.01–10 Hz, which is generally
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Figure 2. Generative adversarial network with fully connected layers (FC-GAN). The Generator uses an auto encoder structure
(encoder–decoder, each one of four layers, with LeakyReLU activation on the first three layers for both structures), and an
additional feature encoder structure is used to compare additional features between our target and reconstructed signal that aids
the optimisation of the generator Loss. Then the Discriminator consists of an encoder of four layers with Leaky ReLU layers in the
first three layers and a Sigmoid function in the fourth layer that aids the discrimination of the reconstructed signals by comparing
the target signal with the generated/reconstructed signal.

related to motion artifacts. However, this range of frequencies covers also the frequency of the baseline
wander noise (<0.1 Hz), the frequencies of the respiration-induced variations (0.1–0.5 Hz) and the
frequencies of the instrumentation noise (>5 Hz) (Awodeyi et al 2014).

2.4. FC-GAN approach
The FC-GAN model used in this work was inspired by Akcay et al (2018), Wang et al (2022), where they
implement the GANomaly architecture5 which consists in an Autoencoder as the Generator, followed by a
Feature Encoder to extract further information and an Encoder as the Discriminator to optimize the
reconstructed segment. This work is novel as it replaces the convolutional layers with linear layers (figure 2).
It is assumed that linear layers may offer advantages processing one-dimensional signals, with no spatial
hierarchy as they can easily capture global patterns and dependencies, treating all parts of the signal with
equal importance, connecting every neuron in one layer to every neuron in the next layer (Schwing and
Urtasun 2015, Vo and Lee 2018), in contrast to Convolutional Layers that prioritize local information which
it is useful in higher dimensional data. Single Layer Perceptron model, the basic structure of the linear layer
in fully connected layers has demonstrated its robustness to exploit the global information of one
dimensional data, utilising a diffuse reflectance spectrum to predict scattering and absorption coefficients
(Fernandes et al 2021).

The Generator follows an encoder–decoder structure where the encoder and decoder comprise both four
linear layers where in both cases the first three layers follow a LeakyReLU activation function. The feature
encoder has the same structure as the encoder of the Generator. The encoder of the discriminator consists of
four linear layers, where the first three include each a LeakyReLU activation function, while the last layer
follows a sigmoid function. All the LeakyReLU activation functions were set with a negative slope of 0.5 with
the operation in-place.

2.5. Loss functions
Two main loss functions were implemented Generator LG and Discriminator loss LD, similar to the
GANomaly approach implemented by Akcay et al (2018). The Discriminator loss was minimised at the first
iteration between batches, while the Generator loss was minimised in the remaining iterations in the training
period. The Generator loss is a weighted linear combination of an encoder loss Lenc, contextual loss Lcon, and
adversarial loss Ladv, for a batch of size N,

LG = wencLenc +wconLcon +wadvLadv. (1)

The encoder loss uses the outputs of the feature encoder (x, encoded features of the reconstructed signal
and y, encoded features of the target signal) into a Smooth L1 loss function. This function combines the

5 This work is available on https://github.com/openvinotoolkit/anomalib.
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advantages of both L1 loss (MAE) for large errors |xn − yn|⩾ β and L2 loss mean squared error (MSE) for
small errors |xn − yn|< β, using β as a regularisation parameter,

Lenc = ℓ(x,y) = {l1, . . ., lN}T (2)

ln =

{
0.5(xn − yn)

2
/β, if |xn − yn|< β

|xn − yn| − 0.5×β, otherwise.

The contextual loss takes the output of the reconstructed x and the target signal y to compute the
negative value of the SNR,

LSNRcon=−SNR(x,y) =−10log10

(
Py

Pnoise

)
(3)

where, Pnoise = noise2, Py = y2, noise= y− x.

The adversarial loss used the outputs of the Discriminator and computes a MSE loss.

Ladv = ℓ(x,y) = {l1, . . ., lN}T , (4)

ln = (xn − yn)
2
.

Meanwhile, the Discriminator loss uses the output of the Discriminator layers to compute a binary
cross-entropy loss between the target and reconstructed input probabilities,

LD = ℓ(x,y) = {l1, . . ., lN}T , (5)

ln =−yn · logxn +(1− yn) · log(1− xn) .

2.5.1. Implementation details
The Smooth L1, MSE and binary cross-entropy losses were implemented using the Pytorch libraries of each
function. The β value for Smooth L1 loss function was set by default 1.0.

The Discriminator loss uses as an input the binary output of the Discriminator model which judge if the
reconstructed segments look like real or fake. Meanwhile, the Generator loss uses as an input the encoded
features of the reconstructed segment. During the training stage, the model alternates between training the
Discriminator loss (first iteration) and the Generator loss (subsequent iterations). This balances the learning
of both optimizations to prevent one from overpowering the other.

2.6. Training and application
To train the FC-GAN model to denoise the PPG artificial corrupted segments, the input pairs: artificial
corrupted PPG segments, and the correspondent target clean PPG segments were normalized in a range from
0–1 using z-score standardization. The distribution of data among the training, validation, and test sets
followed an 80:10:10 ratio. The training set consisted of 9376 inputs. The training process ran 1000 epochs in
total with a batch size of 356. Adam Optimizer from Pytorch library (Paszke et al 2019) was used as an
optimization algorithm, with the Generator and Discriminator learning rates were set at 1× 10−4, β1 = 0.5
and β2 = 0.999. These parameter values showed the best convergence rates among different combinations
tested.

The validation process was performed on 1172 input pairs, 10% of the dataset. The trained parameters
were saved for the testing process and the remaining 10% of the dataset was tested. For every reconstructed
segment after introducing the corrupted segments to the model in the testing phase, the SNR was
determined.

3. Results and discussion

3.1. Performance metrics
The performance of the methodology proposed was analysed through different approaches. Figure 3 shows
four different examples of PPG signal reconstruction, comprising examples that show the capacity to recover
from noisy signals (figures 3(a) and (b)) being able to extract similar HR as the fiducial points of the PPG
pulses matches. The degradation of the capacity of reconstruction in figure 3(b) can be attributed to the
corruption of the signal at a lower frequency within the frequency of the HR. On the other hand, figures 3(c)
and (d) depicted the worst scenario where the reconstruction of the PPG signal struggled to match the
fiducial points of the clean PPG signal. It is noted that in this scenario the target HR were 63.5 bpm and 123

5



Physiol. Meas. 46 (2025) 025008 I A Avila Castro et al

Figure 3. Example of the original signal (clean) marked as blue, the corrupted marked as red, and the reconstructed one marked
as green, for the different values of HR. (a) PPG signals corrupted in last 6 s. The recovered HR was 88.24 bpm for a target HR
88.24 bpm, the SNR improved from−8.44 (noisy signal) to 9.95 (recovered signal), the frequency of the noisy signal is around 2
times higher than the frequency of the target PPG signal. (b) PPG signals corrupted in last 4 s. The recovered HR was 94.95 bpm
for a target HR 93.17 bpm, the SNR improved from−1.87 ( noisy signal) to 12.02 (recovered signal), the frequency of the noise
signal is around 3 times higher than the frequency of the target PPG signal. (c) PPG signals corrupted in last 4 s. The recovered
HR was 75.76 bpm for a target HR 63.56 bpm, the SNR improved from−6.3 (noisy signal) to 3.31 (recovered signal), the
frequency of the noise signal is around 10 times higher than the frequency of the target PPG signal. (d) PPG signals corrupted in
last 4 s. The recovered HR was 114.51 bpm for a target HR 123 bpm, the SNR improved from−9.37 (noisy signal) to 5.56
(recovered signal), the frequency of the noise signal matches the frequency of the target PPG signal.

bpm, representing cases at the limits of human HR taking into consideration the population of HR used for
the training phase.

Two Bland–Altman analyses were performed to compare the measurement of HR from the PPG signal
(original and reconstructed) and ECG. The first Bland–Altman plot (figure 4(a)) compares the HR from the
reconstructed PPG signals and ECG HR from the BIDMC Heart Rate Dataset. The second Bland–Altman
plot (figure 4(b)) compares the HR from the reconstructed PPG signals and the HR from the target PPG
signals. Furthermore, a correlation analysis (figure 4(c)) between the reconstructed PPG signals and the HR
from the target PPG signals was computed. From figures 4(a) and (b), it was noticed a large difference
(greater than±32 bpm) between reconstructed and target HR under certain circumstances when the target
PPG HR was outside the range between 70 and 115 bpm as it is observed in figure 4(c).

Figure 5 shows the HR distribution of the training and testing set, where the distribution of the ECG HR
of the training set differs from the distribution of the ECG HR of the testing set, which explains why the
developed model lacks performance outside the range between 70 and 115 bpm since it did not have enough
data to be trained under these scenarios.

The results from the test set were evaluated by computing the Euclidean Distance between the PPG
reconstructed signal and the PPG target signal. The SNR of the reconstructed signal was also computed.
Moreover, two different MAE were calculated. The first was by comparing the HR of the PPG reconstructed
signal and the ECG HR from the BIDMC Heart Rate Dataset, and the second MAE value was by comparing
the HR of the PPG reconstructed signal and the HR of the target PPG signal. After noticing the pattern of the
reconstruction results were divided into two sets. Set 1 corresponds to the population of signals from the
testing set within a HR between 70 and 115 bpm, where the model showed a significant in reconstruction
(average Euclidean Distance between clean and reconstructed PPG signal of 3.85 and MAE of the
reconstructed PPG HR against the clean PPG HR of 1.31 bpm). Set 2 corresponds to the population of
signals from the testing set with a HR outside the range between 70 and 115 bpm, in this case the model

6
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Figure 4. Comparing HR of PPG and ECG signals. (a) Bland Altman analysis between ECG and reconstructed PPG HR. (b) Bland
Altman analysis between target and reconstructed PPG HR. (c) Correlation analysis between ECG and PPG reconstructed HR.
The Bland Altman plot shows a great amount of data (69% in (a) and 67% in (b) from the total of the test set) inside the limits of
±1.96 SD. The values outside of the limit follow a distribution that is not verified in the training dataset, and probably, for this
reason, the reconstructed signal was not so well reconstructed. SD: Standard Deviation.

showed a poor reconstruction (MAE of the reconstructed PPG HR against the clean PPG HR of 29.1 bpm
and a Euclidean Distance between signals of 9.5) due to a lack of generalization in the training set. Table 1,
shows the results for these different sets considering all the signals with different lengths of corruption (2, 4,
6 s) at different amplitudes of corruption (weight= 1, 0.5, 0.33, and 0.25). Table 1 synthesises the results at
all different combinations where the mean Euclidean Distance was 3.85± 1.33 for Set 1 and 9.5± 0.97 for
Set 2. The mean SNR was 11.8± 2.4 for Set 1 and 3.55± 0.95 for Set 2, the MAE against ECG HR is 12.8
bpm for Set 1 and 20.8 bpm for Set 2 and the MAE against target PPG HR is 1.31 bpm for Set1 and 29.1 bpm
for Set 2. The metrics were also computed for all different cases (lengths and weight of corruption) where
there is no significant variation between these cases. Table 2 shows an example of the metrics computed for
all different corrupted lengths (2–6 s), where the amplitude of the corruption was assigned a weight= 1.

3.2. Comparison with previous works
Table 3 describes the state of the art of the outcomes in PPG signal reconstruction. These articles were
selected since they share the same objective as this work proposes, besides the metrics employed by the
authors are comparable with the implemented in this work.

Kim and Yoo (2006) combined independent component analysis (ICA) and a signal enhancement
method to separate the PPG signals from the motion artifacts. They obtained a Mean Squared Error (MSE)
from 0.4–4 between the reference and reconstructed PPG signals. The MSE increased as the power of the
motion artifacts and the amount of frequency overlapping the clean signal and the motion artifacts increased.

Salehizadeh et al (2014) used an iterative motion artifact removal (IMAR) approach, using singular
spectral analysis to reduce motion and noise artifacts. They found a statistical significance p> 0.05 in the HR
of the reconstructed signals in 7 out of 9 subjects.

7
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Figure 5.Histograms of HR in training and testing data sets from ECG and Reconstructed PPG signals. (a) ECG HR histogram in
BIDMC Heart Rate training set. (b) ECG HR histogram in BIDMC Heart Rate testing set. (c) Reconstructed PPG HR histogram
in the training set.(d) Reconstructed PPG HR histogram in the testing set.

Table 1. Assessment of the quality of the recovery signal based on different metrics. Set 1 corresponds to the population of signals from
the testing set within a HR between 70 and 115 bpm and Set 2 corresponds to the population of signals from the testing set with a HR
outside the range between 70 and 115 bpm.

Metric Set 1 Set 2

Euclidean Distance 3.85± 1.33 9.5± 0.97
SNR(dB) 11.80± 2.4 3.55± 0.95
MAE (against ECG HR) 12.8 bpm 20.8 bpm
MAE (against PPG HR) 1.31 bpm 29.1 bpm

Table 2. Dataset with the last 2, 4, and 6 s corrupted, weight= 1.

2 s 4 s 6 s

Metric Set 1 Set 2 Set 1 Set 2 Set 1 Set 2

Euclidean Distance 4.22± 1.58 9.71± 1.08 4.27± 1.94 9.64± 1.24 3.88± 1.17 9.22± 0.63
SNR(dB) 11.05± 2.67 3.37± 1.19 11.08± 2.9 3.45± 1.25 11.67± 2.37 3.88± 0.99
MAE against ECG HR (bpm) 12.76 20 12.9 19.68 12.83 20.7
MAE against PPG HR (bpm) 1.43 27.65 1.66 28.86 1.35 25.9

Mullan et al (2015) used a wavelet-based denoising method with the aid of acceleration data, they
evaluated the performance of the HR and reached a MAE 1.96± 2.86 bpm and Pearson correlation
coefficient r = 0.98.

Zhang et al (2015) combined ensemble empirical model decomposition with spectrum subtraction
technique along with acceleration signals. They calculated an average absolute error (Aerror) across 12
subjects 1.83± 1.21 bpm, average percentage error of 1.40% and Pearson correlation coefficient of r = 0.989.
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Table 3. Results comparison of the state-of-the-art techniques for denoising PPG signals with motion artifacts. Different metrics were
employed by these authors for performance evaluation, mean squared error (MSE) by Kim and Yoo between the reference and denoised
PPG signal, mean absolute error (MAE) by extracting the HR of the reconstructed PPG signals. Average absolute error (Aerror) and
Average percentage error, Bland–Atlman, and Correlation analysis with the HR extracted from the reconstructed PPG signals. Mean
Sum Error (MSumE) by Tang between the reference HR and the HR of the reconstructed PPG signal. peak-peak error (PPE) and root
mean squared error (RMSE) between the generated and reference signals.

Paper Method Outcome

Kim and Yoo (2006) ICA MSE 0.4–4
Salehizadeh et al (2014) IMAR HR with p> 0.05 in 7 out of 9 subjects
Mullan et al (2015) Wavelet and acceleration MAE 1.96± 2.86 bpm r = 0.98
Zhang et al (2015) EMD and acceleration Aerror: 1.83± 1.21 bpm Average error%: 1.4 LOA:−7.56, 6.61 bpm

σ= 3.62 r = 0.989
Tang et al (2017) DWT & EMD MSumE 2.95–32.24 bpm
Lee et al (2019) BRDAE 7.9 dB SNR improved
Zargari et al (2021) CycleGAN PPE: 0.95 bpm RMSE: 2.18 bpm
Wang et al (2022) DC-GAN PPE:.7–1.9 s

Tang et al (2017) combined DWT and EMD to reconstruct corrupted PPG signals and evaluated its
performance with the Mean Sum Error (MSumE) of the HR estimated, the MSumE varied from 2.95 bpm to
32.94 bpm. Lee et al (2019) used a Bidirectional recurrent auto-encoder (BRDAE) obtaining an average SNR
improvement of 7.9 dB in the validation set. Zargari et al (2021) used a Cycle Generative Adversarial
Network and obtained a peak-to-peak error (PPE) of 0.95 bpm and RMSE of 2.18 bpm. Wang et al (2022)
proposed DC-GAN, where the PPE varied from 0.7 to 1.9 s.

Current results in the trained scenario (Set 1) are comparable to these results obtained in the previous
works in particular to Mullan et al (2015) and Zhang et al (2015) where they obtained a MAE of 1.96 bpm
and Aerror of 1.83 bpm while in our case is 1.31 bpm. The main advantage of our approach is that we are not
aiding the reconstruction with an accelerometer signal to gain an effective reconstruction. However, the
downside of the developed methodology is the generalization since the uneven HR distribution of our
dataset lacks signal outside 70 and 115 bpm.

Furthermore, the DC-GAN (Wang et al 2022) and Cycle GAN (Zargari et al 2021) networks were
implemented to test our designed corrupted datasets for a fair comparison with our proposed model
(FC-GAN). For the implementation of the DC-GAN and Cycle GANmodels, these networks were adapted to
our designed dataset by modifying the dimension of the input and output layers (both considering an input
and output of 8 s) to match the length of the input pairs of our dataset. Additionally, in the Cycle GAN
approach after the signal to image transformation, the image was resized from 1000 to 128 pixels to reduce
the computational demand. Also, it was noticed that this model had better performance with a smaller
training set of 870 segments than with training set size used for DC-GAN and FC-GAN models (9376
segments).

Table 4 shows the different metrics (Euclidean Distance, SNR and MAE against ECG and PPG HR) used
to compare the performance of the different network models with our designed datasets with different
lengths of corruption (2, 4, 6 s) at different amplitudes of corruption (weight= 1, 0.5, 0.33, and 0.25). Our
proposed network (FC-GAN) demonstrates the lowest Euclidean Distance 3.85± 1.33 between the target
and reconstructed signals, while DC-GAN reconstruction shows the largest Euclidean Distance with big
error (13.4± 17.08). When comparing the SNR of the reconstructed signals the best SNR 11.80± 2.4 is
shown in our proposed methodology (FC-GAN). In this case the SNR from DC-GAN and Cycle GAN have a
difference of 1 dB where the Cycle GAN SNR shows less standard deviation. Evaluating the MAE against
ECG HR the best performance was achieved by the Cycle GAN network with 9.65 bpm. Finally, when
comparing the MAE against ECG HR the best performance was achieved by the DC-GAN model with 1.13
bpm, however with a difference of 0.20 bpm when compared with our proposed methodology.

3.3. Model’s runtime
The real-time application of the FC-GAN model is evaluated by evaluating the execution runtime to
reconstruct the signals of the designed datasets with different lengths of corruption (2, 4, 6 s) at different
amplitudes of corruption (weight= 1, 0.5, 0.33, and 0.25). This runtime test was run on a computer with an
Apple M2 Pro processor with 32 GB of RAM (only using the CPU). Overall, the mean (±std) time to
reconstruct 8 s of signal at 125 Hz to the FC-GAN model proposed takes 18.637± 0.265 ms. Moreover, when
comparing this reconstruction time on the same set of signals with others’ networks from the literature
(DC-GAN (Wang et al 2022) and Cycle-GAN (Zargari et al 2021)). DC-GAN’s runtime is 24.486± 0.643 ms
and Cycle-GAN’s runtime is 1845.557± 103.597 ms. The runtime of the FC-GAN model demonstrates to be
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Table 4. Results comparison of the implementation of Cycle GAN (Zargari et al 2021), DC- GAN (Wang et al 2022) and FC-GAN
(proposed methodology) models using the same metrics in our designed corrupted datasets, Set 1 with HR between 70 and 115 bpm.
Overall the best performance is shown in FC-GAN model considering all the metrics. However, the best MAE against ECG HR is shown
by the Cycle GAN model 9.65 bpm and the best MAE against PPG HR is shown by the DC-GAN model 1.13 bpm with a difference 0.20
bpm with our proposed method FC-GAN with a MAE against PPG HR 1.31 bpm.

FC-GAN
Metric CycleGAN DC-GAN (proposed model)

Euclidean Distance 5.45± 0.94 13.4± 17.08 3.85± 1.33
SNR(dB) 9.12± 1.29 8.12± 3.13 11.80± 2.4
MAE (against ECG HR) 9.65 bpm 12.58 bpm 12.8 bpm
MAE (against PPG HR) 2.48 bpm 1.13 bpm 1.31 bpm

the fastest model among the other GAN-based models tested, the architecture of the FC-GAN model is the
less complex among these models as it uses only linear layers and supports the ability to reconstruct the
signal in real time since the delay to reconstruct the signal is approximately 429 times smaller than the size of
the reconstruction.

3.4. Limitations and future work
The current work presents limitations, that have an impact on the results achieved. The dataset available to
train the model was limited by a range of HR, between 60 to 120 bpm. The limits of the HR used for training
the model generate a learning model that presents difficulties to recover signals outside of this range. This is a
very common issue of deep learning models and is characterized by the lack of generalization for
distributions out of the distribution. The distribution represented in figure 5 shows a different distribution
of the test set compared with the training set used to train the learning model. Deep learning has achieved
great performance based on independent and identically distributed (IID) assumptions, but the application
of DL is more challenging for out-of-distribution (OOD) scenarios (Wu et al 2022, Zhang et al 2023).

The dataset used in the current work may not cover all the heterogeneities that can exist in the
population, associated with all pathological cases and especially related to cardiovascular diseases that are
responsible for the main changes in the PPG signal, such as the arrhythmias.

The combination of the recovery model with a noise selector can be helpful. A previous selection of the
signals that need to be recovered will decrease the number of segments processed and can make the system of
acquisition and processing more efficient for real-time analysis.

4. Conclusions

A FC-GAN was proposed for the first time to reconstruct PPG signals with motion and noise artifacts. Linear
layers may offer advantages processing one-dimensional signals, as they can easily capture global patterns
and dependencies, giving equal importance to the whole signal, in contrast Convolutional Layers tend
prioritize local information with more relevance in higher dimensional data. Clean signals from BIDMC
Heart Rate Dataset were extracted and artificially corrupted to train, validate, and test the proposed network.
The developed approach showed great capability to reconstruct the PPG signal with a MAE of 1.31 bpm,
particularly between HR of 70 and 115 bpm, based on the distribution of the ECG HR of the training set.
Outside this range, the performance of the reconstruction is significantly reduced by a ratio of 22. Tackling
the generalisation of the trained dataset might overcome this issue. Moreover, the FC-GAN along with the
training framework, using a noise artificial controlled dataset demonstrated to be a promising approach to
reconstruct corrupted PPG signals in real time, where it demonstrated the capability to reconstruct 8 s of
signals in 18.637± 0.265 ms. The significant performance of this method is comparable with the state of art
of techniques that reached a significant performance with the aid of acceleration signals.

Additionally, for a fair comparison with the other state of the art of GAN techniques, the designed dataset
was used for signal reconstruction in DC-GAN and Cycle GAN models. The Cycle GAN implemented model
shown insights to be a robust network for signal reconstruction, however this robustness was not fully
exploited, the segments of the inputs from the dataset to the model had to be resized from 1000 to 128 pixels,
as it requires high computational resources for training and application, making it at the same time less
suitable for real-time signal reconstructions compared with DC-GAN and FC-GAN models. The
implemented DC-GAN shows the lowest MAE against PPG HR (1.13 bpm). However, this same
performance was not seen with the Euclidean Distance between the reconstructed and target signals and SNR
of its reconstructed signals where the proposed FC-GAN model outperformed and its MAE differs by 0.20
bpm compared with DC-GAN.
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Data availability statement

The data used in this study is publicly available through the PhysioNet repository. The BIDMC PPG and
Respiration Dataset can be accessed at https://physionet.org/content/bidmc/1.0.0/. Researchers can freely
download the data by agreeing to the PhysioNet data usage terms.
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