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Abstract—Blood vessel segmentation helps to know the
progress of the disease during diagnosis. The presence of intensity
in-homogeneity, conglutination tissue and noise in medical images
has led to difficulty in extraction of different sizes of blood
vessels, difficulty in separating vessels for further analysis (such
as quantification of angiogenesis), difficulty in distinguishing
vessels from non vessels. Most of the available techniques are
2D-based. Despite the fact that 2D-based segmentation is easy,
it doesn’t provide full information about anatomic structure.
Most of the available 3D vessel segmentation techniques require
human intervention and fail to segment different sizes of vessels.
In this paper, a 3D hybrid approach for segmentation has
been developed, based on white top hat scale space bilateral
hessian vessel enhancement filter and hysteresis threshold method
combined with multi-threshold Otsu method. The hybrid method
can address noise and intensity in-homogeneity problem, as a
result, more vessels of different sizes are detected. The method
can also incorporate spatial information, abnormalities in the
vessels are detected. Vessels of different sizes are separated
to ease further analysis. Conglutination tissue (that obstruct
segmentation process) is eliminated to ease extraction of different
sizes of vessels.

Index Terms—three-dimension, segmentation, medical imag-
ing, blood vessels, image processing

I. INTRODUCTION

Blood vessel segmentation is important for diagnosing car-
diovascular disease, monitoring treatment response and for
treatment planning, including angioplasty and emergency stent
placement [1], [2], [3], [4], [5]. In clinical practice, this is
based on static 3D images which allow a more specific analysis
of surgical outcome as compared to dynamic images [6].
Dynamic images are used to determine the presence of in-
stability. But manual vessel segmentation is time-consuming,
prone to errors and often requires manual user intervention.
Therefore, automated methods are indispensable. In previous
work, approaches introduced for vessel segmentation employ
model based approaches [7], [8], [9], [10], [11], graph based
approaches [12], [13], [14], [15], [16], [17], [18], [19], [20],
tracking based approaches [21], [22], [23], [24], [25], [26],
and level set approach [27], [28], [29], [30], [31], hessian

based approaches [32], [33], [34], [35], [23], [36]. However,
these approaches are slow, computationally expensive, involve
human intervention, face difficulty in distinguishing vessels
from non-vessels and segmenting different sizes of vessels
due to presence of conglutination tissue [37], intensity in-
homogeneity and noise. In addition, some of these approaches
have been developed only for 2D images while others that
claim to be 3D based, segment 2D slices of 3D image data
and later reconstruct 2D image planes in to 3D image which
lead to inconsistencies in results [7], [38], [39], [40], [41]. Fur-
thermore, some of these approaches segment parts of vessels
rather than the whole organ vasculature. Fig. 1, demonstrates
the intensity in-homogeneity problem in 3D brain images.

Fig. 1. Illustration of intensity in-homogeneity in MRI brain image planes

In this paper, a hybrid approach has been developed based
on white top hat scale space bilateral hessian vessel enhance-
ment filter and combination of hysteresis threshold method
and multi-threshold Otsu method for extraction of the full
organ vasculature in medical images that suffer from intensity
in-homogeneity problem and noise. The major idea of this
algorithm is as follows: we have segmented different sizes
of vessels using different methods. white top hat scale space
bilateral hessian vessel enhancement filter (WTHBHVEF) is
used to segment small to medium vessels, multi-threshold
Otsu method combined with hysteresis threshold method are
used to extract medium to big vessels. Image addition oper-
ation is employed to obtain a whole human or animal organ
vasculature. This is done to exploit the capabilities of each



method. For example, multi-threshold Otsu method lead to
incorporation of spatial information and also extraction of
strong edged big to medium vessels. Hysteresis threshold
method is combined with multi-threshold Otsu method during
segmentation of big to medium vessels to deal with problem
of cutting vessels. As compared to white top-hat scale space
hessian vessel enhancement filter (WTHHVEF) in [41], white
top hat scale space bilateral hessian vessel enhancement fil-
ter (WTHBHVEF) analyze the local behaviour of an image
using second order information (Hessian) of white top-hat
morphological operation and bilateral filter method rather than
only white top-hat morphological operation during extraction
of small vessels. This enables us to address intensity in-
homogeneity problem, noise as well as maintain size and shape
of small vessels. Compared to other segmentation algorithms,
this algorithm has given better result. For example, the method
is able to deal with intensity in-homogeneity and noise as a
result more vessels are detected. The method is capable of
eliminating the skull to ease further analysis. The method
is able to separate different sizes of vessels to ease further
analysis during quantification of angiogenesis. The method
incorporates spatial information, abnormalities in vessels are
evident. The method guarantees high quantification or classi-
fication accuracy, as the method uses bilateral filter which is
more accurate than Gaussian filter [42]–[45].

The rest of the paper is structured as follows: Section
II discusses the proposed methodology; Section III presents
the experimental results; Section IV discusses segmentation
results; Section V concludes the paper.

II. METHODS AND MATERIALS

In order to avoid false detections during segmentation of
blood vessels, the images are segmented while considering
the fact that we are extracting vessels from three dimensional
images with intensity variations.

In our approach, segmentation is carried out two times to
ensure extraction of vessels of different sizes. Compared to the
method in [41], this method takes advantage of WTHBHVEF
during the extraction of small to medium vessels and hysteresis
thresholding method with multi-threshold Otsu method during
the extraction of big to medium vessels. Image addition
operation is performed to generate a whole human or animal
organ vasculature.

A. Multi-threshold Otsu Method

Spatial information is an important aspect as it can improve
outbreak detection performance [46]. we chose to utilize 3D
multi-threshold Otsu method, which utilizes spatial infor-
mation during segmentation. By using multi-threshold Otsu
method, we are also benefiting from other advantages such
as it is fast [47], [41], [48], [49], consumes less storage
space [50], [51], ease of implementation [52], [51], [53], [48],
[54], [55], [56], [57], [58], [59] and noise resistance [59].

Multi-threshold Otsu method is an adaptive threshold seg-
mentation method that divides the grayscale image in to two
classes (namely background and foreground) basing on the

image characteristics. The class error is used to show the
difference between the classes. The higher the error the more
the objects are unlikely to belong to the same class, whilst on
the other-hand the lower error the more the objects are likely
to belong to a different class [54], [41]. Like other methods,
multi-threshold Otsu method has its shortcomings such as the
problem of cutting vessels. Compared to the method in [41],
we combine hysteresis thresholding method in [60] with multi-
threshold Otsu method in [54], [41] to deal with the problem of
cutting vessels to detect more vessels. Hysteresis thresholding
method is also used to get rid of the skull for proper diagnosis
and further analysis. We used Multi-threshold Otsu method in
[54], [41].

B. Hysteresis thresholding

In medical image analysis, a method that can segment
different sizes of vessels is considered ideal as it helps
during diagnosis in cases where angiogenesis is involved to
determine the patients response to treatment. We therefore
employ hysteresis thresholding to be used with multi-threshold
Otsu method to ensure accurate extraction of big to medium
vessels. Hysteresis thresholding has consistently been able to
outperform absolute thresholding methods because of capa-
bility to deal with uncertainties during edge detection. It also
detect absence of pixels in true edges even in presence of inten-
sity in-homogeneity [61]–[65]. We use hysteresis thresholding
method in [60].

C. White top-hat scale space bilateral hessian based vessel
enhancement filter

One of the challenges faced by researchers is segmenting
and maintaining edges of small vessels especially in presence
of intensity homogeneity and noise. we utilize white top-hat
scale space hessian based vessel enhancement filter in [41]
because of its capability to separate different vessels, enhance
edges, correct illumination to uncover the objects rendered
absent in the images and also get rid of unwanted tissues in
MRI image [41], [66]–[68].

A multiscale approach is employed with the aim of ex-
tracting detailed information at various scales. The size of
structuring element depends on the scale (scale specified in
Frangi hessian based vessel enhancement filter). Increase in
the scale leads to increase in the structuring element allowing
detailed extraction of information at various scales. In this
paper, we have used a disk structuring element [69]. Given
Frangi hessian based vessel enhancement filter scale space of
levels n=1,2,...,L. Where a level with index L corresponds to
a white top-hat transform with structuring element size Kn.
Kn increases with increase in L. A white top-hat scale space
morphological operation WTHn is given by:-

WTHn = I − (I ◦Kn) (1)

Where I is the image, Kn denote the structuring element used
at level n.

In white top-hat scale space hessian based vessel enhance-
ment filter [41], the local behaviour of an image is analyzed
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using second order information (Hessian) of white top-hat
morphological transform operation rather than Gaussian con-
volution. The eigenvalues obtained from hessian matrix are
used to extract tubular structures (vessels). The hessian matrix
at point x at scale n, is given by:-

H(I, x) =
∂2In
∂x2

= I(x)× ∂2WTHn(x)

∂x2
(2)

where WTHn = I −M(I).
Compared to equation(2), Our equation(3) incorporates bi-

lateral filter to build and maintain strong edges of small
vessels as well as deal with the noise introduced by top-hat
morphological transform operation during segmentation.

H(I, x) =
∂2In
∂x2

= I(x)× ∂2WTHn(x)Bn(x)

∂x2
(3)

Where Bn is bilateral filter in equation (6).
To distinguish tubular structures from blob-like or plate-like
structures and background. A dissimilarity measure in equation
(5) is used.

f(x) =

{
0, ifλ2 > 0 or λ3 > 0(

1− exp
(
− R2

a

2α2

))
exp
(
− R2

b

2β2

)(
1− exp

(
− S2

2C2

))
(4)

where
S =

√
λ2

1 + λ2
2 + λ2

3 , Ra =
∣∣∣λ2

λ3

∣∣∣,∣∣∣∣ λ1√
|λ2λ3|

∣∣∣∣
The above vesselness measure uses filter responses at
different scales taking the maximum response:-

VF (X) = max
δmin≤δ≤δmax

f(x) (5)

D. Bilateral Filter

One of the main challenges faced during segmentation is
denoising and maintaining edges of small vessels. Some of the
available denoising techniques fail to maintain edges of small
vessels while denoising, others that succeed in keeping vessels
end up changing the size and shape of vessels which in turn
lead to poor quantification results, for example recently [42]
compared the impact of Gaussian and bileteral filter on quan-
tification results. Both methods were able to denoise images
however, the quantification results showed that bilateral filter
was able to filter the image without changing size and shape
of the object.

Bilateral filtering is a non-local diffusion process that was
proposed by Tomasi and Maduchi [70], [45]. Unlike Gaussian
filter, Bilateral filter uses two Gaussian filter components to
guide diffusion during vessel segmentation [43]–[45]. The
Gaussian function of space used in bilateral filter ensures
that only pixels in a spatial neighbourhood are considered
while Gaussian component employed to address intensity in-
homogeneity ensures that only pixels of similar intensities are
considered to compute the blurred intensity value to avoid
blurriness and also preserves size and shape of edges of

vessels [43], [44]. Bilateral filter is also widely used because of
its capability to denoise the image even in presence of intensity
in-homogeneity [45]. In this paper, we use the bilateral filter
in [45]. The bilateral filtering B of an image f(i) : i∈I, I
being the finite rectangular domain of Z2 is given by [45]:-

fB(i) =

∑
j∈Ω w(j)gσr(f(i− j)− f(i))f(i− j)∑

j∈Ω w(j)gσr(f(i− j)− f(i))
(6)

where
gσr(t) = exp

(
− t2

2σ2
r

)
(7)

The spatial filter is a Gaussian:

w(i) = exp
(
− ‖i‖

2

2σ2
s

)
(i ∈ Ω) (8)

The domain Ω of the spatial kernel is a square neighbourhood,
Ω = [−W,W ]× [−W,W ], where W = 3σs for the Gaussian
filter. The translated kernel gσr(t− τ) in equation(10) can be
written as

gσr(t− τ) = exp
(
− t2

2σ2
r

)
exp
(
− t2

2σ2
r

)
exp
( tτ
σ2
r

)
(9)

where t = f(i− j) and τ = f(i). For a fixed translation
τ , there are three function t. The performance of the filter
depends on three terms. The first term is a scaling factor,
the second term is a Gaussian centered at the origin. the
second contributes to the bell shape of the translated Gaussian.
The third term is a monotonic exponential that increases or
decreases depending on the sign of translation τ . This term
helps in translating the Gaussian to t = τ [45]. Like in
other PDE based segmentation techniques (such as anisotropic
diffusion), the notion of time evolution of bilateral filter
is related to a notion of scale. Like in [45], the Bilateral
method used in this paper splits and approximates using Taylor
polynomials. The Taylor expansion of the exponential term
about the origin is given by:-

exp
( τt
σ2
r

)
=

N−1∑
n=0

1

n!

( τt
σ2
r

)n
+ higher − orderterms (10)

The higher-order terms are ignored to obtain the product of a
bivariate Gaussian and a polynomial:

φN,σr
(t, τ) = exp

(
− t2 + τ2

2σ2
r

)[N−1∑
n=0

1

n!

( tτ
σ2
r

)n]
(11)

where N is its approximation order. The point wise conver-
gence is given by:-

lim
n→∞

φN,σr
(t, τ) = gσr(t− τ) (12)

III. EXPERIMENTAL RESULTS

We tested the proposed method on clinically relevant 3D
original medical images. The images used include: 2 contrast-
enhanced MR angiography(CE-MRA) human neck and brain
images (size 96x512x512), 2 computerized tomography(CT)
rat brain images (size 337x339x341) and 5 original magnetic

3



resonance imaging(MRI) images(size 256x256x300) obtained
from Queen medical center in Nottingham (United Kingdom).
Otsu thresholds used for heart vessel segmentation range
between 1 to 33. Otsu thresholds 1 to 28 were used for
segmentation of human brain and carotid vessels. Hysteresis
threshold used for rat brain, carotid vessels and heart vessels
segmentation range between 0 and 1. WTHBHVEF Parameters
such as the scale size (n = 1,3,5,7,9) were used during the
segmentation process. other WTHBHVEF Parameters used
during segmentation of heart vessels include α = 0.25,
β = 90, and c = 500. α = 0.2, β = 50,and c = 500 were
used during segmentation of both brain vessel and carotid
segmentation since vessels give a higher response at those
scales and parameters. Bilateral parameter that were used for
both heart vessel and brain vessel and carotid segmentation
include: σr = 2 and σs = 68. where σs is the width of spatial
Gaussian. σr is the width of range Gaussian.

(a) (b)
Fig. 2. Visual comparison of different segmentation techniques on ce-MRA
neck and brain dataset for skull removal. (a) carotid segmentation using multi-
threshold Otsu method with respect to skull removal, (b) carotid segmentation
using multi-threshold Otsu and hysteresis thresholding method with respect
to skull removal.

(a) (b)

(c) (d)
Fig. 3. Visual comparison of multi-threshold Otsu method and a combination
of multi-threshold Otsu method and hysteresis threshold method for segmen-
tation of medium to big vessels in MRI images and CT scan images. (a)
multi-threshold Otsu on MRI images, (b) multi-threshold Otsu and hysteresis
threshold method on MRI images, (c) multi-threshold Otsu on CT scan image,
(d) multi-threshold Otsu method and hysteresis threshold method on CT scan
image.

(a) (b)

(c) (d)
Fig. 4. Visual comparison of different segmentation techniques on ce-MRA
neck and brain dataset for seperation of vessels. (a) Frangi hessian based vessel
enhancement filter [71], (b) Frangi hessian based vessel enhancement filter
and line filter [72], (c) multi-threshold Otsu method and WTHHVEF [41], (d)
proposed method

(a) (b)

(c) (d)
Fig. 5. Visual comparison of different segmentation techniques on MRI heart
dataset. (a) Frangi hessian based vessel enhancement filter [71], (b) Frangi
hessian based vessel enhancement filter and line filter [72], (c) multi-threshold
Otsu method and WTHHVEF [41], (d) proposed method
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(a) (b)

(c) (d)
Fig. 6. Before and after vessel segmentation using the proposed method. (a)
MRI heart image, (b) heart image, (b), (c) and (d) are different views of the
3D segmented image using the proposed method

Fig. 7. After segmentation.

A. Validation and Evaluation

In medical image analysis, it is difficult to validate, quantita-
tively compare 3D segmentation methods as it requires ground
truth to which the segmentation results can be compared. The
ground truth is obtained by an expert who manually analyses
and segments the medical images. Unfortunately the ground
truth data is not available. In our study, a visual evaluation
of segmentation results is necessary to strongly assess the
contribution of this method in segmentation of MRI heart
vessels and contrast enhanced-MRA Neck and brain vessels.

IV. DISCUSSION

Based on the above results, the proposed method is capable
of dealing with intensity homogeneity(Fig. 5d), More vessels
are detected. Fig. 4, shows that the method can separate
different sizes of vessels in both MRI and MRA medical
images as compared to other methods. The skull is one of
the hardest tissue to get rid of yet its one of the major crucial
steps required for proper diagnosis and further analysis. The
existing tools (such as FSL brain extraction tool) used by
clinicians and researchers to remove skull require a lot of
manual intervention. This method requires minimal human
intervention (such as in adjusting threshold) to get rid of
the skull and the background without interfering with vessels
to ease further analysis(Fig. 2b). A combination of mult-
threshold Otsu method and hysteresis threshold method en-
sures the extraction of medium to big vessels in both MRA and
MRI medical images (Fig. 3b). Yellow arrows(Fig. 3a) show
vessels that are cut by multi-threshold Otsu method whilst
blue arrows(Fig. 3b) show more vessels are after introducing
hysteresis threshold method. MRI and MRA images are natu-
rally detailed as compared images of other modalities (such as
CT scan images). This combination (multi-threshold Otsu and
Hysteresis thresholding method) does not work on the CT scan
images(Fig. 3d). Less vessels are detected in CT scan images
after introducing hysteresis thresholding method. Compared
to other methods, this method is capable of preserving edges
of different sizes of vessels(Fig. 7). In addition, the method
also detects abnormalities in the vessels(Fig. 7). however, the
effectiveness of the segmentation method is not quantified.

V. CONCLUSION

A 3D robust segmentation approach is presented to deal
with the intensity in-homogeneity and noise in 3D medical
images that suffer from intensity in-homogeneity and noise
to enable extraction of vessels. A white top-hat scale space
bilateral hessian based vessel enhancement filter is used to
build strong edges of small to medium vessels, deal with
the intensity in-homogeneity, and noise in medical images
for better segmentation of small vessels. Multi-threshold Otsu
is combined with hysteresis thresholding method to ensure
extraction of medium to big vessels. This combination (multi-
threshold Otsu threshold with hysteresis threshold method)
eliminates the conglutination tissue (such as the skull tissue)
that obstruct segmentation process to ease segmentation of
vessels. More strong edged blood vessels are detected and
different sizes of vessels are separated to ease further analysis
during the quantification of angiogenesis. In addition, the
method is capable of removing skull tissue to ease further
analysis. further more, the segmentation method can be used
for diagnosis, abnormalities (such tortuous and stenosis) in the
vessels are evident. The next step is to improve the method
so as to work on images of other modalities (such as CT scan
images) that are affected by intensity in-homogeneity. We shall
quantify the effectiveness of the improved method using vessel
synthetic images. We also intend to quantify angiogenesis to
detect abnormal growth in vessels.
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