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ABSTRACT 

Background 

Within asthma, the small airways (≤ 2mm in diameter) play an important role in 

pathophysiology. Using a combined clinical-computational approach, we sought to more 

precisely evaluate the contribution of the small airways to deep-breath induced airway 

dilation (in the absence of bronchial challenge), which may be impaired in severe asthma. 

  

Methods 

A patient-based computational model of the FOT was used to examine the sensitivity and 

specificity of FOT signals to small airways constriction at frequencies of 2 & 8 Hz. A clinical 

study of moderate to severe asthmatics (n=24), and healthy volunteers (n=10) was 

performed to evaluate correlations between baseline and post deep inspiration  (following 

bronchodilator withhold  and in the absence of prior bronchial challenge) forced oscillation 

technique (FOT) responses (at 2Hz and 8Hz) and  asthma treatment intensity,  spirometry, 

airway hyper-responsiveness and airway inflammation.  

 

Results 

Computational modelling demonstrated that baseline resistance measures at 2Hz are both 

sensitive and specific to anatomical narrowing in the small airways. Furthermore, small 

airways resistance was significantly increased in asthmatics compared to health. Despite 

these differences, there were no noticeable differences between asthmatics and healthy 

volunteers in resistive measures following deep inspiration (DI) and DI responses of small 

airways were amplified in the presence of spirometry defined airflow limitation. 

 

Conclusions 

These results suggest that the small airways demonstrate increased resistance in moderate-

to-severe asthma but dilate normally in response to deep inspirations in the absence of 

bronchial challenge. This suggests that effective targeting of the small airways is required to 

achieve functional improvements in moderate-severe asthmatic patients.  
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INTRODUCTION 

Asthma is a complex lung disease with a large global health burden, characterised by airway 

inflammation, remodelling, and increased smooth muscle activation1–4, all of which may 

result in heterogeneous small (≤ 2mm diameter) airway obstruction, promoting ventilation 

heterogeneity and closure of both central and small (≤ 2mm diameter) airways5, promoting 

ventilation heterogeneities6.  

 

This heterogeneity may be particularly driven by inflammation of the small airways7,8.  

Recent studies of intact small airways ex vivo suggest that they remain sensitive to large 

pressure oscillations, with a bronchodilatory response [30]. However, studying the response 

of small airways to deep inspiration in vivo typically requires the application of low 

frequency forced oscillations (< 5Hz) during apnoea [12-14], due to the potential impact of 

higher order breathing harmonics [15]. 

 

In this study we were able to acquire reliable FOT data at 2Hz without significant harmonic 

distortion during tidal breathing. We therefore sought to evaluate the impact of deep 

inspiration in vivo, on small airways using a combination of computational models as means 

of probing the anatomical sensitivity and specificity of FOT signals and a clinical study 

evaluating DI responses. DI responses were studied using FOT signals at both 2Hz and 8 Hz. 

We hypothesised that 2Hz signal would be more sensitive to small airway narrowing and 

that the small airways would remain response to DIs even in severe asthma. 

 

The clinical study was performed using deep inspiration (DI) in the absence of methacholine 

challenge, making it distinct from prior research in the literature9, and more representative 

of stable, exacerbation-free asthmatic airways. In addition DIs  have a known 

bronchoprotective effect on asthmatic airways, following methacholine challenge10,11.  

 

The primary focus of this study was to analyse FOT-derived resistance, however we also 

present results related to FOT-derived reactance in the online supplement. 

 

METHODS 

Clinical recruitment 

34 adult subjects were recruited from Glenfield Hospital Leicester, and through local 

advertising and outpatient clinics. The group was comprised of 10 healthy volunteers, and 

24 asthmatic subjects, as diagnosed by a secondary care clinician, with objective 

physiological evidence of asthma according to the British Thoracic Society (BTS)/SIGN 

guidelines12. All subjects were non-smokers at recruitment time, with a cumulative smoking 

history of < 10 pack-years. All asthmatic subjects had not had an exacerbation in the 6 

weeks prior to study and had been on stable asthma treatment.  
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Asthma severity was classified according to the global initiative for asthma (GINA) treatment 

steps2. All asthma subjects were at treatment steps 3-5 [n = 8:GINA 3, n = 8:GINA 4, n = 8: 

GINA 5]. All but 3 subjects met ATS/ERS criteria for severe asthma2. For analysis, GINA 3 and 

4 patients were pooled, due to similarities in therapeutics (both groups used moderate to 

high doses of inhaled steroids, with non-oral steroid based add on therapies, such as 

montelukast; whereas GINA 5 patients were all on oral systemic steroids).  

 

This clinical study was approved by the National Research Ethics Committee – East Midlands 

Leicester (REC 08/H0406/189), and all subjects gave their written informed consent.  

 

Clinical visits 

The 24 asthmatic subjects attended up to three study visits, and underwent the following 

tests (all within ± 14 days of each other): 

- Visit 1: (i) Five-point Juniper Asthma control questionnaire (ACQ-5), (ii) skin-prick 

tests to common aeroallergens, (iii) spirometry (14), and (iv) sputum induction and 

processing for differential cell counts (16).  

- Visit 2: A methacholine challenge using the tidal breathing method, if they had not 

had this performed in the past 2 years. This was used to confirm asthma diagnosis.  

- Visit 3: FOT measurements during tidal breathing, according to a pre-specified DI 

protocol (Figure A1, online supplement).  

 

All FOT measurements, spirometry and challenge tests were performed after withholding 

bronchodilators (4 hours for short acting agonists, and 12 hours for long acting 2 agonists). 

Sputum differential cell counts were enumerated as eosinophilic airway inflammation is 

known to be associated with airflow limitation and ventilation heterogeneity13.   

 

FOT protocol and measurements 

Definitions of each FOT-derived clinical marker used within this study are given in the online 

supplement, Table A1. As primary measures we investigate total lung resistance (Rrs) and 

reactance (Xrs) at 2Hz (R2, X2), and 8Hz (X2, X8), minimum resistance and reactance at the 

peak of a deep inspiration (Rmin, Xmin), and the difference between minimum 

resistance/reactance and total lung resistance/reactance at 2Hz (ΔRrs 2Hz, ΔXrs 2Hz) and 

8Hz (ΔRrs 8Hz, ΔXrs 8Hz). Alongside this, we consider the resistive and reactive difference 

from 2Hz to 8Hz (R2-R8, and X2-X8).  

 

All measures of impedance of the respiratory system were performed using a custom built 

FOT device (see online supplement) designed in accordance with ERS task force 

guidelines15. This device was calibrated daily with standardised resistances in the respiratory 

impedance range.  
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Full details of the FOT testing protocol are outlined in the online supplement. In brief, 

subjects sat in an upright position, and supported their cheeks around the mouthpiece, to 

reduce upper airway shunting. Each subject performed the test with 2H and 8Hz single sine 

frequency sequences. Each sequence lasted for 150 seconds(s), consisting of a 60s period of 

quiet tidal breathing, followed by three slow 30s deep inspirations (Dis), from functional 

residual capacity (FRC) up to total lung capacity (TLC). (see Figure A1 online supplement).  

 

All FOT signals were measured during slow spontaneous tidal breathing, in contrast to 

standard protocol, for measurements to be made under apnoea15. We confirmed in a pilot 

study  (n-10 subjects) that the both the 8Hz and 2Hz FOT signals generated highly 

repeatable within visit average resistances (Intra class correlation coefficient > 0.90, see 

Table A2, online supplement) and that the 2Hz signal was not significantly influenced by 

higher order breathing harmonics by evaluating Fourier transforms of the 2Hz applied 

pressure signal during tidal breathing (see online supplement Figure A2). 

 

Artefacts due to occasional leak, or glottic closure near peak DI were identified manually, 

and excluded.  The baseline resistance pre-DI was calculated from the average of resistances 

during the first 50 seconds of pre-DI tidal breathing. Subsequently the minimum resistance 

at peak DI (Rmin) and change in resistance from baseline (ΔRrs) were calculated and 

averaged across six Dis from the two tidal breathing sequences. 

 

Computational simulated study 

Simulations of the FOT were performed using an electrical circuit analogous model, with full 

details presented in the online supplement. In short, a patient-based virtual conducting 

zone lung structure, was created through a combination of image segmentation, and 

algorithmic airway generation of a healthy patient CT scan, as reported in previous 

studies16,17. This structure was comprised of approximately 71,000 branches, to an average 

depth of generation 16. Total lung impedance was calculated through parallel and series 

summation of individual branch impedances, which were approximated using the wave-

equation18,19. In prior studies, this model has been thoroughly investigated, and validated 

against experimental and clinical FOT measurements14,20–22.  

 

Total lung impedance at 2Hz and 8Hz was calculated under various artificial constriction 

patterns, imposed on the virtual lung structure. For each simulation, all central airways 

(2mm < diameter < 10mm) or small airways (diameter ≤ 2mm) had radii reduced by a 

constriction factor c (0-70%). This constriction factor was either applied homogeneously 

(using the same factor for each branch), or heterogeneously, by drawing each individual 

constriction from the normal distribution N(c, 0.2c).  

 

Statistical analysis 
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All parametric data was expressed as mean ± standard deviation, and non-parametric data 

as median (interquartile range). Data was analysed using unpaired Student’s t tests, or one-

way analysis of variance (ANOVA), with Bonferroni correction for parametric data, and 

Mann-Whitney U test or Kruskal-Wallis test with Dunn’s correction for non-parametric data, 

and Chi-squared or Fisher’s exact tests for ratios. Stepwise linear regression was performed 

to determine the contributions of change in resistance (ΔRrs) at 2Hz and 8Hz to pre-

bronchodilator FEV1/FVC. Correlations between variables were calculated using Pearson’s 

coefficient. A p-value of < 0.05 was taken as the threshold for statistical significance.  

 

 

RESULTS 

Computational analysis of airway sensitivity to 2Hz and 8Hz signals 

Results from the computational FOT simulations are presented in Figures 1-2. Figure 1 

demonstrates that for all given levels of small airways constriction (10-70%), resistance at 

2Hz (R2) was consistently more sensitive to small airway narrowing than resistance at 8Hz 

(R8). In all cases the resistance increased non-linearly and was largest at constriction 

regimes ≥ 50%. R2 was also seen to increase at a faster rate than R8, suggesting more 

sensitivity to small airways constriction. This behaviour was exhibited in both 

heterogeneous and homogeneous constriction schemes.  

 

In Figure 2, we compare R2 and R8 under constriction of small and central airways. In both 

the heterogeneous and homogeneous scheme, small airways constriction is seen to produce 

larger R2 and R8 than central airways constriction. Equally, the relative increase of R2 

comparative to R8 is much higher for small airways than central airways constriction 

Interestingly, all simulations in the heterogenous scheme appear to exhibit a small plateau 

as constriction rates become extremely large (>65%). This is most likely due to the 

diminished role that heterogeneity can play as all airways become severely constricted.  

 

This suggests that the 2Hz signal is both sensitive and specific to constriction in the small 

airways. This data provided a rationale to make inferences of small airway physiology in 2Hz 

data from the clinical study.  

 

Reactance simulation results are presented in the online supplement Figures A3-A4.  

 

Central and small airway impedance in asthma at baseline and following deep inspiration 

The clinical FOT, and spirometry measurements, and demographic data for both asthmatic 

and healthy subjects is shown in Tables 1-2. The healthy and asthmatic subjects were well 

matched for age, sex, and body mass index. Both R2 and R8 were shown to be significantly 

greater in asthmatics than the healthy controls (Figure 3) [R2: 0.66 (0.31) vs 0.44(0.12) 

kPa.s.L-1, p = 0.04; R8: 0.45 (0.19) vs 0.31 (0.10) kPa.s.L-1, p = 0.04].  
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In contrast to the baseline resistance, there was no apparent difference in minimum 

resistance at peak DI (Rmin) at either 2Hz or 8Hz, between asthmatic subjects and healthy 

controls. Additionally, there was a no significant difference in mean resistive difference 

(ΔRrs, the difference between baseline resistance and Rmin) between asthmatics and 

healthy controls, at either 2Hz or 8Hz.  

 

No significant correlation was observed between Rmin and methacholine PC20 at either 2Hz 

(r = -0.10, p = 0.68) or 8Hz (r = -0.22, p = 0.68). There was however, a modest and 

statistically significant correlation between Rmin at 8Hz, and percentage sputum eosinophils 

(r = 0.4318, p=0.04), though this was not observed with the 2Hz signal.  

 

The resistive difference following DI (ΔRrs) correlated negatively with pre-bronchodilator 

FEV1/FVC, at both 2Hz (r = -0.51, p = 0.01) and 8Hz (r = -0.48, p = 0.02). An independent 

association between pre-bronchodilator FEV1/FVC and ΔRrs at 2Hz was identified (R2 = 0.24, 

p = 0.01).  

 

Clinical reactance results are given in the online supplement, Tables A3-A4, and Figure A5.  

 

DISCUSSION 

Within this study a combination of computational modelling and clinical data analysis was 

used to study the role of the small airways using low frequency FOT in response to deep 

inspiration in patient with severe asthma. The computational analyses confirmed that the 

2Hz FOT signal has greater sensitivity than the 8Hz signal to anatomical narrowing in the 

small airways than central airways in both the presence and absence of constriction 

heterogeneity (Figures 1-2).  The clinical study confirmed that 2Hz FOT measurements could 

be performed repeatably and reliably and that despite elevated baseline small airway 

resistance, the small airways dilate normally in response to a deep inspiration in asthma in 

the non-challenged state. 

 

The key observation here, that small airways retain their ability to respond to DI in severe 

asthma would suggest that the airways remain amenable to intervention with targeted 

strategies that provide further pharmacological bronchoprotection. This hypothesis would 

need to be tested in future small airway targeted intervention studies. 

 

Interpretation of the key findings 

The use of a clinically-validated computational airway model14,23, simulated upon a patient-

based virtual lung structure allowed us to explore structure-function relationships in novel 

ways, providing more clarity to clinical interpretation of the 2Hz and 8Hz FOT signals in this 

study.  
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Disease in the small airways has been described in multiple imaging and immuno-

pathological studies in asthma24–26. Our observations of elevated baseline resistance at 2Hz 

in combination with the anatomical sensitivity demonstrated by computational modelling 

further add support to this concept. Furthermore, the application of a tidal breathing 2Hz 

technique to study small airway physiology provide a future opportunity for translational 

studies of small airways disease using FOT in larger clinical populations. 

 

In contrast to baseline observations, the minimum resistance post-DI (Rmin), and mean 

resistive difference from DI to baseline (ΔRrs) at 2Hz did not differ significantly in the 

presence of asthma. This suggests that while asthmatic airways exhibit larger degrees of 

narrowing at baseline, their response to deep inspiration is not abnormal. This is congruent 

with more recent work in the literature, which suggests that in asthmatics, the small airways 

remain compliant to large pressure oscillations27.  

 

We also note that the ΔRrs signal at 2Hz demonstrated an inverse association with pre-

bronchodilator FEV1/FVC, suggesting that expiratory flow limiting mechanisms may also be 

the same mechanisms responsible for the magnitude of DI response in the small airways. 

 

Joint interpretation of the computational and clinical results suggests that the 2Hz signal 

shows greater sensitivity to anatomical narrowing in the small airway tree, and that unlike 

at 8Hz, the airways which contribute most heavily to the 2Hz signal are quite responsive to 

deep inspiration.  

 

A recent study demonstrated using HP-gas imaging that ventilation defects were more likely 

to persists after bronchodilators if patients had a sputum eosinophilia13. Our observations 

support this hypothesis showing that that sputum eosinophilia correlated positively with the 

Rmin (the minimum resistance that could be achieved after a DI) at 8Hz (reflective of airway 

disease as opposed to parenchymal disease). Sputum eosinophils may modify bronchial 

tone, as they reflect mucosal eosinophils which promote airway smooth muscle 

contractional, through paracrine signalling with the airway smooth muscle via mediator 

release (e.g. cysteinyl leukotrienes).  It is therefore plausible that bronchoprotection in 

severe asthma could be better achieved through more effective targeting of eosinophilic 

airway inflammation, for example using eosinophil lowering biologics targeting IL-5. 
 

Comparisons to R5-R20 

Within the literature the use of R5-R20 as a measure of small airways dysfunction has 

gained traction14, which in part has motivated the consideration of R2-R8. Given R8 is likely 

to be close to resonant frequency, it may mostly reflect airway resistance contributions, 

while R2 is more likely to be influenced by parenchymal dynamics and lung reactance. R5-

R20 takes measures of resistance from (typically) above and below resonant frequency, 

meaning there are influences of negative reactance on the 5Hz signal, and positive 
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reactance on the 20Hz signal. R2-R8 instead takes a measure with negative reactance 

influences, and a measure with minimal reactance influences, isolating the reactance effects 

more. We believe that the results within this study illustrate that the 2Hz signal can be 

collected without induced apnoea, allowing for wider investigations of R2-R8 as a resistive 

difference measure which may be complementary to the more widely used R5-R20.  

 

Modelling deep inspiration without methacholine challenge 

Unlike most similar studies within the literature, clinical data collection was performed in a 

non-challenge model, with bronchodilators withheld to allow appropriate pre-testing 

washout. This choice was actively made to analyse the response of small airways in a 

physiological state that mimics stable asthma.   

 

In stable asthma several potentially therapeutically targetable factors promote narrowing of 

small airways including mucous plugging28, airway surfactant dysfunction leading to airways 

closure29, airway smooth muscle activation30, altered alveolar parenchymal attachments31 

and remodelling of the airway walls25. All these factors would increase small airways 

resistance, however the demonstration of bronchoprotection would point towards factors 

that can be reversed over a short time course such as airway smooth muscle activation and 

airways closure. 

 

The prior bronchial challenge DI studies in the literature are much more in keeping with an 

exacerbation state. Our study therefore, adds insight into the potential for therapeutic 

intervention in stable asthma targeted at bronchoprotection of the small airways. This may 

explain why the results we have illustrated appear to contradict prior findings9, as these 

findings are post bronchial challenge, and thus more likely to represent an exacerbation 

state, than the lung state we have studied.  

 

Schweitzer et al.32 published one of the few pre-bronchodilator, non-challenged, tidal 

breathing studies and demonstrated negligible improvement in  both inspiratory and 

expiratory resistance at 12Hz (using a loudspeaker around the head) following a DI in a 

group of asthmatic children with varying levels of spirometric airflow obstruction. These 

results are in keeping with our findings at 8Hz. Furthermore, the DI response was smaller in 

patients with greater airflow obstruction. We identified greater responses to DI at both 2 

and 8Hz in the presence of increased airflow limitation, several factors may account for the 

discrepancy in results.  

 

Firstly, we evaluated pressure oscillations applied directly to the mouth rather than via a 

head unit, our study focussed on low frequencies (2 & 8Hz) typically below resonant 

frequency where parenchymal dynamics would be expected to contribute to the frequency 

response and our study was limited to adults with severe asthma that did not have severe 

airflow limitation. It is possible, that in the presence of severe background airflow limitation 
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paradoxical responses are observed in the small airways in response to DI, however this was 

not the focus of the current study. 

 

A broader role for anatomically driven computational models 

Alongside the clinical findings, these results also add evidence to the role that combined 

computational-clinical analysis can play in understanding pulmonary function (and 

associated clinical testing). In a variety of recent studies14,20,33, we have shown how 

anatomically-based computational modelling can lead to unique and clinically relevant 

insights into pulmonary function tests. The use of CT-based virtual lung geometries is still a 

relatively new endeavour, but one that shows great promise, particularly when combined 

with clinical data analysis. In particular, within this study we have shown that small airways 

remain responsive to DI, validating resistance at 2Hz as a sensitive and specific index of 

small airways disease. 

 

Limitations 

Results should be interpreted with reference to the limitations of the computational 

modelling protocol. Due to computational and imaging constraints, the model makes a 

series of simplifying assumptions, including the incorporation of homogeneous peripheral 

elastance (constant-phase model), and the assumption of static airway radii, each of which 

may introduce inaccuracy in the simulations. To account for this, in prior studies14,21 the 

ability of the model to accurately simulate resistance (both in a clinical context, and against 

experimental values from a 3D printed lung structure) was validated. However, this 

validation was performed in a higher frequency range (5-25Hz) and was not performed for 

reactance measures. For this reason, reactance measures have been included in 

supplemental material only, to reflect the lower degree of confidence in simulation 

outputs. In prior work we have illustrated how newer image analysis techniques may allow 

for higher quality structural information34, which could be used to better parameterise 

respiratory zone contributions, and small airway diameters. In future work we hope to apply 

these techniques to allow for a more robust, and clinically validated reactance model.  

 

Considering the clinical data, as discussed earlier in the manuscript, all measurements were 

taken during spontaneous tidal breathing, in a non-challenged, pre-bronchodilator state. 

This setup was chosen to more accurately replicate stable, non-exacerbated asthmatic 

airways. In particular, the choice to measure during spontaneous breathing, is contrary to 

typical procedure15, due to the potential influence of spontaneous breathing frequencies on 

the low-frequency response. However, as illustrated in the supplemental material, FOT 

measurements at 2Hz showed strong within-visit repeatability and negligible interference 

from higher order breathing harmonics when the frequency contents of the 2Hz pressure 

oscillation was evaluated at the mouth using FFT. These differences in setup may partly 

explain discrepancies between the results from our study, and post-challenge studies9. 
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Within future research we hope to more robustly analyse FOT signals at low frequency 

under a wider variety of clinical experimental conditions.  

 

CONCLUSIONS 

Within this study, we have used a combinational of computational modelling and clinical 

evaluation to study the role of the small airways in severe asthma. We demonstrate that the 

small airways dilate normally in response to deep inspiration with amplified response in the 

presence of spirometry defined airflow obstruction. We hypothesise that the small airways 

remain sensitive to bronchoprotective therapies in severe asthma. 
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TABLES AND FIGURE LEGENDS 

Table 1: Demographics, clinical characteristics and resistance measurements between 
asthmatics and healthy controls 

 
Healthy 
(n= 10) 

Asthmatic  
(n=24) 

p-value 

Age (years) 52 (16.1) 57.38 (13.3) 0.34 

Sex (% male)§ 20 33.3 0.37 

BMI (Kg/m2) 26.4 (5.2) 28.3 (5.5) 0.37 

Smoking history (pack years)¶ 1.0 (0.0-3.5) 0.0 (0.0-3.5) 0.83 

Duration of asthma (years) n/a 28.79 (18.4) - 

Atopy (% yes) §,* 33.3 
82.6 
[n=23] 

0.006 

ICS [BDP equivalent (mcg)]¶ n/a 
800 
(500-1000) 

n/a 

Oral prednisolone (mg)¶ n/a 0.0 (0.0-5.0) n/a 

ACQ-5 score n/a 
1.57 (1.14-2.57) 
[n=19] 

n/a 

Exacerbations in previous year¶ n/a 1.0 (0.0-2.0) n/a 

Sputum neutrophils (%) 
71.68 (30.3) 
[n=7] 

64.52 (22.34) 0.50 

Sputum eosinophils (%)¶ 
0.25 
(0.25-2.5) 
[n=7] 

1.75 
(0.50 -7.25) 

0.23 

Pre BD FEV1 (% Pred)* 
105.8 (21.4) 
[n=8] 

85.78 (24.5) 0.05 

Pre BD FEV1/FVC (% Pred) 
77.88 (5.4) 
[n=8] 

71.97 (9.38) 0.11 

Post BD FEV1/FVC (% Pred) 
80.9 (5.4) 
[n=8] 

74.64 (10.73) 0.13 

BD reversibility¶,* 
-0.325 (-2.04-3.77) 
[n=8] 

5.6 
(3.33-8.82) 

0.01 

PC20 methacholine (mg/ml)¶,* 16.0 (16.0-16.0) 
6.35 (0.94-16.0) 
[n=18] 

0.003 

R8 Hz (Kpa.s.L-1)* 0.31 (0.10) 0.45 (0.19) 0.04 

R2 Hz (Kpa.s.L-1)* 0.44 (0.12) 0.66 (0.31) 0.04 

R2-R8 (Kpa.s.L-1) 0.13 (0.04) 0.18 (0.18) 0.41 

Rmin 8Hz (Kpa.s.L-1) 0.19 (0.06) 0.23 (0.12) 0.27 

Rmin 2Hz (Kpa.s.L-1) 0.27 (0.06) 0.36 (0.21) 0.19 

Δ Rrs 2Hz (Kpa.s.L-1) 0.17 (0.09) 0.27 (0.31) 0.34 

Δ Rrs 8Hz (Kpa.s.L-1) 0.13 (0.06) 0.22 (0.17) 0.10 

Rrs decay 2Hz (seconds) 4.92 (1.70) 4.00 (1.76) 0.14 

Rrs decay 8Hz (seconds) 4.46 (2.68) 4.88 (2.27) 0.64 

BMI = Body mass index; ICS = Inhaled corticosteroids; BDP = Beclomethasone dipropionate; ACQ-5 = 5 point 
asthma control questionnaire; BD = Bronchodilator; FEV1 = Forced expiratory volume in one second; FVC = 
Forced vital capacity; GINA = Global initiative for asthma; R2 = Mean baseline resistance at 2Hz; R8 = Mean 
baseline resistance at 8Hz; Rrs = Resistance of respiratory system; Rmin = minimum resistance achieved at 
maximal deep inspiration. Data expressed as mean [Standard deviation (SD)] for parametric data, ¶median 
[Interquartile range (IQR)] for non-parametric data. Groups compared using student t test for parametric data 
or Mann whitney test for non–parametric data. §Fishers exact test for proportions. Significant difference 
between healthy controls and asthmatics denoted *(p<0.05).  
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Table 2: Demographics, clinical characteristics and resistance measurements by GINA 
treatment steps 

 
Healthy 
(n= 10) 

GINA 3/4 
(n= 16 (8/8)) 

GINA 5 
(n= 8) 

p-value 

Age (Years) 52 (16.1) 59.94 (11.9) 52.25 (15.2) 0.29 

Sex (% male) § 20 37.5 37.5 0.61 

BMI (Kg/m2) 26.4 (5.2) 28.3 (5.94) 28.1 (4.88) 0.67 

Smoking history 
(Pack years)¶ 

1.0 (0.0-3.5) 0.0 (0.0-3.4) 0.50 (0.0-6.5) 0.77 

Duration of asthma (years) n/a 25.75 (18.7) 34.88 (17.3) 0.26 

Atopy (% yes) § 33.3 81.3 
85.7 
[n=7] 

0.02 

ICS [BDP equivalent (mcg)]¶ n/a 
800 
(400-800) 

1000 
(850-1450) 

0.007 

Oral prednisolone (mg) n/a n/a 
7.5 
(5.0-10) 

n/a 

ACQ-5 score n/a 1.62 (0.86) [n=12] 1.88 (0.89) 0.53 

Exacerbations in previous year¶ n/a 
1.0 
(0.0-2.0) 

1.0 
(0.0-2.0) 

0.65 

Sputum neutrophils (%) 
71.68 (30.3) 
[n=7] 

63.5 (23.1) 
[n=15] 

66.5 (22.3) 0.77 

Sputum eosinophils (%)¶ 
0.25 
(0.25-2.5) 
[n=7] 

1.75 
(0.50-7.25) 
[n=15] 

2.50 
(0.25-15.06) 

0.37 

Pre BD FEV1 (% pred) 
105.8 (21.4) 
[n=8] 

92.1 (23.4) 71.4 (22.1)* 0.02 

Pre BD FEV1/FVC (% pred) 
77.88 (5.4) 
[n=8] 

73.7 (8.85) 68.0 (10.0) 0.09 

Post BD FEV1/FVC (% pred) 
80.9 (5.4) 
[n=8] 

76.4 (10.0) 71.9 (12.7) 0.21 

BD reversibility (%)¶ 
-0.325 
(-2.04 - (-3.77)) 
[n=8] 

5.17 
(2.43-8.43) 
 

5.70 
(5.50-34.87)* 

0.02 

PC20 Methacholine (mg/ml)¶ 16.0 (16.0-16.0) 
8.0 
(1.83-16.0)* 
[n=13] 

1.0 
(0.39-14.6)* 
[n=5] 

0.008 

R8 Hz (Kpa.s.L-1) 0.31 (0.10) 0.41 (0.17) 0.54 (0.22)* 0.03 

R2 Hz (Kpa.s.L-1) 0.44 (0.12) 0.62 (0.29) 0.72 (0.34) 0.09 

R2-R8 (Kpa.s.L-1) 0.13 (0.04) 0.17 (0.20) 0.18 (0.15) 0.71 

Rmin 8Hz (Kpa.s.L-1) 0.19 (0.06) 0.19 (0.08) 0.32 (0.15)* 0.01 

Rmin 2Hz (Kpa.s.L-1) 0.27 (0.06) 0.37 (0.26) 0.35 (0.08) 0.40 

Δ Rrs 2Hz (Kpa.s.L-1) 0.17 (0.09) 0.21 (0.32) 0.38 (0.29) 0.23 

Δ Rrs 8Hz (Kpa.s.L-1) 0.13 (0.06) 0.22 (0.11) 0.22 (0.27) 0.26 

Rrs decay 2Hz (seconds) 4.92 (1.70) 3.70 (2.02) 4.35 (1.09) 0.23 

Rrs decay 8Hz (seconds) 4.46 (2.68) 4.82 (2.22) 5.01 (2.52) 0.88 

GINA = Global initiative for asthma; BMI = Body mass index; ICS = Inhaled corticosteroids; BDP = 
Beclomethasone dipropionate; ACQ-5 = 5 point asthma control questionnaire; BD = Bronchodilator; FEV1 = 
Forced expiratory volume in one second; FVC = Forced vital capacity; PC20= Provocation concentration causing 
20% fall in FEV1; R2 = Mean baseline resistance at 2Hz; R8 = Mean baseline resistance at 8Hz; Rmin = minimum 
resistance achieved at maximal deep inspiration; Rrs = Resistance of respiratory system. Data expressed as 
mean [Standard deviation (SD)] for parametric data, ¶median [Interquartile range (IQR)] for non-parametric 
data. Groups compared using one-way Analysis of variance (ANOVA) for parametric data with Bonferonni 
correction for multiple comparisons or Kruskal-Wallis test with Dunn correction for non-parametric data. §Chi 
squared test for proportions. Significant difference between healthy controls and GINA 5 asthma denoted 
*(p<0.05). 
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Figure 1: Simulated responses of FOT-measured resistance to small airway constriction 

The response of resistance at 2Hz (R2) and 8Hz (R8) is given for homogeneous constriction 

(A, C) and heterogeneous constriction (B, D) of the small airways. R2 is seen to be 

consistently larger than R8 and increases at a faster rate in response to constriction within 

both schemes. This is further illustrated by the ratio R2/R8 (C, D) constantly increasing in 

both schemes. 
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Figure 2: Simulated response of FOT-measured resistance to small and central airway 

constriction. The response of R2 (A, B) and R8 (C, D) are given for both homogeneous (A, C, 

E) and heterogeneous (B, D, E) airway constriction of the small and central airways. For all 

cases, central airway constriction produces a smaller response than small airway 

constriction. However, the difference in responses between small and central airway 

constriction is larger for R2 than R8, as can be seen by considering the ratio R2/R8 (E,F).  
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Figure 3:  Mean resistance measurements in healthy and asthmatic subjects. 

Measurements of baseline resistance (A,B), minimum DI resistance (C,D) and resistive 

difference (E,F) are given at 2Hz (A,C,E) and 8Hz (B,D,F). Subjects are separated based on 

healthy and asthmatic classification. Asthmatic subjects are sub-divided into GINA 3-4 (black 

squares), and GINA 5 (triangles). Median (IQR) are presented, alongside p-values from t 

tests between groups.  

 


