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Abstract: We present Monte Carlo (MC) simulations of the crystallisation
transition of single-chain square-well homopolymers, with a continuous de-
scription of monomer positions. For long chains with short-ranged interac-
tions this system shows a strong configurational bottleneck, which makes it
difficult to explore the whole configuration space. To surmount this prob-
lem we combine parallel tempering with a non-standard choice of tempering
levels, a bespoke biasing strategy and a method to map results between dif-
ferent temperatures. We verify that our simulations mix well when simulating
chains of 128 and 256 beads. Our simulation approach resolves issues with
reproducibility of MC simulations reported in prior work, particularly for the
transition region between the expanded coil and crystalline region. We obtain
highly reproducible results for both the free energy landscape and the inverse
temperature, with low statistical noise. We outline a method to extract the
free energy barrier, at any temperature, for any choice of order parameter, il-
lustrating this technique by computing the free energy landscape as a function
of the Steinhardt-Nelson order parameter for a range of temperatures.
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1 Introduction

The collapse of a single polymer chain into a crystal state provides a fundamental model
problem for polymer crystallization and protein folding. The crystallisation is controlled
by the monomer connectivity and interactions. In computer simulations several classes
of interactions are commonly used: lattice models!™ and off-lattice interactions using the
Lennard-Jones*™® or square well potential'®1*. Bonded interactions can be chosen to give
freely jointed '° 12 or semi flexible chains*6#1315 Long chains are of particular interest as they
approach the chains lengths in realistic systems. However simulating long chains presents
computational challenges. Long chains, of 256 monomers, have long been possible for lattice
simulations!™® and more recently the free energy landscape of the coil to crystal transition
for lattice chains of up to 1024 monomers was simulated by dynamic Monte Carlo methods,
combined with parallel tempering!%'7. There has also been recent progress with off-lattice
simulations of Lennard Jones chains, where chains of up to 724 monomers have been suc-
cessfully simulated®. However, square well chains with very short ranged interactions are
of particular interest because these exhibit a direct coil-crystal freezing transition, whereas
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wider square wells pass first through a collapsed globule phase!!. These short ranged inter-
actions are the most computationally challenging and have been investigated for 128! and
256 monomer chains!®.

The square-well chain model ** aims to capture features of an isolated homopolymer chain
with excluded volume and short range attractive interactions. Typically, segments of the
chain are modelled by hard sphere chains that mutually interact via a short-range constant
attraction, with no interaction outside this range (see figure 1 and equation (1)). Bonds
between monomers are usually of fixed length and freely jointed, or some approximation to
this. This system is particularly interesting because it is one of the simplest polymer models
that shows crystallisation behaviour!'. The model has also been linked to protein folding'®.
Thus physical and computational insight into this model system is likely to prove useful to
more realistic models of protein folding and polymer crystallisation.

Monte Carlo (MC) simulations of the freely-jointed square well polymer chain have been
carried out by Taylor and collaborators 122, They used Wang-Landau sampling?? to com-
prehensively investigate the temperature-interaction range (7-)\) phase diagram®'. These
authors found three categories of conformational state of the single chain: expanded coil,
frozen crystallite and a dense, but amorphous state called the collapsed globule. With de-
creasing temperature the chain transitions from expanded coil, to collapsed globule and to
frozen crystallite. However, for a sufficiently short interaction length (A < 1.06), the chain
collapses directly from the expanded coil state to the frozen crystallite. RuZicka et al.?*?°
investigated single square well chains in which the bond length can flex over a very small
range. They studied the phase transition dynamics using collision dynamics and forward
flux sampling, and compared results to their Wang-Landau simulations of the same system.
They extracted a crystallisation temperature from their dynamic simulations by locating the
temperature at which the rate of crystallisation matches the rate of melting and showed that
temperatures obtained by this method agree with Monte-Carlo simulations?®. Leitold et
al.?%27 also investigated the dynamics of single square well chains. They used a continuous
approximation to the true square well potential and sampled the crystallisation transition
using molecular dynamics, combined with transition path sampling. They suggested, from
analysis of their crystallisation trajectories, a reaction co-ordinate for the crystallisation
transition.

This system is problematic even with cutting-edge MC sampling techniques. Taylor et
al. 1119721 showed that, even in Wang-Landau MC simulations, the simulation rarely passes
between high and low energy states. Instead, they had to assemble the overall behaviour
of the system by joining together separate simulations of the two regions. Consequently,
they reported that their results from independent runs are reproducible only outside the
transition region, that is at energies intermediate between the coil and crystal states. Sim-
ilar results were seen in other studies?®. Furthermore, Ruzicka et al.?® showed that their
static and dynamic results only agree for a particular choice of how to average results over
independent runs. Other plausible methods of averaging introduce artefacts that lead to
small but noticeable errors in the crystallisation temperature. They also saw somewhat wide
variation between independent runs, particularly in the transition region. This variation
explains the sensitivity to the averaging method and is likely to be related to the issue of
crossing from coil to crystal, as report by Taylor et al.'*'%2'. Finally, Leitold et al.?6:%
showed that the choice of reaction co-ordinate to characterise the phase transition dynamics
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from coil to crystal, requires careful and detailed analysis of dynamic simulations, leading to
a reaction co-ordinate that is a combination of physical quantities that measure the progress
towards crystallisation.

The square-well model will be an important system for future studies as it is the sim-
plest macromolecule system that captures the key features of protein folding and polymer
crystallisation. Potential future modifications include extension to longer chains and the
variation of interaction strength along the chain to correspond to base pairs in proteins.
These modifications will probably inherit the problematic simulation features above. Fur-
thermore, the transition region, namely the rare configurations partway between coiled and
crystalline configurations, is likely to contain states that are critical to the dynamics of crys-
tallisation and folding. For these reasons there is a strong need for a reliable and efficient
way to sample, via MC, the equilibrium distribution of this square well chain system. This
MC sampling method should:

1. Cross frequently between high and low energy states from within a single run to produce
good sampling of all states and to reduce the variability between independent runs.

2. Have an unambiguous way to average data from multiple independent runs.

3. Retain the ability of Wang-Landau sampling to deliver results at any temperature
without running new simulations.

4. Be able to compute the importance of different measures of progress towards crystalli-
sation (and combinations of these) without running new simulations.

In this article, we show that an algorithm combining MC simulation, carefully chosen biasing
functions and parallel tempering, when combined with a method to extract the density of
states, delivers all of the above points. In particular we employ, a bespoke biasing and
tempering strategy to explore and transverse the configurational bottleneck that occurs for
long off-lattice chains with short-ranged interactions. The computer code for our algorithm
is publicly available?®.

2 Model and Monte Carlo moves

In this section we summarise the interaction model and MC moves used in previous simula-
tions of square well chains!!1:24:26,

2.1 Square well chain potential
Non-consecutive particles along the chain ¢ and j, interact through the square well potential,
oo O0<r i < 0,

Usw(rij) = ¢ —¢ o <ry < Ao, (1)
0 Tij > )\O',

where r;; is the distance between particles ¢ and j, and o, € and A and characterise the hard
sphere size, well depth and well width, respectively. The bond angles between neighbouring



Figure 1: A schematic of the square well chain. Bonds are fixed-length and freely jointed
and the particles are hard spheres with a very short-range attractive interaction. Particles
are labelled sequentially along the chain, from 1 to N and bond i joins particles ¢ and 7 + 1.

particles are freely-rotating (interaction free) and have a fixed length | which is set to o.
Hence the total energy of the chain is a sum over all Usw (r;;) for all non-consecutive particle
pairs, and can be written as

Utotal(r> = _SnSW(r)a (2)

where ngw(r) is the total number of square-well interactions in configuration r, where r
represents the configuration of all beads in the chain. We nondimensionalise as follows,
where * denotes a nondimensional quantity:

6 * * *
T:ET7 U=eU", ry=ory, (3)

where kg is Boltzmann’s constant.

2.2 Monte Carlo moves

Monte Carlo moves for polymer chains must account for the connectivity and fixed bond
length of the neighbouring particles and the excluded volume for all particle pairs. A series
of MC moves suitable for square well chains was used by Taylor et al.'' and subsequently
adopted by other studies?#26. We describe these moves below and adopt them for our MC
simulations.

We employ five types of MC move, namely bond pivot, reptation, crank-shaft, end rota-
tion and intramolecular end bridging. In a bond pivot move, a bond i is selected at random
and a random rotation angle, dp, chosen uniformly on [—0p®* Jp*¥], is added to the
torsional angle. Bond pivot moves preserve the bond angles, 6;. Bonds 1 and N — 1 are
discounted from the random draw, as rotating either of these bonds does not change the
chain configuration. Reptation moves translate the chain along its own length. In a forward
reptation move, we detach particle 1 and join it to the opposite end, namely to particle N.



We randomly place particle 1 uniformly on a sphere with radius [, centred on particle N.
Similarly, a reverse reptation move is proposed by taking particle N and reattaching it to
particle 1, as above. If a reptation move is accepted we relabel all particles so that the par-
ticle number runs sequentially along the chain. We perform a crank-shaft move by choosing
a particle at random, discounting particles 1 and N, and rotating it by d¢cank about the
vector between particles ¢ — 1 and i + 1. The rotation angle, 0 ank, is selected randomly
from the interval [—d¢p22%, (i), 0¢22%, (i)]. For end rotation moves we randomly select an
end particle, which is then rotated about a random axis, passing through the centre of the
penultimate bead, by a random angle, d¢enq. The random angle, d¢enq is chosen randomly
and uniformly from the interval [—d¢22 §p2¥]. For end bridging moves, we summarise the
detailed description of end bridging moves by Taylor et al.'! and Leitold and Dellago?.
First, we randomly select an end particle, identify all internal particles (j € [3, N — 2]) that
are within 2[ of this end and choose one of these at random, denoting this 7. The bridging
partner, particle ¢, is then reconnected to the end via removal and reinsertion of the next
connected neighbour in the direction of the chosen end, namely particle ¢ — 1 or 2 + 1. The
reinserted particle is placed with a randomly chosen azimuthal angle. This process is illus-
trated in Figure 2. Thus end bridging moves reconnect the chain, changing which particle
is the end, while displacing a different single particle. The move is particularly useful for
exploring highly crystal states, since they allow small modifications of the crystalline core?¢.
Furthermore, a sequence of successful end bridge moves will reposition the chain ends, possi-
bly to a configuration where reptation moves are more likely to be accepted. To ensure that

the end bridging moves obey detailed balance, we must accept the moves with probability !,

bm mn
P,.(m — n) = min |1, 2 Jf exp(—AUsotal /k8T) |, (4)

where b, (b,) denotes the number of possible bridging partners present in state m (n), R,, is
the distance of particle ¢ to the previously selected chain end, R,, is the distance of particle
i to the new chain end after the move, and AUy, is the change in the potential energy (2)
due to the move. Thus reptation and end bridging moves are complementary. Reptation
moves are very effective at guaranteeing complete relaxation of a configuration. However,
their acceptance is low when the chain ends are trapped in the crystal interior. End-bridging
offers an alternative escape route by enabling the chain ends to diffuse towards the crystal
exterior, with minimal re-organisation of the crystal. Acceptance of end-bridging moves is
higher for dense configurations. Once at least one chain end is near the crystal exterior then
acceptance of reptation moves will improve.

3 Our Monte Carlo simulation algorithm

We simulate a single square well chain, with fixed length, freely rotating bonds using the non-
bonded potential and Monte Carlo moves detailed in section 2. Beyond this, our simulation
strategy departs from that of Taylor et al. and others??6. Rather than Wang-Landau
sampling, we perform direct Monte Carlo simulations at the temperature of interest. We use
a specific biasing strategy, detailed below, combined with parallel tempering to surmount



Figure 2: Illustration of the end bridge move. Particle 5 has been selected as the bridging
partner for end, 1. Particle 5 is re-bridged to end 1 via removal and reinsertion of particle
4. Finally, particles 1 to 3 are relabelled accordingly.

the bottleneck issues and produce, in a single energy window, good sampling and high
reproducibility across the whole space.

3.1 Biasing

We use biasing? to obtain more even sampling across all energy states. We choose to bias
with respect to the total number of square well neighbours, ngw, which is equivalent to the
total energy of the system. We introduce a biasing function Up;,s(nsw) and sample from the

biased distribution,

Pp o< exp [—@%(Utoml(r) - UBias(”SW))} : (5)

where Uyoal(r) is defined in eqn (2). Thus moves from state m to n are accepted with
probability

1
PY(m —n) =min ( 1,Texp | ——= (AU — AURL™Y) | ) - (6)
kgT
where I' ensures the correct coefficients for end-bridging moves,

by IR,
['=4q bRy
L,

m — n is an end bridge move, (7)

otherwise,

as given in equation (4). The results for the occupancy of each energy state ngw sampled
from a biased simulation, namely = Ppiag( can be corrected to the unbiased result® by

applying
UBias (nSW) )

nsw)»

T (8)

where P,(ngw) and Ppgias(ngy) denote the probability of occupancy of state ngw for the
unbiased and biased distributions respectively. Below we detail a method to choose the
biasing function to obtain good sampling across the full range of energy states.

Po(nSW) = PBias(nsw) exp (_



3.2 Moves, MC blocks and move acceptances

We divide the simulation into blocks of 107 Monte-Carlo steps. At each Monte Carlo step,
we propose a single move, choosing randomly from crank-shaft, bond pivot, reptation, end
rotation and end bridging moves with probabilities of 0.5, 0.1, 0.1, 0.1 and 0.2, respectively.
Every 10* moves we vary the maximum angle size for the bond pivot, crank shaft and end
rotation moves (J"®*, 0pm2% (i) and d¢2¢, respectively) to target an acceptance ratio of

crank end

50% for these moves. The values of 6p** and 622X, (i) are adjusted independently for each
bond i, since bond rotations near the centre of the chain are more likely violate the excluded
volume constraints than those near the chain ends, particularly for bond pivot moves.

Reptation moves provide a useful diagnostic measure to monitor effective mixing in our
simulation, via end crossings. The reptation number, nyep, records the net number of rep-
tation moves for a particular chain. We iterate m,ep; by £1 whenever a forward/reverse
reptation move is accepted. Each time 7, changes by £N then the chain has diffused its
entire length by reptation, so has fully relaxed. We call these events end crossings. End
crossing can only occur when n,p = KN, where k is an integer. If the last end cross-
ing occurred at nyepr = kN then the next end crossing occurs when nye,e = (K + 1)N or
Nyept = (kK —1)N. Thus, to locate end crossings, we initialise an integer variable, £* = 0, and
whenever nepy = kN, where k = k* + 1 or k* — 1 we update k* = k and record that an end
crossing has occurred. An end crossing indicates that the chain has renewed its configuration
and relaxed any trapped or tightly bound configurations.

3.3 An initial run
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Figure 3: A typical ngw trace plot for a single temperature run at 7 = 0.446 with biasing
aimed at uniform sampling across all ngw states. The thick solid line shows the mean number
of square well neighbours, ngw, across a single block (107 MC moves) and the dashed lines
are largest and smallest values of ngw that have at least 10 visits during the block.

In this section we focus on a single temperature simulation and show why this is inade-



quate to explore quantitatively the full space of ngw for long chains. We focus on exploring
the energy landscape for the direct transition from expanded coil to crystal at the melt-
ing temperature, using parameters identified by Taylor et al.!'. Thus we take N = 128,
T = 0.446 and A\ = 1.05. Our initial choice for the biasing function attempts to obtain
completely uniform sampling across all energy states, by choosing the biasing function to be
the estimated free energy of state ngw,

Usias(nsw) = —ksT In(Py(nsw)), (9)

where T is a reference temperature and Pgy(ngw) is the unbiased occupancy at T'. For single
temperature simulations we take T to be the simulation temperature. However, distinguish-
ing between T and T becomes important when we introduce parallel tempering. We obtain
an initial guess for Py(ngw) either by using literature estimates'®, mapping from our results
at a different temperature or by iteratively updating and improving our estimate through a
series of simulations.

A typical trace plot for ngw is shown in figure 3, which shows the mean ngw and maximum
and minimum values achieved in each block of Monte Carlo steps. This plot shows that
initially the simulation explores well the region 0 < ngw < 220, without visiting higher
values. This region corresponds to the expanded coil state, extending up to the peak in the
free energy barrier, as identified Taylor et al.'!. It is clear that the chain is trapped in the
expanded coil state for a prolonged sequence of MC moves. Eventually the simulation passes
into the crystal region (220 < ngw < 420), where it then, similarly, becomes trapped for
an extended period. Crossings between the two regions remain very infrequent throughout
the entire simulation. Thus we see very good reproducibility of the two regions separately,
but poor reproducibility for the transition region around nsw =~ 220 and for the relative
importance of these two regions. Even extensive refinement of the biasing function from
averages over multiple very long runs does not remove this issue of localised trapping. This
suggests that the trapping is not caused by poor acceptance for moves that traverse the
transition regions, but instead that such moves are not proposed sufficiently frequently. Our
observation are consistent with the results of Taylor et al.''®1? who needed to simulate
these two regions in separate windows and saw that independent runs are not reproducible
in the transition region.

In addition, we see evidence of strong local trapping in the crystalline region. At times,
end crossings, as defined in section 3.2, become very infrequent. Instead the reptation number
becomes trapped inside a limited range, of size < N. This suggests that long-lived crystalline
structures persist for many, many MC cycles, a feature that cannot be detected from the
reptation move acceptance fraction alone, as this remains high. We speculate that this might
be the cause of the somewhat wide variability between independent runs seen in the crystal
region by Ruzicka et al.?*?°. This inability to pass between the coil and crystalline regions
may be due to knots, as observed in single chain simulations*”, which once formed are
very slow to unknot by spontaneous moves in a flat histogram landscape. Longer chains are
particularly unlikely to escape such knots.



3.4 Improved algorithm

In section 3.3 above we showed that our initial simulation runs are characterised by strong
local trapping and infrequent crossings between the coil and crystalline regions of ngw.
This leads to poor reproducibility because frequent crossings between the two regions are
needed for efficient sampling of the transition region and to relax long lived crystalline
configurations. In this section we detail an algorithm that solves these issues by combining
parallel tempering with an unusual choice of tempering levels, a refined biasing strategy and
by closely monitoring several indicators of effective mixing.

3.4.1 Parallel tempering

We argued above that the simulation issues with the transition region were due to infrequent
proposal of moves that traverse the transition region. Parallel tempering, where multiple
copies of the simulation are run in parallel at different temperatures, has the potential to
escape such local trapping by proposing swaps between different tempering levels. Thus bot-
tlenecks in the phase space can be bypassed through these swaps. As our single temperature
simulations fail to propose sufficiently frequently moves that cross the transition region in
both directions then we employ tempering levels both above and below the temperature of
interest 7. We set the biasing so that the simulation at T occupies the coil and crystalline
regions roughly equally. Thus tempering levels below T will occupy more frequently the
crystalline region and so swaps from T to lower tempering levels will provide new pathways
into the crystalline region. Similarly, swaps from T to higher tempering levels will provide
pathways into the expanded coil region.

A further advantage of parallel tempering for this system is that reptation moves are
readily accepted for high temperature chains, so these chains will frequently relax fully. Thus
the fully relaxed configurations from high tempering levels will propagate to lower tempering
levels, recrystallising during this process, and hence will provide a continual supply of fresh
crystalline structures that can be explored by the lower tempering levels.

To implement parallel tempering®® we choose a range of temperatures, 1, 15, . . ., TN >
where Niemp is the total number of tempering levels. One of the T; is the temperature of
interest, 7. We run Niemp simulations in parallel using OpenMP, with each temperature
having the same biasing function Ugias. Every 10> MC steps we pause the simulations and
Propose Nswaps SWaps of configurations between adjacent temperatures, chosen at random.
Swaps are accepted with probability

1 1
kgTi  kTina

Pl = ) = min 1.0 ) @by ~ Ual - 5 - UD) |
(10)
where Ué, and Uj,,, are the square well and biasing potentials, respectively, evaluated using
nsw for the simulation at temperature T;. To ensure effective exchange of configurations
between tempering levels, we propose a large number of swaps at each cycle, with ngyaps
chosen in the range 4 Niemp7Niemp- This is to enable replicas to leap several tempering levels
in a single swap cycle. Such leaps are helpful to propagate configurations from above and
below the bottleneck into T A wider spacing of tempering levels would still allow these leaps
this but at a cost of lower acceptance probabilities for swaps. There is value in breaking large



leaps into smaller sub-leaps as, even if the overall large leap is unsuccessful small subsections
of this leap are likely to have been accepted. Once ngyaps have been proposed, the Niemy
simulations are resumed in parallel and the whole process is repeated until the desired number
of Monte Carlo steps have been executed. Each tempering level has its own set of maximum
rotation angles (6" JomaX (i) and d¢22) which we adjust independently. We implement
this parallel tempering algorithm in parallel on multiple CPU cores using OpenMP and
our code is freely available?®. We have verified our code and algorithm by performing the
following checks: confirming that the simulation results agree with known analytic results
for short chains; confirming that the result for chains of lengths N = 10,40, 70 and 128 are
independent of the number and distribution of temperatures and of the choice of biasing
function, Upjas(nsw); and performing simulations for a range of values of T' and confirming
that the results for any tempering level taken from any T simulation can be accurately and
consistently mapped onto any other temperature using the temperature mapping technique
in section 3.6.2.

3.4.2 Biasing choice
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Figure 4: A comparison of the best estimate for the free energy landscape Fgg and our
biasing approach, Up;.s, that leads to improved mixing. The improved biasing holds Fgg
constant for ngw < 100 and ngw > 400 and subtracts the term 3 x 10™*(ngw — 212)? from
this clipped version of Fpg.

In Wang-Landau sampling?? the current best estimate of the free energy landscape is
chosen as the biasing function (as in eqn (9)) to produce even sampling of all energy levels.
However, a key difficulty with simulating this problem is the infrequent proposal of moves
that traverse the bottleneck in the transition region. We suggested above that parallel
tempering will assist this and, here, we detail a biasing strategy to further promote the
proposal of such moves. The idea is to bias the simulation so that it spends more time in the
vicinity of the bottleneck, thus creating more frequent traversal moves. Thus we begin with
our best estimate for the free energy, as in equation (9) and subtract from this a quadratic

10



function in ngw, centred on the bottleneck. This revised biasing function is constructed as
follows: we define the estimated free energy as

—In(Po(ngW)) nsw < ngy,

P
Fs _ .
% = q —In(Po(nsw)) n&W < nsw < ngy, (11)
B —
—In(Po(ngw’)) nsw > Ny

min max

which is clipped outside the range ngy < nsw < ngy in order to reduce, but not prevent,
exploration of the extreme edges of the energy space; and we then subtract a quadratic
function from this to create the new biasing function

UBias(Nsw) = Fist — kT K (nsw — now)?, (12)

where the parameter sp;,, controls the strength of the localising quadratic about the esti-
mated bottleneck point ndy,. This biasing strategy is improved, relative to uniform sampling
as the simulation spends more time close to the bottleneck and so crosses it more frequently.
This approach is illustrated in figure 4 where we compare the best estimate for the free
energy, Fpy, with an example of our improved biasing strategy, Upg;.s. For N = 128, we
used the following values xj;,./107* = 1.5,2.0,2.5 and 3.0, with ndy = 200,200,210 and
212, respectively. A plot of this improved biasing choice is shown in figure 4.

3.5 Verifying good mixing

For polymer chains, the connectivity of the particles means that the acceptance of moves
is reduced due to the increased likelihood of particle overlap. Consequently, the simulation
is more likely to become trapped in a dense or crystal state, particularly when sampling at
a temperature close to or below the melting temperature of the chain. For example, if the
ends of the chain are trapped in the centre of a crystal or dense cluster, then a sequence
of reptation moves in the same direction is unlikely to be accepted, and so the particular
crystal or dense configuration persists. This gives the illusion of achieving good sampling of
the trapped state, but in fact correlations in the simulation persist, meaning that we only
obtain statistics in the region of the trapped state and good mixing is not achieved (see
for example figure 3). Hence we monitor several measures of mixing, as outlined below.
Ultimately, it is not possible to show definitely that a simulation has good mixing. Instead
we provide strong evidence of this for our simulations by verifying the absence of the signs of
poor mixing and by showing a very high level of reproducibility in the results of independent
runs.

3.5.1 Diagnostic indicators of poor mixing

The following are indicators of poor mixing in the simulation. Our primary measure comes
from monitoring the trace plots of ngw against Monte Carlo step. Trace plots, such as
figure 3, where ngw remains localised in a limited range for an extended sequence of steps,
indicate poor mixing. In contrast, plots that consistently visit the full range of ngw in a
just few MC cycles, as in figure 5b, suggest good mixing. We also monitor the acceptance
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ratio of all move-types. If any move type has very low acceptance, then this suggests po-
tential trapping, or at least inefficient exploration of the phase space. The most important
move-type to monitor is reptation, since, as discussed in section 3.2, an extended sequence
of reptation moves in the same direction is enough to fully renew the chain configuration.
However, the simulation may still be trapped even if the reptation moves have high accep-
tance ratios, since the reptation number may be varying but only within a narrow range.
Thus we monitor the frequency of end crossings, as defined in section 3.2. Frequent end
crossings ensure that the reptation moves cause full relaxation of prior chain configurations.
The above criteria can be monitored in situ for each simulation. We also monitor the repro-
ducibility of the simulation outputs but this can only be checked when a series of identical
but independent runs near completion.

3.5.2 Handling or bypassing the indicators of poor mixing

For the basic square well chain simulation algorithm, described in sections 2, 3.1-3.3, it is not
possible to satisfy the above measures for a single temperature run close to the crystallisation
temperature. Instead the trace plots show significant, long-lived trapping (see figure 3).
Furthermore, in the crystalline region, both the reptation acceptance ratio and the frequency
of end crossings are low. This leads to poor reproducibility in the simulation outputs. In
contrast, increasing the temperature improves significantly the reptation number and end
crossing frequency, but now only the region of low ngw is explored. Correcting the biasing
to sample high ngw states reintroduces the problem of trapping and ineffective reptation.

The above issues lead us to introduce parallel tempering, as described in section 3.4.1.
We choose a biasing function matched to the tempering level T, with values of £%;,. and nly
chosen so that the simulation at T preferentially visits the vicinity of the ngw value that is
hardest to pass through. Simulations at tempering levels above T explore disproportionately
the low ngw, whereas the tempering levels below T explore the crystalline region. We choose
the range and distribution of the tempering levels so that the highest tempering level (hottest
chain) has frequent end crossings and the acceptance ratio for swaps between all neighbouring
tempering levels is high (50 — 80%). We also check that individual chain configurations
frequently traverse the full range of tempering levels. These measures ensure that new,
fully relaxed configurations are continually introduced through the hottest chain and passed
through to the coldest chains via swaps and that tightly bound crystalline configurations
can consistently be relaxed by swapping up to hotter chains where they readily melt. We
additionally verify this by monitoring the trace plot of the chain at T" to ensure that it
explores ngw extensively and frequently. To select an appropriate rj;,, we begin with a
large value to ensure accurate resolution of the free energy in transition region. We then
feedback this free energy into the biasing function and gradually decrease the value of K;,
to resolve a wider range of ngw and repeat until xf;,, becomes sufficiently small that the
reproducibility between independent runs is no longer acceptable. Through this method we
find a range of values of xf;,, over which a sufficiently wide range of ngw is explored, with
reproducible results for the free energy-landscape and all other outputs presented herein,
throughout.
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Figure 5: Typical output for the N = 128 square-well chain, where A = 1.05, T = 0.446,
Khins = 1.5 X 107*) Nieyp = 16 and the tempering levels are shown in table 1. (a) Biased
occupancies at different tempering levels, with the thicker line being T (b) Trace plot for
T = 0.446. The thick solid line shows the mean nsw value across a single block (107 MC
moves) and the dashed lines are largest and smallest values of ngw that have at least 10
visits during the block.

3.5.3 Choice of temperatures for parallel tempering

We chose tempering levels as described in section 3.5.2 for the N = 128 square-well chain,
where A = 1.05 and T~ = 0.446 for Niemp = 12 and 16 and the resulting tempering levels
are shown in table 1. As the choice of biasing function is designed to produce a broad
distribution of ngw at T, then the tempering levels around T" must be closely bunched to
keep the swap acceptance high. As the chains become hotter their distribution P,..(ngw)
becomes more narrowly peaked in the expanded coil region, meaning that wider gaps in the
tempering levels still permit high swap acceptance. Figure ba shows the resulting biased
occupancies for Nieyp = 16. In figure 5b we see from the trace plot that the simulation at
T~ visits almost the entire range of ngw in every single MC block.

The general principles guiding our choice of tempering parameters are as follows. We
chose the tempering levels and ngyaps to ensure frequent propagation of fresh configurations
from high and low temperatures towards the temperature of interest, 7. In particular,
we chose the highest tempering level to ensure sufficiently frequent end crossings (see sec-
tion 3.2), making the lowest choice that meets this criterion. Similarly, we chose the lowest
tempering level to ensure that this replica explored extensively the free energy minimum
corresponding to the crystalline state. The intermediate tempering levels were chosen to
provide a high swap acceptance ratio (in the range 0.30.9), with higher acceptance ratio
chosen around T* to help the simulation explore the bottleneck. We chose Nswaps 10 be in the
range 4Niemp 7 Niemp. From these highest and lowest temperatures and the desired swap ac-
ceptance, this determines the required number of temperatures. We adjusted Niemp and the
choice of tempering levels, by hand, to meet these criteria. Based on these criteria it would be
possible to automate the choice of Niemp, Nswaps and the tempering levels, potentially utilis-
ing the systematic work of Kofke®' on choosing tempering levels. More specifically, we could
combine our current estimate of the density of states (see section 3.6.2) with Kofkes method
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Table 1: Tempering levels used for our simulations, chosen using the method in the main
text.

Temperature  Niemp = 16 Niemp = 12

Ty 0.4428 0.44280
Ty 0.4438 0.4439
T 0.4445 0.4449
Ty 0.4453 0.446 (=T")
T 0.446 (=T") 0.4519
Ty 0.4478 0.4579
T 0.4496 0.4640
T 0.4514 0.4701
Ty 0.4532 0.4826
T, 0.4568 0.4954
Ty 0.4605 0.5085
T, 0.4641 0.5354
T 0.4716

Ty, 0.4867

Ty 0.5178

Ty 0.5344

to predict the swap acceptance fraction to systematically update the choice of tempering
levels. However, we leave this extension to future work.

We note here that, if the simulation begins with all chains in the coil state then a long
equilibration period, of 200-300 MC blocks, is required, for the coldest chains to reach the
crystalline region. Thus we typically begin our simulations using configurations from a prior
well-equilibrated run. Simulations begun this way typically equilibrate very quickly, even if
we make changes to xj;,, and the distribution of tempering levels.

3.6 Analysis of results

For the simulations outlined above, each run takes ~ 5 days on Niemp processor cores of
2.6GHz, giving production data of 1300 blocks of 107 Monte-Carlo steps. The output data
comprises, for each tempering level, a set of occupancy counts for each ngw state, sampled
from the biased distribution. In this section we detail how to convert these data into useful
outputs.

3.6.1 Averaging over runs

It is useful to average results over several independent runs to decrease statistical noise and
to reduce the real-time wait to obtain results. However, Vorselaars et al.?® showed that, for
Wang-Landau sampling of this system, the results are sensitive to the choice of which physical
quantity to average over from the independent runs. It is not clear which quantity should be
the preferred choice for averaging. The issue arises because each independent Wang-Landau
run arrives at a different value for the biasing function. It is not clear how to unambiguously
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average over runs with difference biasing. In contrast, our approach allows us to run a series
of independent simulations with identical biasing. Thus we can unambiguously average over
these runs merely by summing over the number of visits to each ngw state to obtain a more
accurate biased distribution, for subsequent analysis. We do this summation separately for
each tempering level.

3.6.2 Density of states and mapping between temperatures

Wang-Landau sampling has the desirable feature that results from a single simulation can be
mapped to any desired temperature. In this section we use the same underlying physics to
perform this temperature mapping for our simulations. As noted in equation (2) the number
of crystal neighbours, ngw is directly proportional to the total energy of the chain, so we

write ( )
gnsw ENsw
P T;) = , 13
where g(nsw) is the density of states, Z(T;) is the partition function at temperature 7; and
we have used Ugw (nsw) = —ensw. Thus we can extract the logarithm of the density of

states from the occupancy of any of the replicas from a parallel tempering run, via

ENSW

In g(nsw) = In P(nsw, T;) — +1n Z(T;). (14)

Bli
Note that In g(nsw) is independent of temperature and we determine it only to within an
unknown additive constant In Z(7;). From a knowledge of Ing(nsw)), determined from a
simulation at one temperature, T}, we can obtain predictions at a new temperature 7. For
example, for the free energy landscape at T

F(T) = —E&Nsw — ]CBTIII g(nsw), (15)

can be calculated from In g(nsw) obtained via a simulation at 7T;.

4 Results

Having established our simulation algorithm and analysis methods in section 3, in this section
we present results. We consider the square-well chain of length N = 128 and A = 1.05 and
we target the crystallisation temperature reported by Taylor et al.™*, T° = 0.446. We
ran a sequence of simulation runs for this system, using the temperature distributions in
table 1 and values of K}, in the range 1.5 x 107" < k%, < 3.0 x 10~%. For each pair of
Niemp and kg, we performed six independent, but otherwise identical, repeat runs, to check
reproducibility and to average over.

4.1 Results from T only

Figures 6 and 7 compare different simulations with results extracted only from the tempering
level at T . Figure 6a shows the strong reproducibility of the free energy landscape between
independent runs with the same simulation parameters (Niemp and f;,,). Figure 6b, where
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Figure 6: Plots of the free energy barrier, illustrating reproducibility for the N = 128 square-
well chain, where A = 1.05 and T" = 0.446, using data only from the tempering level T .
(a) Six independent runs and their average, for s, = 2 x 107% and Niewp = 16: (see
section 3.6.1 for averaging and table 1 for tempering levels). (b) Comparison of results for
various values of K, and Niemp (results are averaged over 6 independent runs).

results are averaged over six independent runs, also shows strong reproducibility in the results
from different choices of biasing function and number of tempering levels. Both approaches
show particularly strong reproducibility in the low ngw minimum and the transition region
maximum. Direct averaging of the barrier heights in figure 6b gives a free energy barrier of
AF = 18.3kgT, with a less than 0.35kgT variation between the largest and smallest barrier
heights in these results. The only significant point that lacks reproducibility is around the
minimum in the crystalline region (nsw =~ 400), particularly for larger ;.. Here there is
statistical noise, as the occupancy of the biased distributions is small here due to our choice
of biasing function. This could be addressed by further reducing s, and performing the
clipping of the free energy estimate (see section 3.4.2) at larger ng§*. However, instead we
show in section 4.2, below, how this can be rectified without running further simulations.

2.6

— Average over 6 runs

-~ Individual run

L | L | L | L “v\ I: | | | L

0 50 100 150 200 250 300 350 400 450 18— 50 100 150 200 250 300 350 400 450
nSVV nSN

Figure 7: Reproducibility of the inverse temperature for the N = 128 square-well chain,
where A = 1.05, using data only from the tempering level T . Simulation details and
parameters for (a) and (b) are identical to figure 6.
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Figure 7 shows results from the same simulations as figure 6 but for the inverse temper-
ature, extracted from the density of states,

1T = e dS _dlng(nsw)

S 16
]fB dF dnsw ( )

where S is the chain entropy (see reference! for further details). The inverse temperature
data also show very good reproducibility for most ngw values, especially in the transition
region. As in figure 6, there is some statistical noise the around the crystalline minimum
(nsw = 400) and also at very low ngw.

500

Figure 8: Combining results from all tempering levels to cover the full energy range. Results
for the N = 128 square-well chain, where A = 1.05, with xf;,. = 1.5 x 107 and Ny, = 16,
with averaging over 6 independent runs. The thin dashed lines are results from individual
tempering levels, The thick solid line is the result of stitching the results from the tempering

levels together, as described in the text. (a) Inverse temperature and (b) Free energy at
T = 0.446.

4.2 Results from combining all tempering levels

By extracting results only from the tempering level at T we demonstrated very good repro-
ducibility everywhere except for the extreme values of ngw. Here there is statistical noise due
to the low occupancy in the biased distribution for the tempering levels at T . However, for
other tempering levels, these extreme states are well visited, see for example figure 5(a). We
can map data from these other temperatures to T using the methods in section 3.6.2. From
this we obtain well-resolved data for all relevant ngw and also test the internal consistency
of our results from different tempering levels. We removed noisy data from each individual
tempering level by excluding states ngw for which the biased occupancy for tempering level ¢
was below 0.03% of all MC steps. We retained all data for the low ngw states for the hottest
chain and the high ngw states for the coldest chain. Figure 8 shows the results from all 16
tempering levels mapped from 77 to T = 0.446 via equation (14). This shows the strong
internal consistency between mapped results, demonstrated by the high level of overlap be-
tween results from different tempering levels. Individual tempering levels generally provide
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data over a wide range of ngw states, typically > 150 states, with even more overlap for
levels close to 7. To illustrate this, the vertical dashed lines in figure 8 show the edges of
the data obtained from each tempering level and one tempering level is highlighted with a
thicker dashed line. Thus the high degree of superposition at each ngw state shows, in many
cases, very close agreement between > 10 tempering levels.

Figure 9: The free energy landscape mastercurve from figure 8 mapped to a range of new
temperatures using the technique from section 3.6.2.

From data obtained at each tempering level, we can stitch together a mastercurve that
has good statistics at all relevant ngw values. This mastercurve is shown as the thicker solid
lines in figure 8. We obtained this curve as follows: we define the ‘maximin’ point ng\)]v as
the value of ngw at which min(P,(nsw,T;), Puw(nsw, Ti+1)) is maximised; the mastercurve
then takes the value obtained from tempering level i for the range ng\,f,l) < ngw < n(SZ\)N
We obtain the free energy values only to within an unknown additive constant so we add a
constant to the free energy from each tempering level so that Fr, (ng\),v,T) = Fr, +1(n(SZ\)N,T),
where Fr,(ngw,T) denotes the free energy state ngw obtained by mapping tempering level
T; to the reference temperature 7. From the master curve for 1/T* in figure 8a we used
the equal area construction!'! to compute the phase transition temperature and obtained
T* = 0.447, essentially the same value as Taylor et al.''. Having obtained a mastercurve for
the free energy landscape at T = 0.446, we can map this to any new temperature by using

the technique in section 3.6.2, as illustrated in figure 9.

4.3 Results for a chain of N = 256

Taylor et al'® studied N = 256 with A\ = 1.05. They reported significant variation between
independent runs, particularly at the barrier peak. We ran simulations at T =0.477 using
our approach above and our simulations reproducibly converged to consistent results for both
1/T* and the free energy barrier, across the whole range of ngy (see figure 10). To obtain
reproducible runs we used 28 tempering levels, chosen above and below T". We verified
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Figure 10: Results for the N = 256 square-well chain, where A\ = 1.05, averaged over 4
independent runs, obtained by stitching the results from the tempering levels together, as
described in the text. (a) Inverse temperature and (b) Free energy at T = 0.477.

that all of the indicators of good mixing in section 3.5 are satisfied, that all values of n, are
well-sampled by multiple tempering levels and that results from these tempering levels are
consistent when mapped to the same temperature as in section 4.2. For each value of kf;,,
we averaged over four independent runs, each of ~ 5 day. However, each individual run is
very close to the final average, in a similar manner to figure 6(a).

5 Alternative reaction co-ordinates

Leitold et al. used dynamic simulations of square well chains to derive reaction co-ordinates
for the coil-crystal transition?%2”. They showed that the number of square well neighbours,
nsw, does not correlate sufficiently strongly to progress towards the transition, and so it is
not a suitable reaction co-ordinate. Instead they suggested a combination of ngw together
with an adaption of the Steinhardt-Nelson order parameter, ¢s, which measures crystalline
order by considering both the number and spatial position of near-neighbour particles3?.
Initial studies?® of this problem led to a reaction coordinate that is a linear combination of
nsw and gg and later work refined this to a non-linear function?”. It is clear that future work
may further refine this order parameter, possibly by introducing further quantities into the
reaction co-ordinate. Thus, there is a need for a flexible method to obtain the free energy
landscape as a function of any specified reaction co-ordinate. We develop such a method in
this section.

An adaption of the Steinhardt-Nelson order parameter introduced by Leitold and Del-
lago?0 is as follows. For each pair of particles that are closer than the distance r, = 1.050,
compute the connection coefficients ds(i, j), via equation (20) in appendix A. Two particles
i and j are connected if dg(i,7) > 0.5. A particle is labelled crystalline if it has at least 5
neighbours and its number of non-connected neighbours is no more than 1, and ne denotes
the total number of crystalline particles. This definition identifies particles near the surface
of a crystal structure as crystalline, while also avoiding incorrectly defining particles in the
core of a dense, unordered region as crystalline.
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5.1 Simulating the occupancy of nx via the density of states

Here we consider an arbitrary order parameter ny. At temperature T, the probability of
state nx is given by

Pnx,T) =3 _ P(ELT)P(nx|E:), (17)

where Ng is the total number of available energy states, P(E;,T) is the probability energy
state E; at temperature T and P(nx|E;) is the conditional probability of the system being
in state ny, given that the configuration has energy E;. P(E;,T) is known from the density
of states, by eqn (13). Hence

Ng
— 1 ENswW
Pnyx,T) = —= g(nsw) exp ( _) P(nx|nsw), (18)
Z( )nswz::() kgT
where we have used E; = —engw. The density of states g(nsw) can be obtained from a

simulation at any temperature (or a combination of temperatures as in section 4). We note
that g(nsw) can only be extracted to within a multiplicative constant and that, in general,
Z(T) is not known, but these can both be corrected for by renormalising the distribution
of P(nx,T) obtained from equation (18). Thus the only unknown element in eqn (18) is
P(nx|nsw), which is independent of temperature as it considers configurations at fixed total
energy.

We obtain P(nx|nsw) during a simulation by storing sets of configurations grouped by
nsw, which can then be converted to histograms of P(ny|nsw) during post-processing. By
saving a sample of configurations at each energy level, many difference choices of nx can be
performed during post-processing without running further simulations. Since P(ny|nsw) is
independent of T" then we can collect and combine data from each tempering level to rapidly

obtain good statistics across all energy levels.

5.2 Results for the Steinhardt-Nelson order parameter

We computed the Steinhardt-Nelson order parameter, ne, from the sequence of runs outlined
in section 4, binning the data by energy level ngw so that we could construct histograms
of P(n¢|nsw). We confirmed that the resulting P(nc|nsw) distributions are independent of
tempering level and choice of biasing function. Results are shown in figure 11a. For low and
high values of ngw the distribution of ne is typically fairly narrow, indicating a reasonably
close correlation between ngw and ng. However in the transition region (ngw = 200) the
distribution broadens and becomes bimodal, with peaks corresponding to crystalline and
amorphous configurations. Intriguingly, P(n¢|nsw) is low around ne ~ 16 for all values of
nsw. Figure 11b shows the free energy landscape for several temperatures, computed via
eqn (18). Here P(n¢|nsw) data from figure 11a is used, along with the g(nsw) data used to
compile figure 8. This gives a free energy barrier of AF = 20.25kgT at T* = 0.446, with a
critical nucleus size of no = 37.
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Figure 11: Results for ne for the N = 128 square-well chain, where A\ = 1.05, with };,, =
1.5x 107" and Niemp = 16. (a) Distributions of P(n¢|ngw) for ngw = 150...250 in increments
of 5. The thicker line corresponds to ngw = 205. (b) The free energy landscape for ne for a
range of temperatures, computed via eqn (18).

6 Discussion and Conclusions

We studied the square-well chain model, choosing model parameters that are known to
give a direct first order transition from the expanded coil to crystalline state. For long
chains, this system show a configuration bottleneck in the transition region between the
coil and crystal state. We surmount the this bottleneck through a combination of biasing
and parallel tempering. Although biasing and tempering have previously been applied to
this problem for lattice chains!®!7, off-lattice chains are considerably more challenging. We
produced a specifically designed biasing and tempering strategy to address the bottleneck
problem when simulating off-lattice chains. Our simulation approach resolves reproducibility
issues reported in previous MC simulations, particularly for the transition region between
the expanded coil and crystalline region. We obtained highly reproducible results for both
the free energy landscape and the inverse temperature, both expressed as a function of the
total number of near neighbour interactions ngw. By extracting the density of states from
our simulation at the freezing temperature, we could map our results to any temperature.
We described a method to extract the free energy barrier, at any temperature, for any order
parameter that can be computed from the instantaneous chain configuration. We illustrated
this technique by computing the free energy landscape as a function of the Steinhardt-Nelson
order parameter, nc, for a range of temperatures.

We found that for long square well chains, there are inherent difficulties related to mixing
that arise due to the connectivity of particles, which leads to self-entanglement and an
excluded volume bottleneck. We tackle these issues using parallel tempering with a non-
standard choice of tempering levels, where we simulate systems at tempering levels lower
than the temperature of interest, T, and increase the density of tempering levels close to
T. Tempering levels below T offer swaps from the amorphous region into the crystalline
region and assist in equilibrating the crystalline region. The high density of tempering levels
around 7 is required because the biasing is chosen so that P,cc(nsw) very broad at T.

We defined several measures of mixing that we monitored throughout. These include
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monitoring the acceptance ratios of configuration swaps between tempering levels, the evo-
lution of the energy traces, and the reptation number, to ensure effective de-correlation
of configurations. We further used biasing, choosing a biasing function encourage detailed
exploration of the bottleneck in the transition region whilst still adequately visiting other
regions of the phase space. Unlike previous Wang-Landau approaches to this problem, our
technique allowed us to use the same biasing over several independent runs. This means that
multiple runs can be averaged over in an unambiguous way, leading to improved accuracy
without introducing artefacts from the averaging method. We extracted from our simulation
data the density of states, which showed very extensive overlap agreement between results
from different tempering levels. Thus, for each energy state in turn we selected the result
from the tempering level with the best sampling to obtain high-quality mastercurve, span-
ning the full range of energy states. Combining these techniques leads to highly reproducible
results with low stochastic noise for chains of 128 and 256 beads, particularly in the very
challenging transition region.

There are immediate applications of our algorithms to longer homopolymer chains, het-
eropolymers, where the interactions along the chain are non-uniform, and stiff chains, having
a potential associated with their torsional angles, to give a simple model of proteins. In all
cases, the ability of our algorithms to explore effectively the energy space and by pass bot-
tlenecks will be highly useful, as will the methods to map results to any desired temperature.
Adding external forces to the chain in our simulations will produce toy-models to aid the
understanding of protein folding/unfolding under mechanical forces®® and flow-induced crys-
tallisation in polymers®#35. Simulations of the crystallisation dynamics?* 27 and the reaction
co-ordinates identified by Leitold et al.?6*", could be combined with techniques to project
high-dimensional barrier crossing simulations onto low-dimensional co-ordinates®%”, to pro-
duce an analytically tractable model for the crystallisation dynamics of this system. Accurate
simulations of the free energy landscape, especially at the barrier peak, are a prerequisite
for this approach.

Acknowledgements

We thank Dr. Bart Vorselaars for useful discussions concerning this work. We acknowledge
funding from the EPSRC, in the form of a PhD studentship (TJW, award number 1091699)
and a Design by Science grant (RSG, EP/P005403/1). We acknowledge access to the Uni-
versity of Nottingham High Performance Computing Facility and the use of Athena at HPC
Midlands+, which was funded by the EPSRC on grant EP/P020232/1, as part of the HPC
Midlands+ consortium.

22



A Defining connected crystal particles via the Steinhardt-
Nelson method

Crystal-like connections between nearby particles can be defined as follows®®. For each

particle 7 a bond orientational order parameter is given by

o 1 Ni (i)
Tom (1) = No(i) jzl Yo (03, bi5), (19)

where the sum runs over all particles j that are square well neighbours of particle i, Y}, are
spherical harmonics and 0;; and ¢;; are the polar angles of the vector between particles 7 and
J with respect to some reference coordinate system. The following complex dot product is
then defined for each neighbouring pair of particles ¢ and j

> Gom (D)o (4)
do(i, ) = me (20)

6 1/2 6 1727
(Z |66m(2)|2> (Z |66m(j)|2>

m=—6 m=—6

where * denotes complex conjugate. Particles i and j are connected if their dg(i, j) exceeds
a certain threshold d., for which we use a value of 0.5.

References

[1] F. Rampf, K. Binder, and W. Paul, Journal of Polymer Science Part B: Polymer Physics
44, 2542 (2006).

[2] W. Janke and W. Paul, Soft Matter 12, 642 (2016).

[3] M.-B. Luo, R.-R. Tian, X. Yang, J.-H. Huang, and M. Mamat, Journal of Polymer
Science Part B: Polymer Physics 56, 1053 (2018).

[4] W. Janke and M. Marenz, in Journal of Physics: Conference Series (I0P Publishing,
2016), vol. 750, p. 012006.

[5] M. Marenz and W. Janke, Phys. Rev. Lett. 116, 128301 (2016).

[6] W. Janke, M. Marenz, and J. Zierenberg, Lobachevskii Journal of Mathematics 38, 978
(2017).

[7] S. Majumder, J. Zierenberg, and W. Janke, Soft Matter 13, 1276 (2017).
[8] J. Wu, C. Cheng, G. Liu, P. Zhang, and T. Chen, J. Chem. Phys. 148, 184901 (2018).

9] K. Qi, B. Liewehr, T. Koci, B. Pattanasiri, M. J. Williams, and M. Bachmann, J. Chem.
Phys. 150, 054904 (2019).

23



[10] Y. Zhou, C. K. Hall, and M. Karplus, Phys Rev Lett 77, 2822 (1996).
[11] M. P. Taylor, W. Paul, and K. Binder, J. Chem. Phys. 131, 114907 (2009).
[12] A. Boker and W. Paul, The European Physical Journal E 39, 5 (2016).

[13] S. V. Zablotskiy, J. A. Martemyanova, V. A. Ivanov, and W. Paul, Polymer Science
Series A 58, 899 (2016).

[14] T. Skrbi¢, J. R. Banavar, and A. Giacometti, J. Chem. Phys. 151, 174901 (2019).

[15] T. Skrbi¢, T. X. Hoang, A. Maritan, J. R. Banavar, and A. Giacometti, Soft Matter
15, 5596 (2019).

[16] W. Hu, D. Frenkel, and V. B. F. Mathot, The Journal of Chemical Physics 118, 3455
(2003).

[17) W. B. Hu and D. Frenkel, The Journal of Physical Chemistry B 110, 3734 (2006).
[18] M. P. Taylor, W. Paul, and K. Binder, Phys. Rev. E 79, 050801(R) (2009).

[19] M. P. Taylor, W. Paul, and K. Binder, Physics Procedia 4, 151 (2010).

[20] M. P. Taylor, W. Paul, and K. Binder, Polymer Science Ser. 3 55, 23 (2013).

[21] M. P. Taylor and P. P. Aung, Phys Rev. E 88, 012604 (2013).

[22] M. P. Taylor, W. Paul, and K. Binder, J. Chem. Phys. 145, 174903 (2016).

(23] F. Wang and D. P. Landau, Phys Rev. Lett. 86, 2050 (2001).

[24] S. Ruzicka, D. Quigley, and M. P. Allen, Phys. Chem. Chem. Phys. 14, 6044 (2012).

[25] B. Vorselaars, S. Ruzicka, D. Quigley, and M. P. Allen, Phys. Chem. Chem. Phys. 15,
21101 [arXiv:1611.00386] (2013).

[26] C. Leitold and C. Dellago, J. Chem. Phys. 141, 134901 (2014).
[27] C. Leitold, W. Lechner, and C. Dellago, J. Phys.: Condens. Matter 27, 194126 (2015).

28] T. J. Wicks and R. S. Graham, A Monte Carlo code for the square
well chain model with biased sampling and parallel tempering (2020), URL
https://github.com/RichGraham/SqWellChain.

[29] M. Allen and D. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford,
1989).

[30] D. J. Earl and M. W. Deem, Phys. Chem. Chem. Phys. 7, 3910 (2005).
[31] D. A. Kofke, The Journal of Chemical Physics 117, 6911 (2002).
[32] P. Steinhardt, D. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).

24



[33] D. J. Brockwell, E. Paci, R. C. Zinober, G. S. Beddard, P. D. Olmsted, D. A. Smith,
R. N. Perham, and S. E. Radford, Nat Struct Biol 10, 731 (2003).

[34] R. S. Graham, Chem. Commun. 50, 3531 (2014).
[35] R. S. Graham, J Rheol 63, 203 (2019).
[36] M. J. Hamer, J. A. D. Wattis, and R. S. Graham, Soft Matter 8, 11396 (2012).

[37] D. J. Read, C. Mcllroy, C. Das, O. G. Harlen, and R. S. Graham, Phys. Rev. Lett. 124,
147802 (2020).

[38] L. Filion, M. Hermes, R. Ni, and M. Dijkstra, J. Chem. Phys. 133, 244115 (2010).

25



Graphical Abstract
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We simulate the free energy landscape of a single square-well chain for chains of 128 and 256
monomers. Our Monte-Carlo algorithm leads to a very high level of reproducibility, across
the whole landscape. This landscape determines the crystallization temperature and the
activation barrier to crystallization.
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