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Abstract 

Aims. To test whether problem gambling is a categorical or dimensional disorder 

on the basis of two problem gambling assessments. This distinction discriminates between 

two different conceptualizations of problem gambling, one that problem gambling is defined 

by its addictive properties, the other that it is a continuum of harm. 

Setting. The British Gambling Prevalence Survey 2010, a nationally representative 

sample of the United Kingdom conducted by the National Centre for Social Research. 

Method. Five different taxometric analyses were carried out on cases from two 

problem gambling screens; the Problem Gambling Severity Index and a measure derived 

from the DSM-IV Pathological Gambling criteria. Two analyses were conducted on the total 

scores for these measures. 

Results. There was strong evidence that both scales were measuring a categorical 

construct. Fit indices consistently supported a categorical interpretation (CCFI’s > 0.6). The 

PGSI analysis indicated the presence of a taxon (CCFI’s = 0.633, 0.756). The analysis 

conducted on the adapted DSM-IV criteria indicated stronger quantitative support for a taxon 

(CCFI’s = 0.717, 0.811 and 0.756) but items probing a loss of control were inconsistent. The 

taxometric analyses of both scales support a categorical interpretation (CCFI’s = 0.628, 

0.567), but should be extreme caution due to high nuisance covariance. 

Conclusions. Both problem gambling screens analysed are likely to be measuring 

a categorical construct that taps into a categorical, loss of control model of problem 

gambling. There is some evidence that the two screens are measuring different aspects of an 

addiction construct. 
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Introduction 

A longstanding debate concerns the latent structure of problem gambling [1]. Two 

perspectives have emerged, one arguing that problem gambling is defined by a categorical 

division between gamblers and problem gamblers, typified by loss of control over gambling, 

the other that problem gambling is at the extreme of a continuum of harm and that problem 

gambling assessments form a useful but arbitrary cutting point. This debate is central to 

research on the theory and measurement of problem gambling and its relationship to other 

addictions. To address this question we conducted a taxometric analysis of two measures of 

problem gambling recorded in the British Gambling Prevalence Survey 2010 (BGPS 2010) 

[2]: The Problem Gambling Severity Index (PGSI; [3]) and a measure adapted from the 

DSM-IV Pathological Gambling criteria [2, 4]. 

There are two different conceptualizations of problem gambling [1]. The first 

defines problem gambling as an addiction disorder and a manifestation of pathological 

gambling. Pathological gambling is defined by this approach as a loss of control over 

gambling behaviour [5]. This category of theory includes models that emphasise causal roles 

for biological, psychological and social factors, in addition to loss of control in the 

development of problem gambling. For example the Pathways Model [6] proposes three 

distinct aetiologies of problem gambling. These pathways assume that problem gambling is 

caused by behavioural conditioning, life stressors, or impulsive/antisocial personality traits, 

the latter two underpinned by reinforcement learning and mounting cognitive biases, leading 

to a loss of control over gambling behaviour prior to the onset of pathological gambling. This 

model has strong empirical support, with several studies confirming three kinds of problem 

gambler [7, 8]. Although the Pathways Model is not purely an addiction-based theory, it does 

claim that a defining feature of problem gambling is a loss of control of gambling behaviour, 

that problem gambling is a categorical disorder and that different pathways are qualitatively 
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distinct from one another. The model also claims that behaviourally conditioned gamblers, 

unlike the other two pathways, can return to controlled gambling. These claims imply the 

presence of a problem gambling taxon [5] or qualitatively distinct category. 

An alternative approach to problem gambling focuses on the individual harm that 

problem gambling causes and the wider impact of gambling on others and society [9]. 

Although addictive gambling may be an important issue in this framework, this approach 

claims that the demarcation of problem gambling is excessive gambling behaviour [1]. 

Excessive gambling is defined as the continuation of gambling beyond the limits an 

individual’s circumstances allow. In contrast to the Pathways Model, this conceptualization 

assumes that problem gambling is identified as a threshold along a dimension that includes 

non-problematic recreational gambling. 

At first glance, research on the measurement of problem gambling reflects the 

same differences that exist in the theoretical literature. However, measures of problem 

gambling appear to exclusively measure an addiction construct [1, 10, 11]. The Problem 

Gambling Severity Index (PGSI) is the most common population-wide assessment of 

problem gambling [12]. The PGSI is designed to classify four levels of problem gambling 

severity along a dimension of harm [3]. Although the use of a measure that hypothesizes a 

dimensional structure to make a categorical distinction isn’t problematic if that distinction is 

meaningful [13], the use of the PGSI has produced difficulties in the problem gambling 

prevalence literature as there has been a failure to find a consensus on the appropriate 

threshold to discriminate between recreational and problem gamblers and the validity of the 

PGSI categories [12, 14-19]. This debate arises because some items used in the PGSI to 

measure problem gambling as a dimensional construct are adapted from Pathological 

Gambling instruments such as the South Oaks Gambling Scale [20] and DSM-IV [1, 4].  
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Understanding whether problem gambling has a categorical or dimensional 

structure is particularly important with the inclusion of Gambling Disorder in the DSM-V as 

a behavioural addiction. This has been justified on the basis that behavioural, neural and 

genetic markers in pathological gamblers are similar to other addictions [21, 22]. However, 

one property that has not been tested is whether problem gambling has a similar latent 

structure to other addictions. Meta-analytic studies using taxometric analysis (a method to 

test whether the latent structure of a variable is categorical or dimensional) specifically 

identify addictions as one of the few psychopathologies that may be categorical [23]. Studies 

looking at the subtyping of problem gamblers have consistently found three subtypes of 

problem gambler [7, 8]. Despite considerable debate about the nature of problem gambling, 

few studies have been conducted using appropriate statistical methods to test whether 

problem gambling is categorical. 

However, numerous studies using a variety of analytic methods including some 

taxometric analyses have also found evidence that addictive disorders are best described as  

dimensional. Some of these have used latent class and latent mixture methods, in addition to 

methods that presuppose the presence of a latent factor [10, 24]. Some taxometric analyses 

looking at several substance abuse disorders [25, 26, 27] have found evidence that disputes 

the presence of a taxon [23]. Moreover a latent class analysis of British gamblers as part of 

the British Gambling Prevalence Survey 2007 indicated the presence of several latent classes 

ordered along symptom severity [28].  

Two previous studies have conducted taxometric analyses on gambling. The first 

examined whether excessive internet sports gamblers formed a taxon [29]. Data were 

collected from actual internet gambling behaviour over several years. The analysis was 

carried out on three behavioural measures of involvement (money wagered, money lost and 

number of bets). Unfortunately for our purposes measures of problem gambling were not 
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taken and the results from this study were inconclusive in discriminating between models. 

The second study examined whether problem gamblers formed a taxon on the basis of PGSI 

scores [19]. PGSI items were analysed from respondents who scored greater than zero in the 

South African National Urban Prevalence Study of Gambling Behaviour [30]. The taxometric 

analyses on these data indicated a categorical structure, and stronger support was found when 

the analysis was restricted to items testing a loss of control. However, the PGSI may not be 

the best measure to detect a problem gambling taxon because it contains fewer items relating 

to loss of control [19]. The DSM has a greater number of items relating to a loss of control 

but to date, no such analysis has been conducted.    

To this end, and to determine whether problem gambling has a categorical or 

dimensional structure, we carried out taxometric analyses on the data from two problem 

gambling measures collected in the BGPS 2010 (PGSI and an adapted version of the DSM-

IV Pathological Gambling criteria) [2]. There are two benefits of using this dataset. First, as a 

general population dataset it contains the entire range of responses for both measures. 

Second, the DSM measure was collected in both continuous and dichotomous formats. 

Taxometric analyses typically require a variable to have at least 4 rank ordered categories in 

order to be suitable for analysis [31]. Although the logic of the DSM-IV assumes a 

categorical structure, previous analyses have found that the DSM-IV construct of 

Pathological Gambling may be dimensional [10, 11]. This interpretation may be an artefact of 

the analytic techniques these studies have used (e.g. factor analysis, Rasch models). 

Taxometric analyses do not make this assumption and can discriminate between latent 

variables that have categorical or dimensional structures. We hypothesized that taxometric 

analyses of both the PGSI and DSM-IV would find evidence for a categorical structure 

potentially similar to other addictions.  
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Methods 

British Gambling Prevalence Survey 2010 

The BGPS data collection consisted of a computer aided self-interview conducted 

by the National Centre for Social Research [2, 32]. Almost eight thousand (N = 7,756) 

respondents completed the survey (response rate = 47%). Participants were randomly 

sampled from 391 postcodes, which were selected from a stratified probability sample. Data 

were analysed from participants who scored one or more on either the PGSI (N = 569) or the 

DSM (N = 1,387) measures, based on previous taxometric analyses of problem gambling 

screens [19]. Both measures assessed problem gambling prevalence over the past year. One 

case was removed prior to analysis as it did not contain a full set of responses. The BGPS 

estimated the 2009 problem gambling prevalence in the UK to be 0.9% (DSM-IV based 

measure) and 0.7% (PGSI). Distributional information about the data is included in Table 1. 

 

 

Measures 

The PGSI consists of nine questions that are scored from zero to three. Participants 

were classified as problem gamblers if they scored 8 or higher [2]. The PGSI has strong 

internal consistency (α = 0.9 [11]). The classification accuracy of the PGSI has been studied 

alongside multiple measures and has been demonstrated to have adequate classification 

accuracy with the present problem gambling criteria (Positive Predictive Value = 89.86%, 

Negative Predictive Value = 92%, Sensitivity = 44.42%, Specificity = 99.22% [33]).  

The authors of the BGPS used a modified version of the DSM-IV Pathological 

Gambling criteria [2, 34-36].  Instead of scoring the presence or absence of a symptom the 

respondents rated each item on a four-point scale of the frequency each symptom occurred (0 

being “never” and 3 “very often”). Also a lower threshold was used to classify problem 
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gamblers (three) than the DSM-IV criteria (five). The authors of the BGPS justified this 

threshold [11] on the basis that a lower threshold is better at classifying these groups [37, 38]. 

The adapted DSM-IV criteria show adequate internal consistency (α = 0.73 [11], 0.76 [39]). 

[2, 34-36] 

 

Analytic Procedure 

MAMBAC (Mean Above Minus Below A Cut; [40]) and MAXSLOPE (Maximum 

Slope; [41]) analyses were carried out on the PGSI indicator variables. MAMBAC, 

MAXCOV (Maximum Covariance; [42]) and MAXEIG (Maximum Eigenvalue; [43]) 

analyses were conducted on the adapted DSM-IV items.  

Taxometric analyses require an input variable and output variables. Across all 

taxometric analyses cases are rank ordered by one of the variables selected for analysis (the 

input variable), which forms the x-axis of taxometric plots (Figures 1-3). In MAMBAC 

analyses a series of cuts (preferably 50 [44]) are applied evenly across the other variable (the 

output variable). At each cut a mean difference, defined as the mean above minus the mean 

below is computed and plotted as the y-axis. The MAMBAC procedure is iterated through 

each potential input-output combination. MAXCOV analyses portions the input variable into 

a number of ‘windows’ or subsamples [31] as the input and the covariance between couplets 

of output variables at each window is plotted as the output variable. MAXEIG operates in a 

similar fashion to MAXCOV, except that the largest eigenvalue from two or more output 

variables is plotted. [31]. MAXSLOPE uses a slightly different approach, plotting a smoothed 

non-linear regression curve and is conducted on two indicator variables. Categorical 

taxometric plots are generally peaked, whereas dimensional plots are flat [13] 
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For each analysis the observed data were compared against 200 samples of 

bootstrapped comparison data. Comparison data can discriminate between structures when 

the data are highly skewed [45]. The bootstrapped data had the same distributional statistics 

as the dataset, but half the samples had an idealised dimensional or a categorical structure. 

From this the root mean squared residual (RMSR) was computed as an index of fit between 

the bootstrapped and observed data, and an index of the latent structure was derived by 

dividing the RMSR for the dimensional data by the sum of the RMSR’s for the categorical 

and dimensional data. This produced a comparison curve fit index (CCFI; [13]) between 0 

and 1. Indices closer to 1indicate a categorical structure and smaller indices a dimensional 

structure. A CCFI of 0.5 indicates support for neither structure. CCFI’s between 0.4 and 0.6 

are inconclusive [13]. 

For both MAMBAC analyses, 50 evenly spaced cuts were made in the output 

variable, with the first and last cuts specified as the 10 cases reserved at either extreme, based 

on studies using bootstrapped data [44]. For MAXCOV and MAXEIG analyses, the output 

variables were divided into 50 windows.  

All of the taxometric analyses was carried out using an R script developed by 

Ruscio [46]. 

 

Results 

Indicator Construction 

Cases were classified as problem or non-problem gambler based on each measure’s 

classification criteria. A number of assumptions concerning the data should be met before 

taxometric analyses are conducted. The first recommends the base rate, or proportion of cases 

in the whole sample assigned to the putative taxon should be >= 10% [47]  or 5% [13]. The 

PGSI base rate (0.086) is sufficient but the DSM-IV rate (0.046) is smaller than the 
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recommended heuristic. The second requirement is for a large between-groups effect size 

between the putative taxon and non-taxon members of  Cohen’s d > 1.25 [13, 47]. All of the 

items meet this assumption (Table 2). The third assumption is that there is little nuisance 

covariance, which refers to the correlations between indicator variables within the taxon and 

non-taxon groups. A correlation of r < .3 has previously been recommended, and that the 

correlation between items across the whole sample is greater than the correlation between 

items in the taxon [13]. Neither of the measures met this assumption so we constructed 

composite indicator variables by summing scores across groups of items. Generalized least 

squares factor analyses were carried out on the scores of taxon members to determine which 

items should be combined. The factor loadings and the composite indicator variables are 

included in Tables 3 and 4. The factor loadings for the PGSI are straightforward (Table 3). 

The loadings from the adapted DSM measure revealed a three factor solution (Table 4). Two 

items loaded onto a first factor, and a further three items cross loaded onto this factor and a 

second factor. Three items loaded onto a third factor. Two other items did not load onto any 

of the factors and were included as indicators separately. All of these items have a 

sufficiently large between-groups effect size to be appropriate to detect the presence of a 

taxon (Tables 5-6). With the exception of two pairs of indicators all of the items met this 

assumption (Table 6). 

 

 

PGSI Analysis 

Both the MAMBAC and MAXSLOPE analyses indicated support for a categorical 

structure. Although neither set of comparison data was a close fit to the observed data in the 

MAXSLOPE analysis (Figure 1), the observed data are within the range of the categorical 

bootstrapped data. A CCFI = 0.633 indicated support for a categorical structure. The 
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MAMBAC analysis (Figure 1) shows stronger support in the same direction; the bootstrapped 

dimensional data is a poor fit of the averaged MAMBAC curve from the observed data, and a 

CCFI of .756 indicated strong support for a categorical interpretation.  

 

Adapted DSM-IV Measure Analysis 

The mean MAMBAC, MAXEIG and MAXCOV curves show a distinct peak on 

the right side of the x-axis that is characteristic of a taxon. Closer consideration of the 

bootstrapped data reveals that both categorical and dimensional datasets produce similar 

curves. Consequently we used CCFI’s to discriminate between these interpretations. The 

MAMBAC analysis (Figure 2) strongly supports a categorical structure with the exception 

that analyses conducted on the first indicator were inconsistent. The computed CCFI across 

all curves was 0.717, indicating support for a categorical interpretation. The MAXCOV and 

MAXEIG comparison curves (Figures 2) demonstrate that the categorical comparison data is 

closely calibrated with the observed data. The CCFI’s also support this observation, with both 

(MAXEIG = 0.756, MAXCOV = 0.811) indicating strong support for a categorical 

interpretation. 

 

However, these analyses preclude us from making strong claims about the presence 

of a problem gambling taxon. To follow up this, we conducted a MAMBAC and 

MAXSLOPE analysis on the total scores of the PGSI and adapted DSM-IV criteria (N = 

1,486). We assigned cases to the putative taxon if they were classified as a problem gambler 

by either measure (N = 78). We note however that the two measures are highly correlated (r = 

0.736 (whole sample), 0.453 (taxon), 0.38 (non-taxon)), and so it is recommended this 

analysis is taken with extreme caution. Meehl has previously noted that high nuisance (r >.3) 

covariance should be tolerable so long as correlations are similar across both groups [48]. 
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The analysis reveals very similar results to the analyses of the individual measures; the data 

provide stronger support for a categorical interpretation (MAMBAC CCFI = 0.628, 

MAXSLOPE CCFI = 0.567, Figure 31).  

 

Discussion 

The taxometric analysis of the PGSI and a measured derived from the DSM-IV 

Pathological Gambling criteria from the BGPS 2010 indicated that problem gambling as 

measured by these instruments is categorical. Specifically, the PGSI analysis located a 

division that calibrates well to the cut-off for problem gambler in the PGSI (8+) and supports 

the assumptions underlying the Pathways Model, particularly the claim that there is a distinct 

group of problem gamblers characterised by a loss of control over their gambling [5, 6]. 

Follow up analyses comparing across both scales supported this, further finding support for 

the presence of a categorical latent structure. 

The PGSI was developed and is used on the assumption that it is measuring a 

dimension of harm-centred problem gambling. Our analysis shows that this assumption is 

flawed. The PGSI data from the BGPS demonstrates that the construct the PGSI is measuring 

is categorical, resembling a pathological model. Criticisms have previously been raised that 

the use of the PGSI is flawed because it is atheoretical [1]. Although such a claim is beyond 

the scope of this analysis, the PGSI does appear to measure a construct that probes aspects of 

the pathological model [5]2. Given the poor performance of DSM-IV derived items related to 

losing control, it seems to be the case that the PGSI is a more conceptually coherent measure 

of the construct that the DSM-IV is intended to measure. 

An indicator composed of items measuring a loss of control was also created for 

the adapted DSM-IV criteria (Indicator 1). In contrast to the PGSI, the results from this 

indicator variable were inconsistent. The observed difference between the PGSI and DSM 
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constructs relating to a loss of control appears to be because the first two items on the DSM-

IV measure are frequently endorsed and do not discriminate between problem and non-

problem gamblers [10, 11].  

 The close similarity between the comparison curves on the analyses of the DSM-

IV based measure should be noted. Although the CCFIs are suitably large to endorse a 

categorical interpretation, indices obtained from the analysis belie the similarity between the 

two sets of bootstrapped data (Figures 2). Although the DSM indicators are skewed, 

comparison data have proved highly capable of discriminating between dimensional and 

categorical structures in data that are substantially skewed [40]; the comparison data here 

strongly support a categorical conclusion. 

It would be beneficial to analyse other DSM datasets, however few are suitable 

because the DSM is usually measured dichotomously and may be unsuitable for taxometric 

analyses. Further analyses also do not resolve the underlying problem that response rates for 

at least two DSM items are relatively high in both problem and non-problem gamblers alike. 

Moreover, the response rates for three additional items that form the fifth DSM indicator (see 

Table 2) are higher in severe problem gamblers and are highly positively skewed. However, a 

limitation of this analysis is that sampling the general population means the base rate of 

problem gambling is low and cross-validation with a clinical sample may be beneficial. Also, 

it appears that self-report measures of the DSM (such as the one used here) may have a 

different factor structure to interview/clinician-based assessments [37]. Taxometric analyses 

are optimal in samples where the proportion of category to non category members is 50:50, 

although meaningful taxa can be identified with a base rate of 5% (as in this analysis) [49].  

In relation to other addiction disorders, the analysis provides further justification 

for the re-categorization of problem gambling as an addiction disorder in the DSM-V. Not 

only does problem gambling share strong similarities to substance use disorders [22], 
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problem gamblers appear to form a taxon like other addictions. One implication is the need to 

carry out further psychometric assessments of both the PGSI and DSM-derived measures of 

problem gambling. Previous analyses used methods that are based on the assumption that the 

latent variable that is being measured is dimensional [10, 11]. Our taxometric analysis of the 

BGPS demonstrates that this assumption is flawed. As such, the key implication is that 

different psychometric analyses, with different assumptions about latent models (such as 

latent profile analysis) are more appropriate for the psychometric evaluation of these 

measures. 

 

Conclusions 

A taxometric analysis was carried out on two problem gambling screens from the 

BGPS 2010, the PGSI and items from the DSM-IV Pathological Gambling criteria, as there 

was strong evidence in both theoretical and empirical research in problem gambling to 

hypothesize the presence of a taxon. The taxometric analyses demonstrated that the construct 

both scales probe is categorical in nature. The findings of this analysis have implications for 

the future measurement of problem gambling, and the psychometric methods used on these 

assessments. The findings also have implications for the classification of problem gambling 

as a behavioural addiction, demonstrating further empirical evidence that problem gambling 

shares a similar latent structure to other addiction disorders.  
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Footnotes 

1. In figure 3 we have included the MAXSLOPE curve as well as the comparison 

curve because the comparison curve is very difficult to interpret because the range of the 

dimensional data is so high. 

2. In addition to the claims that problem gambling is a categorical disorder and is 

demarcated by a loss of control of gambling behaviour, there are three other claims [5]. The 

remaining claims are that problem gambling is a single phenomenon, compulsive gambling is 

a permanent and irreversible disorder, and that the disorder progresses through a series of 

stages. The progression of gambling behaviour begins with a transition from recreational to 

excessive gambling, followed by the appearance of cognitive biases and overconfidence. This 

in turn progresses changes in perceptions of value of money, then chasing losses, followed by 

the consequences of problem gambling, then a ‘rock bottom’ stage when treatment is sought. 

Although two of these claims, that problem gambling is a single phenomenon and irreversible 

are not empirically supported, the remaining claim is tested by the DSM-IV measure. 

  



21 
!

  



22 
!

 
  



23 
!

 



24 
!

 

Figure Legends 

Figure 1. Categorical and dimensional comparison data compared against the 

observed data points for the PGSI MAXSLOPE (Graph A, CCFI = 0.633) and MAMBAC 

(Graph B, CCFI = 0.756) analyses. The grey band represents the middle 50% of the data 

points from 100 bootstrapped samples (N = 100,000) with categorical and dimensional 

properties, with the same statistical distributions as the observed data. The two black lines 

represent the maximum and minimum points from the bootstrapped sample. The dotted black 

line is the averaged MAXSLOPE curve from the actual data observed. 

 

Figure 2. Categorical and dimensional comparison data compared against the 

observed data points for the DSM-IV MAMBAC (Graph A, CCFI = 0.717), MAXCOV 

(Graph B, CCFI = 0.811) and MAXEIG (Graph C, CCFI = 0.756) analyses. The grey band 

represents the middle 50% of the data points from 100 bootstrapped samples (N = 100,000) 

with categorical and dimensional properties, with the same statistical distributions as the 

observed data. The two black lines represent the maximum and minimum points from the 

bootstrapped sample. The dotted black line is the averaged MAMBAC curve from the actual 

data observed. 

 

Figure 3. Categorical and dimensional comparison data compared against the 

observed data points for the DSM-IV and PGSI MAMBAC (Graph A, CCFI = 0.628) and 

MAXSLOPE (Graph B, CCFI = 0.567).  The grey band represents the middle 50% of the 

data points from 100 bootstrapped samples (N = 100,000) with categorical and dimensional 

properties, with the same statistical distributions as the observed data. The two black lines 

represent the maximum and minimum points from the bootstrapped sample. The dotted black 

line is the averaged MAMBAC curve from the actual data observed. The MAXSLOPE curve 

(Graph C) without comparison data because of the range of dimensional comparison data 

observed. 

 



Table 1. Means, standard deviations and ranges for the items on both screens. 

Item Average S.D. 

Problem Gambling Severity Index  

1 0.53 0.719 

2 0.21 0.514 

3 0.67 0.684 

4 0.15 0.476 

5 0.24 0.589 

6 0.19 0.529 

7 0.32 0.628 

8 0.19 0.559 

9 0.39 0.673 

Adapted DSM-IV Pathological 
Gambling Criteria 

 

1 0.56 .788 

2 0.94 .665 

3 0.27 .586 

4 0.15 .508 

5 0.19 .525 

6 0.12 .433 

7 0.15 .514 

8 0.02 .285 

9 0.03 .253 

10 0.05 .281 

Note: The ranges for all of the items on both measures are 
0-3. 
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Table 2. Indicator validity and skew measures for individual items on the PGSI and 

adapted DSM-IV criteria 

Item Cohen’s d Skew 

Problem Gambling Severity Index   

1. How often have you bet more than you can afford to lose? 2.331 1.477 
2. How often have you needed to gamble with larger amounts of money 
to get the same feeling of excitement? 

1.894 2.843 

3. How often have you gone back another day to try to win back the 
money you lost? 

1.576 1.026 

4. How often have you borrowed money or sold anything to get money 
to gamble? 

2.192 4.034 

5. How often have you felt you might have a problem with gambling? 3.779 2.952 
6. How often have people criticized your betting or told you that you 
had a gambling problem, regardless of whether or not you thought it 
was true? 

2.946 3.387 

7. How often have you felt guilty about gambling, or what happens 
when you gamble? 

1.893 2.237 

8. How often has your gambling caused you any health problems, 
including stress or anxiety? 

2.545 3.550 

9. How often has gambling caused any financial problems for you or 
your household? 
 

1.917 1.978 

Adapted DSM-IV Pathological Gambling Criteria   

1. In the last 12 months, how often do you go back another day to win 
back money you lost? 

1.805 1.416 

2. In the last 12 months, how often have you found yourself thinking 
about gambling (that is reliving past gambling experiences, planning the 
next time you will play or thinking of ways to get money to gamble)? 

1.779 0.743 

3. In the last 12 months, have you needed to gamble with more and 
more money to get the excitement you were looking for? 

2.784 -0.266 

4. In the last 12 months, have you felt restless or irritable when trying to 
cut down gambling? 

3.259 -0.246 

5. In the last 12 months, have you gambled to escape from problems or 
when you are feeling depressed, anxious or bad about yourself? 

3.792 3.387 

6. In the last 12 months, have you lied to family, to others, to hide the 
extent of your gambling? 

3.780 4.325 

7. In the last 12 months, have made unsuccessful attempts to control, cut 
back or stop gambling? 

2.593 3.975 

8. In the last 12 months, have you committed a crime in order to finance 
gambling or pay gambling debts? 

2.109 11.538 

9. In the last 12 months, have you risked or lost an important 
relationship, job, educational or work opportunity because of gambling? 

2.390 9.370 

10. In the last 12 months, have you asked others to provide money to 
help with a desperate financial situation caused by gambling? 

2.666 7.227 

  



27 
!

Table 3. Factor loadings and indicator names from generalized least squares factor 

analysis on PGSI taxon members. 

 

 

 

 

 

 

 

 

  

PGSI Item Number and Content Factor 1 Factor 2 

Indicator 1  
1. How often have you bet more than you could 

afford to lose? 

.274 .801 

2. How often have you needed to gamble with 
larger amounts of money to get the same feeling of 
excitement? 

.170 .602 

3. How often have you gone back another day 
to try to win back the money you lost? 

Indicator 2  

.305 .595 

4. How often have you borrowed money or sold 
anything to get money to gamble? 

.545 .100 

5. How often have you felt that you might have 
a problem with gambling? 

.719 .140 

6. How often have people criticized your 
betting or told you that you had a gambling problem, 
regardless of whether or not you thought it was true? 

.726 -.011 

7. How often have you felt guilty about 
gambling or what happens when you gamble? 

.594 -.279 

8. How often has your gambling caused you 
any health problems, including stress or anxiety? 

.950 -.147 

9. How often has gambling caused any financial 
problems for you or your household? 

.682 .210 
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Table 4. Factor loadings and indicator names from generalized least squares factor 

analysis on DSM-IV taxon members. 

DSM-IV Item Number and Content Factor 1 Factor 2 Factor 3 
Indicator 1 
1. In the last 12 months, how often do you go back 

another day to win back money you lost? 

.202 -.083 .449 

2. In the last 12 months, how often have you found 
yourself thinking about gambling (that is 
reliving past gambling experiences, planning the 
next time you will play, or thinking of ways to 
get money to gamble)? 

.005 .064 .657 

3. In the last 12 months, have you needed to 
gamble with more and more money to get the 
excitement you are looking for? 

Indicator 2 

.237 .266 .534 

4. In the last 12 months, have you felt restless or 
irritable when trying to cut down gambling? 

Indicator 3 

.318 .231 .385 

5. In the last 12 months, have you gambled to 
escape from problems or when you are feeling 
depressed, anxious or bad about yourself? 

Indicator 4 

.263 .107 .231 

6. In the last 12 months, have you lied to family, to 
others, to hide the extent of your gambling? 

.941 -.222 -.039 

7. In the last 12 months, have you made 
unsuccessful attempts to control, cut back or 
stop gambling? 

Indicator 5 

.516 -.065 .280 

8. In the last 12 months, have you committed a 
crime in order to finance gambling or pay 
gambling debts? 

.356 .648 -.165 

9. In the last 12 months, have you risked or lost an 
important relationship, job, educational or work 
opportunity because of gambling? 

.434 .788 -.049 

10. In the last 12 months, have you asked others to 
provide money to help with a desperate 
financial situation cause by gambling? 

.552 .445 -.008 
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Table 5. Indicator validity and skew measures for composite indicator variables for 

the PGSI and adapted DSM-IV criteria, and the nuisance covariance for the PGSI 

measure. 

Indicator Cohen’s d Skew 

Problem Gambling Severity Index   

1 (PGSI Items 1-3) 3.008 2.424 

2 (PGSI Items 4-9) 4.388 3.411 

Adapted DSM-IV Pathological 

Gambling Criteria 

  

1 (DSM Items 1-3) 3.635 2.125 

2 (DSM Item 4) 3.806 3.830 

3 (DSM Item 5) 3.791 3.385 

4 (DSM Items 6-7) 3.868 3.993 

5 (DSM Items 8-10) 2.985 8.930 

 r 

PGSI Indicators 1 & 2 – Whole Sample 

Covariance 

0.555 

PGSI Indicators 1 & 2 – Taxon Nuisance 

Covariance 

0.288 

PGSI Indicators 1 & 2 – Non-taxon 

Nuisance Covariance 

-0.054 
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Table 6. Inter-item correlations for the DSM-IV  

Whole sample 

 1 2 3 4 5 

1 -     

2 0.517 -    

3 0.437 0.505 -   

4 0.484 0.560 0.517 -  

5 0.352 0.452 0.407 0.473 - 

Taxon 

 1 2 3 4 5 

1 -     

2 0.375 -    

3 0.227 0.192 -   

4 0.255 0.278 0.229 -  

5 0.148 0.300 0.170 0.330 - 

Non-taxon members 

 1 2 3 4 5 

1 -     

2 0.189 -    

3 0.063 0.190 -   

4 0.147 0.273 0.191 -  

5 -0.009 0.062 0.069 0.075 - 

Note.  The correlations that exceed the recommended nuisance covariance threshold 

of r < .3 are highlighted in bold. 
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