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Memory effects are ubiquitous in small-scale systems. They emerge from interactions between
accessible and inaccessible degrees of freedom and give rise to evolution equations that are nonlocal
in time. If the characteristic timescales of accessible and inaccessible degrees of freedom are sharply
separated, locality can be restored through the standard Markov approximation. Here, we show that this
approach can be rigorously extended to a well-defined weak-memory regime, where the relevant timescales
can be of comparable order of magnitude. We derive explicit bounds on the error of the local approximation
and a convergent perturbation scheme for its construction. Being applicable to any nonlocal time evolution
equation that is autonomous and linear in the variables of interest, our theory provides a unifying
framework for the systematic description of memory effects.
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Closed systems follow local time evolution laws, mean-
ing their immediate future is fully determined by their
present state. By contrast, the evolution of an open system
at a given time may depend on its earlier states. Such
memory effects arise from interactions with inaccessible
degrees of freedom, which cannot be directly observed, and
result in time nonlocal equations of motion. This phe-
nomenon plays a particularly important role in microscale
and nanoscale systems, where typically only a fraction of
the present dynamical degrees of freedom are accessible.
Brownian particles, for instance, drag along the invisible
fluid molecules in their vicinity, thus altering their local
environment in the future [1–5]. Similarly, the observable
states of complex biomolecules may have many internal
configurations, which affect the visible dynamics but can
often not be resolved in experiments [6–12].
In this Letter, we consider autonomous nonlocal time

evolution equations with the general form [13–15]

ẋt ¼ Vxt þ
Z

t

0

dt0 Kt0xt−t0 : ð1Þ

Here, xt is a finite-dimensional vector, which characterizes
the state of the open system, for instance, in terms of a
probability distribution over a discrete set of mesostates.
The matrix V describes the observable dynamics in the so-
called adiabatic regime, where the inaccessible degrees of

freedom relax to a unique stationary state virtually instantly
[16–19]. We therefore refer to V as the adiabatic generator.
Any deviations from this limit are accounted for by the
memory kernel Kt, which describes a retarded backaction
of the inaccessible degrees of freedom on the accessible
ones. Equations of the form (1) typically arise when
inaccessible degrees of freedom are eliminated from linear
time-local evolution equations on discrete state spaces; that
is, for example, when time-homogeneous Markov jump
networks are coarse grained by lumping subsets of micro-
states into a finite number of mesostates [16–20], or when
environments are eliminated from microscopic models of
autonomous open quantum systems, as long as the Hilbert
space of the accessible subsystem is finite dimensional
[13–15]. This reduction can, in general, be achieved
through projection operator methods, which are formally
exact and can be systematically combined with expansions
in small parameters [13–15]. Alternatively, time evolution
equations of the type (1) can also emerge directly
from stochastic modeling, for instance as ensemble-
representations of semi-Markov jump processes [21–23],
or as post-Markovian master equations for open quantum
systems [24,25].
Intuitively, it is clear that, close to the adiabatic regime, it

should be possible to recover a local time evolution law, at
least approximately and on some intermediate timescale.
Indeed, a variety of techniques has been developed for this
purpose, see, e.g., Refs. [26–41]. A central aim thereby is to
find a time-homogeneous generator L so that a solution of
the local time evolution equation

ẏt ¼ Lyt ð2Þ
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approximates the solution of the nonlocal equation (1). The
most common way to achieve this simplification is the
Markov approximation, which averages over memory
effects and leads to the generator [13,14]

L1 ¼ Vþ
Z

∞

0

dtKte−Vt: ð3Þ

Like most available methods, this approach relies on the
assumption that the characteristic timescales of accessible
and inaccessible degrees of freedom are sharply separated,
i.e., differ by several orders of magnitude. However, the
precise limits of this assumption are not entirely understood
and universal methods to determine the generator L to
arbitrary accuracy are scarce and often limited to specific
systems. To help close these gaps, we seek to address two
basic questions: Under what conditions and in what sense
can a nonlocal time evolution equation be accurately
approximated by a local one? If such an approximation
exists, is the corresponding generator unique and how can it
be systematically constructed?
Two remarks are in order before we proceed. First,

dynamics with memory effects are commonly referred to as
non-Markovian. However, the Eqs. (1) and (2) do not
necessarily have to describe truly non-Markovian and
Markovian stochastic processes, respectively [42]. Since
our results follow solely from the algebraic structure of
these equations, we here use the more neutral terms
nonlocal and local instead. Second, it is well known that
locality in time can be restored with a time dependent
generator [43–50]. That is, Eq. (1) is, under some technical
conditions, formally equivalent to the time-convolutionless
or TCL equation

ẋt ¼ Ltxt: ð4Þ

Our approach complements this method. Specifically, we
will show that, within a well-defined weak-memory regime,
Eq. (1) is equivalent to the quasilocal time evolution
equation

ẋt ¼ Lxt þ Etx0: ð5Þ

Here, the long-time dynamics of the system are described
by the time independent generator L, to which the TCL
generator converges in the long-time limit [51], and short-
time corrections are accounted for by the memory function
Et, which decays rapidly in time.
We begin our analysis by collecting the relevant time-

scales of the problem at hand. The memory kernel Kt is
characterized by a magnitude M, which is determined by
the strength of the interactions between the accessible and
the inaccessible parts of the system, and a decay rate k,
which is set by the relaxation time of the inaccessible
degrees of freedom. For definiteness, we require that Kt

decays exponentially at long times such that

kKtk ≤ Me−kt; ð6Þ

where k · k is a matrix norm. This assumption is plausible,
since we are interested in a regime where memory effects
play a significant, yet subdominant, role. A third timescale
is provided by the magnitude

v ¼ kVk ð7Þ

of the adiabatic generator, which characterizes the free
evolution of the accessible degrees of freedom.
In the adiabatic limit k → ∞, whereM is held fixed, any

memory is wiped out and the solution of Eq. (1) becomes
xt ¼ eLtx0 with L ¼ V. In general, however, the solution of
Eq. (1) cannot be expressed in terms of a simple matrix
exponential, regardless of how the generator L is chosen.
We therefore make the less restrictive ansatz

xt ¼ eLtAtx0 with lim
t→∞

At ¼ D; det½D� ≠ 0; ð8Þ

where the reduced propagator At accounts for memory
effects. Requiring At to approach a time-independent
matrix D makes it possible to asymptotically recover a
local time evolution law. Specifically, the solution

yt ¼ eLtDx0 ð9Þ

of Eq. (2) provides a local approximation of xt, which
becomes arbitrarily accurate at long times if At converges to
D sufficiently fast. The nonsingularity of D, which is
known as slippage matrix [52–57], ensures the existence of
a proper long-time approximation for any nontrivial initial
state, i.e., yt ≠ 0 for any x0 ≠ 0. It now remains to
determine when a time-homogeneous generator L with
the above properties exists. This problem is addressed in
Ref. [51], where we show that, if the conditions

v < k and 4M < ðk − vÞ2 ð10Þ

are satisfied, L can be chosen such that the relations (8) and
the bound

jxt − ytj ≤
k − η

η − ρ
jx0je−ηt ð11Þ

hold. Here, j · j can be any vector norm that is consistent
with the matrix norm k · k and the parameters ρ and η are
defined as
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ρ ¼ kþ v −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − vÞ2 − 4M

p
2

;

η ¼ kþ vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − vÞ2 − 4M

p
2

: ð12Þ

The bound (6) and the conditions (10) define the weak-
memory regime. These conditions still require the memory
time 1=k to be the shortest relevant timescale. However, in
contrast to the standard Markov approximation, which
usually requires v;

ffiffiffiffiffi
M

p
≪ k, they allow v,

ffiffiffiffiffi
M

p
, and k to

be of the same order of magnitude.
The existence of the product representation (8) of the

solution of Eq. (1) and the bound (11) on the error of the
long-time approximation (9) are the first main results of this
Letter. Instead of delving into the technicalities of their
formal proof, which can be found in Ref. [51], we illustrate
these relations with a simple example. We choose the
adiabatic generator and the memory kernel as

V¼ vH; K¼MHe−kt with H¼ 1

2

�−1 1

1 −1

�
: ð13Þ

Here, v,M, k > 0 are free parameters and kHk1 ¼ 1, where
k · k1 denotes the maximum absolute column sum norm
[58]. The time evolution equation (1) can then be inter-
preted, for example, as a simple model of a quantum dot in
contact with a finite size reservoir [59–61]. In this case, the
state vector xt ¼ ½p0

t ; p1
t �T contains the probabilities p0

t and
p1
t for the dot to be empty or occupied by a single charge.

The exact solution of Eq. (1), which can be easily found by
Laplace transformation, has the form xt ¼ eLtAtx0 with

L ¼ ρH and At ¼ 1þ ðe−ðη−ρÞt − 1Þðk − ηÞ
η − ρ

H; ð14Þ

where ρ and η are defined as in Eq. (12). As long as
4M < ðk − vÞ2, we have η > ρ and At converges to the
nonsingular matrix D ¼ 1 − ðk − ηÞH=ðη − ρÞ in the limit
t → ∞. The corresponding long-time approximation (9)
then satisfies

jxt − ytj1 ¼
k − η

η − ρ
jHx0j1e−ηt: ð15Þ

Hence, for x0 ¼ ½1; 0�T and x0 ¼ ½0; 1�T, the bound (11) is
exactly saturated. Notably, for 4M ¼ ðk − vÞ2, the reduced
propagator becomes At ¼ 1 − ðk − ηÞHt, and thus
unbounded. For 4M > ðk − vÞ2, we have η−ρ¼ ijη−ρj
and At oscillates indefinitely. In neither of these cases can
the generator L be chosen such that At converges to a
nonsingular matrix D, which shows that the condition
4M < ðk − vÞ2 is generally necessary for the existence of
the factorization (8); similar examples show that the same
holds true for the condition v < k [51].

In the above case study, we have extracted the generator
and the reduced propagator from the exact solution of
Eq. (1). In general, however, these objects cannot be found
exactly. It is then still possible to determine them approx-
imately through a systematic perturbation theory, which
can be developed from the memory functionEt that appears
in Eq. (5). To this end, we equate the formal solutions of the
Eqs. (1) and (5) in Laplace space. Upon solving for the
Laplace transform of the memory function and returning to
the time domain, we find that Et solves the initial value
problem

Ėt ¼ Kt þ EtVþ
Z

t

0

dt0 Et0Kt−t0 ;

E0 ¼ V − L: ð16Þ

The solution of this problem is unique for any given L.
However, the generator is yet unknown. This problem can
be addressed as follows. We first switch to the dimension-
less time s ¼ kt and introduce the rescaled variables
Ēs ¼ Es=k=k, V̄ ¼ V=k, and K̄s ¼ Ks=k=M. The integro-
differential equation (16) then takes the form

d
ds

Ēs ¼ φK̄s þ ĒsV̄þ φ

Z
s

0

ds0 Ēs0K̄s−s0 ; ð17Þ

where φ ¼ M=k2 is a dimensionless parameter, which
quantifies the memory strength. We now make the ansatz

Ēs ¼
X∞
n¼1

φnĒðnÞ
s : ð18Þ

Inserting this expansion into Eq. (17) and collecting terms
of the same order in φ yields a hierarchy of ordinary
differential equations, whose formal solutions are

ĒðnÞ
s ¼ ĒðnÞ

0 eV̄s þ
Z

s

0

ds0
Z

s0

0

ds00 Ēðn−1Þ
s00 K̄s0−s00eV̄ðs−s

0Þ;

Ēð1Þ
s ¼ Ēð1Þ

0 eV̄s þ
Z

s

0

ds0 K̄s0eV̄ðs−s
0Þ: ð19Þ

Since the memory function should vanish rapidly at long
times, we choose the initial values Ē0 such that

lim
s→∞

ĒðnÞ
s e−V̄s ¼ 0: ð20Þ

After returning to natural units, we thus obtain the recursion
relations

EðnÞ
t ¼ −

Z
∞

t
dt0

Z
t0

0

dt00 Eðn−1Þ
t00 Kt0−t00eVðt−t

0Þ;

Eð1Þ
t ¼ −

Z
∞

t
dt0 Kt0eVðt−t

0Þ; ð21Þ
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which require only the adiabatic generator V and the
memory kernel Kt as input. It thus becomes possible to
iteratively calculate the nth-order approximation

En
t ¼

Xn
m¼1

EðmÞ
t ð22Þ

of the memory function. Once the memory function has
been determined to sufficient accuracy, the corresponding
approximations of the generator and the reduced propaga-
tor can be obtained from the formulas

Ln ¼ V − En
0;

An
t ¼ 1þ

Z
t

0

dt0 e−Lnt0En
t0 ; ð23Þ

which follow directly from Eq. (16) and the observation
that At and Et have to be connected through the relation
Et ¼ eLtȦt for the factorization (8) to be consistent with the
differential equation (5). Notably, we recover the Markov
generator (3) in first order with respect to φ.
Up to this point, our discussion has been purely formal,

since we have not paid any attention to convergence
conditions. However, it is possible to put the above
derivation on mathematically rigorous grounds [51]. As
our second main result, we find that the successive
approximations (23) of the generator and the reduced
propagator converge uniformly on the open time interval
½0;∞Þ in the limit n → ∞, as long as the weak-memory
conditions (6) and (10) are satisfied. We have thus
developed a systematic perturbation theory for the nonlocal
time evolution equation (1), where the memory strength
φ ¼ M=k2 plays the role of a small parameter. Specifically,
the nth-order approximation of xt takes the form

xnt ¼ eL
ntAn

t x0 ð24Þ

In the limit n → ∞, this sequence converges uniformly to
the exact solution of Eq. (1) on any finite time interval ½0; t�;
for details, see Ref. [51].
To illustrate this result, we revisit the model of Eq. (13),

for which the first and second order contributions to the
memory function are given by

Eð1Þ
t ¼ −

M
k − v

He−kt;

Eð2Þ
t ¼ −

M2

ðk − vÞ3He
−kt −

M2t
ðk − vÞ2He

−kt: ð25Þ

Using the formulas (23), it is straightforward to find the
first and the second order approximations x1t and x2t of the
exact solution xt of Eq. (1). The errors of these approx-
imations are plotted in Fig. 1 for selected parameter values.
At short times, both x1t and x2t are significantly more
accurate than the standard Markov approximation,

yMt ¼ eL
1tx0, which neglects the reduced propagator. At

long times, the error of x1t is comparable to the error of yMt ,
which is to be expected, since both of these approximations
use the same generator. The error of the second order
approximation x2t , however, is consistently smaller than the
error of x1t and yMt by more than 1 order of magnitude for all
relevant times.
We now return to our general program. As we have seen,

the conditions (6) and (10) precisely define a weak-memory
regime, where a local approximation of the nonlocal time
evolution equation (1) exists. The bound (11) further shows
that this approximation becomes arbitrarily accurate at
sufficiently long times and the recursion relations (21),
together with the formulas (23), provide a systematic
scheme to construct this approximation order by order in
the memory strength φ ¼ M=k2. It thus remains to deter-
mine in what sense the generator of the local approximation
is unique. We first note that the factorization condition (8)
alone is insufficient to establish uniqueness. In fact, there
generally exists a continuous family of generators, all of
which are connected by similarity transformations, such
that the solution of Eq. (1) acquires the form (8) [51]. It is,
however, possible to formulate a uniqueness criterion in
terms of the memory function. To this end, we denote by Et
the proper memory function that is uniquely determined by
the recursion relations (21) and by L ¼ V − E0 the corre-
sponding proper generator. Next, we observe that, for any
alternative generator L0 ≠ L, it is possible to construct a
unique memory function E0

t ≠ Et by solving the initial
value problem (16) [62]. Our third main result is that the
proper memory function Et and any of its approximations
En
t , as defined in Eq. (22), satisfy the bound

kEtk; kEn
t k ≤ ðk − ηÞe−ηt: ð26Þ

FIG. 1. Perturbation theory in the weak memory regime. The
plots corresponds to the model of Eq. (13) for the initial state
x0 ¼ ½0; 1�T. We have set k ¼ 1 so that all quantities become
dimensionless. The remaining parameters are v ¼ 0.5 and
M ¼ φ ¼ 0.01 such that 4M=ðk − vÞ2 ¼ 0.16 and the weak-
memory conditions (10) are satisfied. Left: Components of the
exact solution xt of Eq. (1). Right: The orange and red lines show
the error of the first- and second-order approximations, x1t and x2t .
For comparison, the solid and dashed blue lines shows the error of
the adiabatic and Markov approximations, y0t ¼ eVtx0 and
yMt ¼ eL

1tx0, respectively.
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Any alternative memory function E0
t ≠ Et, however, vio-

lates this bound. More precisely, we have

lim sup
t→∞

kE0
tkeσt ¼ ∞ ð27Þ

for any σ > ρ [51]. Hence, E0
t either does not vanish at all in

the long-time limit or at least decays significantly slower
than Et, since η > ρ. The proper generator L is therefore
unique in that it corresponds to the fastest decaying
memory function.
This result completes the agenda of the present Letter. In

summary, we have developed a general mathematical
framework that makes it possible to construct a generator
L and a nonsingular slippage matrix D such that the
solution of the local time evolution equation (2) for
the initial condition y0 ¼ Dx0 comes arbitrarily close to
the solution of the nonlocal equation (1) at sufficiently long
times. The limits of this framework are precisely defined by
the weak memory conditions (6) and (10), which do not
require a strong separation of timescales. Instead, they
allow the three parameters v,

ffiffiffiffiffi
M

p
, and k, which represent

the characteristic time scale of the accessible part of the
system, the coupling strength between accessible and
inaccessible degrees of freedom, and the typical relaxation
time of the latter, to be of the same order of magnitude. A
crucial prerequisite for our theory is the existence of an
exponentially decaying bound on the memory kernel. If the
latter decays only algebraically, memory effects are
expected to play a dominant role and can no longer be
described with the methods developed in this Letter.
Nonetheless, our approach goes beyond the standard
Markov approximation, which we recover as the first order
of our perturbation theory for the generator L in the
memory strength φ ¼ M=k2.
On the conceptual side, our results contribute towards

closing a long-standing gap in the theory of open systems.
While it is well understood how irrelevant degrees of
freedom can be systematically eliminated from local time
evolution equations by means of projection operator
techniques [13–15], transitioning from the resulting non-
local time evolution equations, which in many instances
take the form of Eq. (1), back to time local equations often
requires nonsystematic approximations. We stress that
systematic expansions of local generators have been
developed in the more recent literature [26–30], which
we discuss further in Ref. [51]. However, the convergence
properties of these schemes are not fully understood. At
least within the weak-memory regime, these methods can
now be augmented with a convergent perturbation theory in
the memory strength. From a practical perspective, our
results provide a universal basis to further explore the role
of memory effects in a variety of areas ranging from
biomolecular systems to open quantum systems [63–67]. In
particular, it will be interesting to explore whether the
quasilocal time evolution equation (5) can be endowed with

a consistent thermodynamic structure, which would make it
possible to systematically incorporate moderate memory
effects into the existing frameworks of stochastic and
quantum thermodynamics [68,69]. We leave this problem,
along with potential extensions of our theory to systems
that are non-autonomous, i.e., driven by time dependent
fields, or follow nonlinear equations of motion, as an
appealing subject for future research.
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