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Combining topologically protected chiral light transport and laser amplification gives rise to topological lasers, whose
operation is immune to fabrication imperfections and defects, uncovering the role of topology in a novel nonlinear non-
Hermitian regime. We study a topological laser based on the photonic Haldane model with selective pumping of chiral
edge modes described by saturable gain. We investigate elementary excitations around the mean-field steady state and
their consequences for the coherence properties. In particular, we show that the hybridization of chiral edge modes gives
rise to long-lived elementary excitations, leading to large phase fluctuations in the emitted light field and a decrease in
light coherence. In contrast to topologically trivial lasers, the lifetime of elementary excitations is robust against disorder
in topological lasers. However, the lifetime depends strongly on the edge-mode dispersion around the lasing frequency.
As a result, the lifetime can be reduced by orders of magnitude for lasing of different edge modes, leading to a suppres-
sion of phase fluctuations and larger coherence of the emitted light. On the other hand, amplitude fluctuations and the

second-order autocorrelation function are moderately increased at the same time.
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1. INTRODUCTION

Topological photonics has made rapid strides in the past years [1],
investigating effects of gain and loss on the topology of photonic
energy bands [2-4], topology in synthetic dimensions [5-8], as
well as the interplay of topology and nonlinear optics phenomena
[9]. Lasing in topological photonic structures has recently attracted
a lot of attention not only because it allows studying topology in
a novel nonlinear non-Hermitian regime but also because topo-
logical structures can offer a new design of laser devices. First,
lasing of zero-dimensional edge modes has been demonstrated
in one-dimensional photonic arrays [10-12]. These pioneering
works have been followed by experiments reporting lasing of
one-dimensional chiral edge modes in two-dimensional photonic
arrays [13—-16]. In a two-dimensional array, lasing of a single edge
mode extending over the whole edge of the photonic array has
been demonstrated [14]. The single-mode laser operation is robust
against on-site disorder in contrast to topologically trivial laser
arrays [17]. For this reason, topological lasers are a promising can-
didate for highly efficient lasers with a robust emission spectrum.
The rich dynamics of topological lasers are subject to current theo-
retical investigation [18,19]. However, the theory for coherence
properties of topological lasers, which would be relevant for recent
experiments demonstrating stable laser operation [14], has still
been missing.

One essential characteristic of lasers is their large temporal
coherence of the emitted light field, which is required for practical
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applications [20]. The coherence is fundamentally limited by the
phase diffusion of the light field caused by the intrinsic noise due
to spontaneous emission [21]. Phase diffusion leads to a finite
linewidth of the emitted light field, which, in the absence of other
noise sources, is determined by the Schawlow—Townes formula
[22]. In realistic lasers, the coherence of the emitted light is affected
by the dynamics of the gain medium as well as the presence of
multiple lasing modes, leading to an additional broadening of
the laser linewidth [23]. In this paper, we study how the coher-
ence of the light field emitted by a topological laser is affected by
the elementary excitations around the mean-field steady state,
which are excited by intrinsic noise. To focus on the effects of
the elementary excitations, we neglect the dynamics of the gain
medium, assuming the gain medium responds instantaneously to
the dynamics of the light field.

We consider the Haldane model based on a two-dimensional
photonic array pumped along the edge. On the mean-field level
neglecting quantum and thermal fluctuations in the laser, we
obtain lasing of a single edge mode. Depending on initial condi-
tions, lasing of edge modes with different lasing frequencies can
be achieved as described in Ref. [19]. We take fluctuations into
account using nonlinear semiclassical Langevin equations. We lin-
earize the Langevin equations around the mean-field steady-state
solution to study elementary excitations. We consider weak gain
and loss in comparison to the coupling of optical sites in the array
and a moderate size of the array such that the frequency separation
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of edge modes is larger that the linewidth of these modes. This
regime is relevant for recent experiments on arrays of micrometer-
scale ring resonators [14,24]. We study how normal modes of
elementary excitations are formed from the normal modes of a
passive system, which does not experience either gain or loss. We
show that the hybridization of edge modes gives rise to long-lived
elementary excitations, which lead to large phase fluctuations and
a decreased coherence of the emitted light field. The emergence
of long-lived elementary excitations is not a unique feature of
topological lasers, as they generically appear in laser arrays with a
linear frequency dispersion. However, the fact that the long-lived
elementary excitations in a topological laser are formed from topo-
logical edge modes makes them robust against disorder. We show
that, in contrast to long-lived elementary excitations in a trivial
laser, the lifetime and the oscillation frequency of these topological
long-lived elementary excitations are robust against moderate
on-site disorder. The lifetime of elementary excitations depends
strongly on the dispersion of edge-mode frequencies around the
lasing frequency. Any deviation from a linear dispersion leads to a
detuning for normal modes of elementary excitations, which can
obstruct their hybridization and, as a consequence, reduce their
lifetime. For lasing at frequencies that do not lie in the middle of
the passive-system band gap, the deviation from a linear dispersion
is sufficient to reduce the lifetime of elementary excitations by
at least one order of magnitude. This leads to a large suppression
of phase fluctuations and an increase in light coherence. On the
other hand, amplitude fluctuations of the emitted light field are
increased, resulting in a moderately larger second-order autocorre-
lation function. We confirm our results by numerical simulations
of full Langevin equations, which take nonlinear noise dynamics
into account.

2. MODEL
We consider an array of optical sites, whose complex amplitudes
cj» j=1,..., N, are described by the semiclassical Langevin
equations
N
d . Pig
il R Ak i et D Hiker+ Qjjcjin:
1+~ k=1

Lsat

(1)
where h=1, v; are the frequencies of the optical sites, the

Hamiltonian /;; describes the coupling of these sites, and Nis the
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number of the optical sites in the array. Intrinsic optical losses lead
toadecay at rate y . Incoherent pumping of optical sites is described
by asaturable gain g, where I, is the saturation intensity. We allow
for a spatial pump profile, where P; =1 for pumped sites, and
IP; =0 for not pumped sites. Incoherent pumping is associated
with intrinsic noise due to spontaneous emission at rate ¢, which
is the dominant source of fluctuations at the pumped sites. At
sites without pumping, the dominant source of fluctuations is
shot noise at rate 2y. Both intrinsic noise due to spontaneous
emission and shot noise can be described by Gaussian white noise
(cjin(®)e 1, (2)) = 848 ( — ¢') with a correlation matrix QQ’,
where Qs a diagonal matrix, Qjx = 8 ,[/2y (1 = P;) + /qP;],
and 8 j, is the Kronecker delta.

We focus on the Haldane Hamiltonian A = # > E;E/e +

Hy . ei¢/kE;E/€ based on a honeycomb array [see Fig. 1(b)]
including nearest-neighbor hopping with a real amplitude # and
next-nearest-neighbor hopping with a complex amplitude #,¢’?#
[25,20]. ¢ ;1 = ¢ for hopping in the directions shown by green
arrows in Fig. 1(b), and ¢;; = —¢ in the reverse directions, where
¢ is the Haldane flux. In Fig. 1(c), we plot the band structure of
the passive Haldane model (black lines) for no gain and no loss in
the photonic array. For ¢ # 0, 7, the time-reversal symmetry of
the system is broken, and a topological band gap opens (orange
region). Cutting the array in the form of an infinite strip, chiral
edge modes (blue lines) appear at the boundaries of the array.
Frequencies of the chiral edge modes lie in the topological band

gap-

n.n.

3. MEAN-FIELD STEADY STATE

We first find steady states of the mean-field dynamical equa-
tions for optical amplitudes, which are obtained by omitting
stochastic terms in the Langevin Eq. (1). We consider a finite
array depicted in Fig. 1(a), where optical sites in the blue region
are pumped. We assume that gain and loss are weak in com-
parison to the hopping amplitudes, i.e., g,y < #, £. In this
regime, lasing of a single topological edge mode is achieved,
which was theoretically shown in Ref. [17] and experimentally
demonstrated in Ref. [ In Fig. 1(d), we show the overlap

=] Z] " c (m)l/‘/ ] . l¢j|? of the mean-field steady-state

solutlon ¢ w1th the normal modes e of the passive system (no
gain, no loss). Depending on the initial conditions, one of the edge
modes wins the gain competition. Since all edge modes extend
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Fig. 1. Mean-field steady state of topological laser. (a) Honeycomb photonic array with photon tunneling described by the Haldane model pumped
in the blue region. The color scale shows the mean-field steady-state occupations |¢;|* of local optical sites. (b) Unit cell of the Haldane model consist-
ing of sublattice A (gray points), sublattice B (black points), nearest-neighbor hopping with a real tunneling #, and next-nearest-neighbor hopping with a
complex amplitude #,¢%*. (c) Band structure of the passive Haldane model (no gain, no loss) with bulk modes (black lines), topological band gap (orange
region), and topological edge modes (blue lines) for an infinite strip with zig-zag edges. (d) Overlap p,, of the mean-field steady-state solution with normal
modes e™ of the passive system (no gain, no loss) for the mode with frequency Q/# = 0 lasing. (Parameters: £/ = 0.15, ¢ = /2, ¥/t =0.01,¢/t; =

0.05, N=061.)
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Fig.2. Elementary excitations for lasing of different edge modes. (a), (b) Mean-field steady-state distribution of optical phases along the top edge of the
photonic array for lasing frequencies 2/ = 0 and /# = 0.25, respectively. (c), (d) Complex spectrum of elementary excitations with band gap (orange
region), bulk modes (black points), as well as edge modes (blue points) for lasing frequencies 2/ = 0 and Q/# = 0.25, respectively. Gray and blue lines
show the splitting in imaginary parts of complex frequencies due to the hybridization of bulk modes and edge modes, respectively. (e), (f) Real part and
imaginary part, respectively, of complex frequencies €. for two hybridized modes as a function of the detuning dw for different values of the decay-rate dif-

ference BF/A 0.02 (full lines), 5F/A 0.6 (dashed lines), and 5F/A 2 (dotted-dashed lines). [Parameters: (a)—(d) /5 = 0.15, ¢ =7 /2,y //t1 =

0.01, ¢/t =0.05, N=61;(e), ) @/A =0, /A = —2.]

across the whole pump region, a single edge mode saturates gain at
all pumped optical sites and prevents lasing of other edge modes.
As a result, the overlap of the mean-field steady state with a single
edge mode is close to unity, and the overlaps with the remaining
passive-system normal modes are very small. Lasing of different
edge modes leads to different lasing frequencies and different
steady-state distributions of optical phases §; along the edge of the
array [see Figs. 2(a) and 2(b)]. However, the occupation of optical
sites, |¢ |* [see Fig. 1(a)], is almost identical for lasing of any edge
mode, since all edge modes have very similar spatial profiles |e m) 2.

The mean-field dynamics of complex amplitudes ¢ ;/ N and the
mean-field steady state ¢ j/+/ L, are independent of the absolute
scaling I

4. ELEMENTARY EXCITATIONS

In this section, we describe elementary excitations around the
mean-field steady state. We show how the normal modes of
elementary excitations are formed from the passive-system normal
modes.

To study elementary excitations around the mean-field steady
(t_‘] + (Sfj)f_igt
into the mean-field steady-state solution ¢ ; and a modulation éc¢ ;,

state, we decompose optical amplitudes ¢; =

where Q is the frequency of the lasing mode. Considering small
modulations around the mean-field steady state, we derive the
linear Langevin equations

.d [ éc 8¢ Cine’S¥
()0 (E)ro(s).

where D is the dynamical matrix for elementary excitations around
the mean-field steady state, Q@ =Q ® 0, and o, is the Pauli

matrix. The dynamical matrix

H- Q1 0 (T A
0 —H*+Q]1>+Z<A* r) (3)

can be decomposed into the Hermitian part H and the anti-
Hermitian part A, where Hj; is the Hamiltonian of the passive
system, 1 is the N x Nidentity matrix,

D=+ A=

Pjg P58 7
Fj=—v+—rom dj=—7—1s @
(1 n —]L) (1 + —,L)

andI"j, = A j; = Ofor j # k. The dynamical matrix depends only
on rescaled mean-field optical amplitudes ¢;/+/Z. As a result,
elementary excitations do not depend on the absolute scaling, /g,
of the mean-field optical amplitudes.

For elementary excitations, the number of normal modes is
doubled compared to the number of the passive-system normal
modes. The dynamical matrix D exhibits the following sym-
metry: XDX = —D*, where X =1 ® 0,, and 0, is the Pauli
matrix. Due to this symmetry, the complex frequencies €@,
a=1,..., 2N, of elementary excitations are purely imaginary or
appear in pairs (€@, €@), where €@ = —(e@)*,

We first diagonalize the Hermitian part H by switching to
the basis of passive-system normal modes 5;’”) =e" ® (1,07

and g},’”) = (e")* ® (0, 1)7, where e N, are
eigenmodes of H. The eigenfrequencies of the Hermitian part
are formed directly from the passive-system eigenfrequencies w,,,

,m=1,...,

giving rise to two branches e(’”) =w,, — Qand e(”’) =—w,, + Q.
The anti-Hermitian part
. I A

introduces coupling between passive-system normal modes, where
I =U'TU, A = U'AU*. Columns of the transformation matrix
U are eigenmodes €. Due to the anti-Hermitian coupling, the
passive-system normal modes hybridize.

We now discuss the coupling of modes 5}()’”) and g/()”) from the

two different branches due to the off-diagonal blocks Aand A" of

the dynamical matrix. The coupling between modes 51(,’”) and é/()”)
is described by the 2 x 2 dynamical matrix

Amn) _ [ Om — Q 0 . l:;mm Amn
b _< 0 —a),,+52>+ (A* g ©
if their frequencies are isolated from the rest of the passive-

system spectrum, ie., |@pyn + @y — 292> |Am/,lq|,
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[@Wnyn — wq| > f‘m/nq for all ¢ # m, n. The frequencies of the
edge modes in the band gap of the passive system satisfy this condi-
tion for moderate system sizes and for 7, £, > g, ¥ as considered
in this paper. Diagonalizing the 2 x 2 dynamical matrix, we obtain
complex frequencies of hybridized modes:

- 1 ~
E:(i:m’n) = a_)mn - lrmn :l: z\/(awmn + ZCSFmﬂ)2 - 4|Amn|27 (7)

where Oy = (0, — w,) /2, SWyp = w,, + w, — 282,
Ly =—m +T0)/2, and 8T, =T, — [y The real
parts of complex frequencies correspond to oscillation frequencies,
and the imaginary parts of complex frequencies correspond to
decay rates or amplification rates. The real part and the imaginary
part of the complex frequencies """ are shown in Figs. 2(e) and
2(f), respectively, as a function of the detuning 8w,,,. One can see
that due to the anti-Hermitian coupling of passive-system normal
modes, the real parts of the complex frequencies are attracted to
each other: Re(eim’") — 6(_m’")) < |8w,,|. On the other hand,
the imaginary parts of the complex frequencies split. This is an
example of level attraction, which is a general concept appearing in

various physical platforms [27-29]. For 2T,,,, > 1/ 8T, + 4| A2,
both hybridized modes decay, as the imaginary parts of the com-
plex frequencies are negative. The splitting in the imaginary parts
of the complex frequencies is large for small detunings w, leading
to a slowly decaying mode and a fast-decaying mode. For a large
detuning [8w,,,| > |A,n|, the hybridization is negligible, and the
frequencies of uncoupled modes eim’n) ~w, —Q+il,,, aswell
) —w, + Q + il are recovered.

The hybridization of two edge modes from the two different
branches described by the 2 x 2 dynamical matrix D" will be
shown in the next section to have important consequences for the
complex spectrum of elementary excitations.

ase€

5. SPECTRUM OF ELEMENTARY EXCITATIONS

We now investigate the complex spectrum of elementary excita-
tions in the regime 11, 1, 3> ¢, . In Fig. 2(d), we plot the complex
spectrum of elementary excitations for lasing of the edge mode
with the frequency €/# = 0.25. This spectrum reveals generic
features of elementary excitations in topological lasers.

Normal modes of elementary excitations are formed from
either bulk modes (black points) or edge modes (blue points) of the
passive system. In the regime 11, 7, 3> g, ¥, the oscillation frequen-
cies (real parts of complex frequencies) of elementary excitations
are predominantly determined by the ecigenfrequencies of the
Hermitian part H, which consists of two branches, 61(,”’) =w, — R

and €™ = —w,, + Q, formed from the passive-system frequen-
cies w,,. These two branches are shifted with respect to each
other by the lasing frequency €2. Since the lasing frequency lies in
the passive-system band gap, the band gaps of the two branches
overlap, giving rise to a band gap in the spectrum of elementary
excitations [orange region in Fig. 2(d)]. The band gap in the spec-
trum of elementary excitations represents a range of frequencies,
within which no bulk modes are excited by elementary excitations.
As the lasing frequency €/# = 0.25 does not lie in the middle of
the passive-system band gap, the band gaps of the two branches
overlap only partially. As a result, the band gap in the spectrum of
elementary excitations is smaller than that of the passive system.
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All imaginary parts of complex frequencies are negative (except
for a single frequency with a vanishing imaginary part discussed
later), confirming the stability of the steady state. For moderate
system sizes that we consider here, |w,, — w,| > g, y forallm #n
and edge-mode frequencies w,, lying in the band gap of the pas-
sive system. As a result, every edge mode 5}()’”) can significantly

hybridize only with a single mode £ from the other branch,
and their coupling is described by tﬁe 2 x 2 dynamical matrix
(6). Due to the large spatial overlap of edge modes in the pumped
region IP;, the coupling | A, | between edge modes overcomes the
detuning of their passive-system frequencies |§@,,,|. This leads to
a large hybridization of edge modes and to a distinctive splitting
in the imaginary parts of their complex frequencies [blue lines in
Fig. 2(d)].

Two passive-system normal modes formed from the lasing
mode e”) are always degenerate at frequency 6;1) = 51(,1) =0. The
hybridization of these two modes gives rise to a non-decaying mode
with the complex frequency 6_(,{’[) =0 and a fast-decaying mode
with the complex frequency D = _2; Ty (see Appendix B for
more details). These non-decaying and fast-decaying excitations
correspond to undamped fluctuations in the phase of the lasing
mode and largely damped fluctuations in the amplitude of the
lasing mode, respectively, which are characteristic for a laser driven
above threshold [21].

Note that the hybridization of edge modes 5;’") and 51()”) from
the same branch is negligible because the detuning of passive-
system frequencies |8w,,,| = |w,, — w,| is always larger than the
coupling term IT",,.»| between these modes.

Since couplings A,,, and T,, between bulk modes are
small, the hybridization of bulk modes is typically also neg-
ligible. Complex frequencies of non-hybridized bulk modes
[black points in Fig. 2(d)] acquire imaginary parts Ime ™ ~ —y
and Imé™ ~ —y due to the diagonal term Ty &~ —y in the
anti-Hermitian part of the dynamical matrix.

Note that for the value of the Haldane flux ¢ = 7/2, a small
hybridization of bulk modes occurs for lasing at the frequency
2/n =0 [see Fig. 2(c)], because bulk modes are pairwise degen-
erate due to the symmetry, SHS = —H*, of the passive-system
Hamiltonian H, where S is a unitary, and S? =1 (see Appendix C
for more details). However, the splitting in imaginary parts of
complex frequencies for bulk modes is small in comparison to the
splitting for edge modes, and the hybridization of bulk modes does
not appear for other values of the Haldane flux ¢ # /2 or for
other lasing frequencies 2/# # 0.

6. LONG-LIVED ELEMENTARY EXCITATIONS

We now discuss long-lived elementary excitations, which occur in
the Haldane model for lasing at a frequency lying in the middle of
the passive-system band gap (vicinity of Q/# = 0 for ¢ ~ 7 /2).

In Fig. 2(c), we plot the complex spectrum of elementary
excitations for lasing at the frequency Q/# = 0, which lies in the
middle of the passive-system band gap. Long-lived elementary
excitations with decay rates, which are orders of magnitude smaller
than any other energy scale in the system (y, g, #; and 1), appear
due to a large hybridization of edge modes. The very slow decay
of long-lived elementary excitations leads to an ultra-slow relax-
ation of the topological laser towards the mean-field steady state,
which was numerically observed in Ref. [19]. In contrast to lasing
at the frequency Q/# =0, decay rates of slowly decaying modes
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are comparable to y for lasing at the frequency €2/n = 0.25 [see
Fig. 2(d)].

To understand the dependence of the spectrum for elementary
excitations on the selection of a lasing edge mode, we can expand
the edge-mode frequencies w,, = Q + vi(m — [) + v, (m — [)* +
O((m = 1)?) around the lasing frequency €2, where the index
/ labels the lasing mode. For |v1| 3> |v,|, the frequency of edge
mode 7 is close to the frequency of edge mode 2/ — m from the
other branch of passive-system normal modes, and their detuning
is 8Wpmi—my =202(m — >+ O((m — [)*). If the nonlinear
coefficient |v;| and, as a consequence, also the detuning §w,,2/—m)
are small compared to the coupling |Am(2;,m)| between the edge
modes, the edge modes significantly hybridize, giving rise to a large
splitting in the imaginary part of the complex frequencies [see
Eq. (7) and Fig. 2(f)]. On the other hand, if the nonlinear coeffi-
cient |v;| is comparable to or larger than the coupling A m2l—m)|>
the resulting detuning 8®,,(2/— ) obstructs the hybridization, and
the splitting in the imaginary parts of edge-mode frequencies is
reduced.

For the Haldane model, the dispersion of edge-mode frequen-
cies is linear in the middle of the passive-system band gap for any
¢ #0, . As v, is very small for lasing at a frequency lying in the
middle of the passive-system band gap, long-lived elementary
excitations, whose decay rate is orders of magnitude smaller than
any other energy scale in the system (y, g, #, and #,), appear for
any value of the Haldane flux. This can be seen in Fig. 3(c), where
we plot the smallest decay rate miny 2 |Ime @] (index 7 labels the
non-decaying mode) as a function of the lasing frequency 2 for dif-
ferent values of the Haldane flux. On the other hand, for lasing at
any frequency that does not lie in the middle of the passive-system
band gap, the nonlinear coefficient v, is large enough to give rise
to a considerable detuning of edge-mode frequencies compared to
the coupling of edge modes. The hybridization of edge modes is
then obstructed, and the smallest decay rate is comparable to y [see
Fig. 3(0)].

Long-lived elementary excitations are not unique to topological
lasers. They generically appear in one-dimensional arrays if the

Vol. 7, No. 9 / September 2020 / Optica 1049

dispersion of the passive frequencies is linear around the lasing
frequency (see Appendix D for more details). However, in contrast
to topological lasers, long-lived elementary excitations in topologi-
cally trivial lasers are sensitive to disorder. Even moderate disorder
in the on-site frequencies v; can obstruct or enhance the hybridiza-
tion of the passive-system normal modes, leading to a large change
in the decay rate of the long-lived elementary excitations as well as
in their oscillation frequency (see Appendix G). On the other hand,
long-lived elementary excitations in a topological laser (¢ # 0, 7)
are robust against moderate on-site disorder. Their decay rate is
only marginally affected, and thus it remains orders of magnitude
smaller than y in the presence of disorder (see Appendix F for
more details). The oscillation frequency of long-lived elementary
excitations is unaffected by the disorder. The long-lived elementary
excitations are robust against disorder since they appear due to
the hybridization of topological edge modes, which are protected
against disorder as long as disorder is not strong enough to close the
topological band gap [17,24].

In general, long-lived elementary excitations appear due to
the hybridization of edge modes for any topological model with
a linear dispersion of edge-mode frequencies. The lifetime of
elementary excitations can be suppressed by selecting a lasing
frequency around which the dispersion of edge-mode frequencies
is no longer linear. The long-lived elementary excitations will be
shown in the next section to have crucial consequences for light
coherence.

7. COHERENCE PROPERTIES

We now discuss coherence properties of topological lasers and
how they are influenced by long-lived elementary excitations,
investigating the emission spectrum of pumped optical sites and
the second-order autocorrelation function.

We start by studying the autocorrelation of complex optical
amplitudes (c; (t)cj-(t + At)). The dominant contribution in this
autocorrelation is determined by phase fluctuations §6;, where

cj= (C_'j + 8C)ei<—9’+é/+501), and¢; = C_'/ve’p/ (see Appendix E

lasing frequency Q/f; =0 Q/t =0.25 . = T o= ” b= T =
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Fig.3. Coherence properties of topological laser. (a), (b) Optical spectrum of a pumped optical site lying at the edge of the topological array for lasing at
the frequency Q/# = 0 and at the frequency /¢ = 0.25, respectively. Linearization of Langevin equations around the mean-field steady state (black line)
and numerical simulations of nonlinear Langevin equations (purple line). The orange region shows the band gap in the spectrum of elementary excitations.
(d), (e) Second-order autocorrelation function of a pumped optical site lying at the edge of the topological array for lasing at the frequency €2/# = 0 and
at the frequency /% = 0.25, respectively. Linearization of Langevin equations around the mean-field steady state (black line) and numerical simulations
of nonlinear Langevin equations (green line). (c) Smallest decay rate of elementary excitations ming., |Ime®| as a function of the lasing frequency 2 for
Haldane flux ¢ = 7r/2 (squares), ¢ = 7/2.25 (circles), and ¢ = 7 /2.5 (diamonds). (f) Equal-time second-order autocorrelation function g (0) as a func-
tion of the lasing frequency 2 for Haldane flux ¢ = 7 (squares), ¢ = zizs (circles),and ¢ = 2"—5 (diamonds). [Parameters: #,// = 0.15,y /5 =0.01,g/n =
0.05, Lucy /g = 25; (a), (b), (d), () ¢ = 7/2.]
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for more details). The amplitude fluctuations §C; are negli-
gible in comparison to the large mean-field occupation C? [21].
Amplitude fluctuations § C; and phase fluctuations §6; are related
linearly to the fluctuations of complex amplitudes 8¢ ; and ¢7 as
well as to the normal modes of elementary excitations

8C
<8®>=WN, (8)

where 80 ; = C;86, the vector N contains the complex ampli-
tudes of the normal modes, and W is the transformation matrix.
This allows us to express the autocorrelations of complex optical
amplitudes

(c/ (Tt + Ap)) e CrefPhemIni/Te

2 i(Ree®4+Q)Ar+Ime@ | A
+ ) nalWiinmal’e ( )
o

)

in terms of the complex frequencies of elementary excitations €@
and the occupations 7, 1

= — L (RR")gq of the corresponding

2[Ime@)]|

normal modes, where 7, = 26]2 IW(i+mn] 72/(RRT),7,, is a coher-
ence time, the index 7 labels the non-decaying mode, and RR" =
%W’l QO W11 is the correlation matrix for the normal modes
(see Appendix E for a detailed derivation).

The optical spectrum S, . (w) is the Fourier transform of the
autocorrelation (¢ ; (#)¢% (¢ + At)). Thelight field emitted by oprti-
cal sites is proportionall to the complex amplitudes of the optical
sites as described by input—output formalism [21]. As a result, the
emission spectrum is proportional to the optical spectrum Sc]- (w).
The optical spectrum of a pumped optical site located at the edge
of the array is shown in Figs. 3(a) and 3(b) for lasing at frequen-
cies /1 =0 and /1 =0.25, respectively. We find a good
quantitative agreement between the optical spectrum determined
from the linearized Langevin equations (black lines) [see Eq. (9)]
and the optical spectrum obtained from numerical simulations
(purple line) of the nonlinear Langevin Eq. (1). The ensemble
average (¢ (t)c;‘- (¢ 4+ Ar)) can be replaced by a time average for a
steady-state laser operation.

For lasing at both frequencies, the optical spectrum contains a
central peak at the lasing frequency corresponding to the first term
in Eq. (9). Undamped fluctuations in the phase of the lasing mode
associated with the non-decaying normal mode of elementary
excitations lead to a phase diffusion of the light field, giving rise to
a Lorentzian shape of the central peak with a linewidth 2/, [21].
The linewidth is proportional to the strength of fluctuations g as
well as inversely proportional to the number of pumped sites and
the occupation of the pumped optical site C2. The linewidth is
approximately constant for lasing of any edge mode. Small devia-
tions in the linewidth occur due to moderate discrepancies in the
spatial profile [W,, |? of individual edge modes.

For lasing at the frequency €2/# =0 lying in the middle of
the passive-system band gap, the optical spectrum contains also
satellite peaks [see Fig. 3(a)]. The satellite peaks appear due to the
incoherent population of normal modes for elementary excita-
tions, corresponding to the terms on the second line of Eq. (9).
The occupation 74 of normal modes for elementary excitations is
inversely proportional to the decay rate |Ime® | and proportional
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to the strength of noise g. As a result, long-lived elementary excita-
tions with a very small decay rate are largely populated, giving rise
to the satellite peaks in the optical spectrum. This large incoherent
population of normal modes for elementary excitations leads to
large phase fluctuations in the emitted light field, decreasing its
coherence.

Since elementary excitations are not dependent on the absolute
scaling, I, of the mean-field steady-state solution, the occupation
of normal modes 7, does not depend on the mean number of
photons in the lasing mode 7. As a result, the height of the satellite
peaks is also independent of the mean number of photons in the
lasing mode 7.

Odur results show that large phase fluctuations and the decreased
light coherence of the emitted light field persist even when moder-
ate on-site disorder is introduced (see Appendix F). This is due to
the robustness of edge modes and their frequencies against disor-
der. As a result, long-lived elementary excitations with a very small
decay rate and a large occupation 7, of the corresponding normal
modes occur even if moderate on-site disorder is considered.

On the other hand, the incoherent population of elementary
excitations and corresponding phase fluctuations can be sup-
pressed by selecting a different lasing frequency. As shown in the
previous section, the lifetime of elementary excitations is reduced
by atleast one order of magnitude for lasing at a frequency that does
not lie in the middle of the passive-system band gap [see Fig. 3(c)].
As a result, the incoherent population of elementary excitations
and the corresponding satellite peaks in the optical spectrum are
suppressed [see Fig. 3(b)] leading to a larger coherence of emitted
light than for /1 = 0.

The second-order autocorrelation function g(.z) describes corre-
lations in the intensity of emitted light at different times [21]. For
a laser, it is desired that these intensity correlations vanish corre-
sponding to ¢'? = 1. The second-order autocorrelation function
is determined éy amplitude fluctuations [21]

(@A) = (ej(0)ej(t+ ADEh (2 + AD)eh(n)
’ (e; D5 e+ Anch(z+ Ar)

4
=1+ 5 (5C,08C;¢+An) +0 (é) . (10)
J J

Amplitude autocorrelations (8C;(#)8C;(¢# + Ar)) can be
expressed in terms of normal modes’ correlations (see Appendix E).
The second-order autocorrelation function ¢ (A#) for a pumped
optical site located at the edge of the array is shown in Figs. 3(d) and
3(e) for lasing at frequencies €2/# =0 and Q/# = 0.25, respec-
tively. We compare the results determined from the linearized
Langevin equations (black line) to numerical simulations (green
line) of the nonlinear Langevin Eq. (1). The ensemble average
(c;(D)e;(r+ At)f;’f (t+ At)c;’f(t)) can be replaced by a time
average for a steady-state laser operation.

For lasing at both frequencies, the equal-time second-order
autocorrelation function g(-z) (0) is close to unity as expected for a
laser that is driven well above threshold. With the time difference
At, g;z)(At) decays to unity at time comparable to 1/y. This
shows that amplitude fluctuations correspond to fast-decaying
elementary excitations. We can see that g}z) (0) and temporal

oscillations of g;z)(At) are larger for lasing at the frequency
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€2/ = 0.25 than for lasing at the frequency €2/# = 0 lying in the
middle of the band gap.

In Fig. 3(f), we plot gj(.z) (0) asa function of the lasing frequency

Q for different values of the Haldane flux. One can see that gﬁ-z) (0)
is, in general, moderately larger for lasing at a frequency that does
not lie in the middle of the band gap for all values of the Haldane
flux. This shows that lasing at these frequencies leads to moderately
larger amplitude fluctuations.

8. EXPERIMENTAL PARAMETERS

We estimate parameters of our model (1) to be relevant for recent
experiments [14]. Typical parameters for arrays of coupled micro-
ring resonators are the decay rate y ~ 1 GHz and the hopping
amplitude # ~ 100 GHz with a feasible ratio y /5 ~ 0.01 [24].
Based on the Haldane model [see Fig. 1(a)] with the group velocity
of edge modes v, /# ~ 1 (in units of the lattice constant), we can
estimate that the frequency separation |w,, — @,| ~ y, g of edge
modes 7 # n is comparable to their linewidth y and gain ¢ for
a total number of microring resonators /N ~ 10%. For N~ 100
(as implemented in Ref. [14]), |@,, — w,| > g, y. As a result,
each edge mode can distinctively hybridize only with one edge
mode from the other branch of passive-system frequencies, as the
anti-Hermitian coupling to all other modes is negligible compared
to their large frequency separation.

The dominant source of noise is the spontaneous emission at
rate ¢ ~ 100 GHz [30]. A typical circulating power in the lasing
mode of a single microring resonator is P, ~ 1 mW, which corre-
sponds to a typical number of photons 7z ~ 10 in the lasing mode
[30]. We conclude that our model with 7,y /g ~ 10 describes an
experimentally relevant relative strength of noise compared to the
number of photons in the lasing mode.

9. CONCLUSION

We have demonstrated that long-lived elementary excitations,
which emerge due to the hybridization of topological edge modes,
lead to large phase fluctuations and a decrease in the coherence
of the emitted light field. In contrast to long-lived elementary
excitations in a trivial laser, the decay rate and the oscillation
frequency of long-lived elementary excitations in a topological
laser are robust against disorder. Even though we focus in our
paper on the Haldane model, long-lived elementary excitations
appear for any topological model if the dispersion of edge-mode
frequencies is approximately linear around the lasing frequency.
Our results for the Haldane model show that the deviation from
a linear dispersion around lasing frequencies that do not lie in the
middle of the passive-system band gap is sufficient to obstruct the
hybridization of edge modes. As a result, the lifetime of elementary
excitations is reduced by orders of magnitude, and the phase fluc-
tuations are largely suppressed. On the other hand, this leads to a
moderate increase in amplitude fluctuations and the second-order
autocorrelation function. However, the second-order autocorre-
lation function still remains close to unity. In the future, different
topological models can be studied to provide insight into how
elementary excitations in topological lasers are affected by the
presence of several topological band gaps supporting edge modes
with opposite chirality [1], a pseudospin degree of freedom in
pseudo quantum spin Hall systems [24,31], or topological lasing in
synthetic dimensions [7].
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APPENDIX A: LINEARIZATION OF LANGEVIN
EQUATIONS

We now derive the linear Langevin Eq. (2) for elementary exci-
tations around the mean-field steady state. To this end, we
substitute the decomposition of the complex optical amplitude
c;=(c;+ 5€j)67i9’ into the full nonlinear Langevin Eq. (1).
Onmitting second- and higher-order terms in optical modulations
8¢ j, we obtain the linearized Langevin equations

d N
1586'] = —Q(SCJ' + Z I‘Ijkcgt‘/e + ZF/](SCJ + ZAJJ(SCj
k=1

+ Qjjcjime’™, (A1)

d al . .
za&j = Q(Sf; — Z H]’f‘k&z + zAjj(Sc]- + zl_‘j]-(Sc;f
k=1

—iQ
—_ ijC;,ine ’ t, (A2)

where

Eﬁ 2 A/]Z_ E.le 20 (A3)
<1+ lm) <1+ 1)

and we used

N
P; _ -
—iy +i f‘?‘z [']'+Z[{j/e5k20- (Ad)

14 55 k=1

Lsar

Egs. (A1) and (A2) can be written in the form of a matrix Eq. (2).

APPENDIX B: NON-DECAYING MODE

Here we discuss the hybridization of two passive-system normal
modes that are formed from the lasing mode, giving rise to the
non-decaying mode. We label the lasing mode by the index /. Since
w; = 2, the pair of passive-system normal modes is degenerate
6;,1) = €;,1) =0, leading to a large hybridization of the pair. The
lasing mode coincides with the mean-field steady-state solution
e;l) S ]-e“" / /71, where 7 is the mean number of photons in the
lasing mode, and ¢ is an arbitrary phase. This gives

N Eﬁ
= Ry =g Z ]}D].L (B1)

— (1 R M)Z’
/= Tsac

and 8T trivially vanishes. Using also @, = 0 and dw;; = 0, we see
from Eq. (7) that the hybridization of this mode pair gives rise to a
non-decaying mode with the complex frequency E(f"l) =0anda

fast-decaying mode with the complex frequency € D = 2Ty,

APPENDIX C: HALDANE FLUX ¢ = /2

The value of the Haldane flux ¢ = /2 represents a special case
because the Hamiltonian H of the passive system then exhibits
the following symmetry: SHS = —H*, where S is a unitary
matrix, and 8 =1. The unitary transformation S introduces
the phase shift 7 between the two sublattices of the Haldane
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model, i.e., ci—>c; for sublattice A and c;j—> —cj for sub-
lattice B. Due to this symmetry, the spectrum of the passive
system consists of a zero frequency and frequency pairs (@,,, ®7),
Wi = —Wy,. As a result, all passive-system normal modes are pair-
wise degenerate for /# = 0, leading to the hybridization of all
degenerate pairs described by the 2 x 2 dynamical matrix D™
[see Eq. (6)]. As the unitary S introduces only a local phase shift,
|e(’”’| |e<’”>| leading to Ty = Dy = i and 81,5 = 0.
Usmg also 8wWmm =0, the complex frequencies of hybridized

modes are eim’m)

=w,, +i(Copm & | Ay ]). Since the coupling
A,,, between bulk modes is small, the hybridization leads to a
small splitting in imaginary parts of complex frequencies for bulk
modes [gray lines in Fig. 2(c)]. On the other hand, the large cou-
pling of edge modes leads to a large splitting in the imaginary parts

of complex frequencies [blue lines in Fig. 2(c)].

APPENDIX D: ONE-DIMENSIONAL LASER ARRAY

In this appendix, we discuss how long-lived elementary excitations
generically appear in one-dimensional laser arrays. We consider
a one-dimensional array with NV optical sites, whose complex
amplitudes are described by the Langevin Eq. (1). All optical sites
in the one-dimensional array are pumped, i.e., IP; = 1 forall j. We
do not consider any particular Hamiltonian #7;;. We only assume
periodic boundary conditions ¢y ; =¢;, that v; =v = const,
and that the Hamiltonian Hjis translationally invariang, i.e., that
the Hamiltonian is invariant under the transformation ¢; — ¢4 &
forany integer R. In this case, the passive-system normal modes are
f Z j=1¢7"¢j.
The index m represents a quasi-momentum, and it spans values
m= ZW”, %, ..., 27. The mean-field equations of motion (omit-
ting stochastic terms in the Langevin equations) for the complex
amplitudes V,, are

plane waves with complex amplitudes N, =

d N i% 2 1IN,
ldt (a) l)/) +; 1 +Z€71]("70)Nn/\/;*/stat

(D1)
where w,, is the oscillation frequency of the normal mode N,,.
These mean-field equations of motion have a stationary solution

N, =8, /N]sat(‘)% —1)e™™ corresponding to the lasing of a
single mode /, where ¢ is an arbitrary phase. Note that a stationary
solution exists for any normal mode / lasing. Switching back to the
basis of local optical modes, the stationary optical amplitudes are
Cj =Ll = De™/U1H0),

We linearize the full Langevin Eq. (1) around the station-
ary mean-field solution ¢; = (c; + (Scj)efm’f, obtaining the
linearized Langevin Eq. (2), where Q =w;. The dynamical

2 _
==Y + V =Y,
Ajj=—ye U and Tjp=Aj; =0 for j#k. Sw1tch1ng
to the basis of passive-system normal modes, we diagonalize the

Hermitian part H of the dynamical matrix. Since the passive-
system normal modes are plain waves, the matrix elements of the

matrix D is given by Eq. (3), where I';; =

anti-Hermitian part A can be evaluated explicitly: T, = —7,
A@i—my=—ve %%, and T,,, = A,,21—n) = 0 for m # n. The
diagonal block T describes decay of the normal modes at rate .

The off-diagonal block A describes the coupling of passive-system
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normal modes whose quasi-momenta 7 and # satisfy the condi-
tion 7 + n = 2/. Since this condition is satisfied only for mode
pairs (m, 2/ — m), the coupling of passive-system normal modes is
described exactly by the 2 x 2 dynamical matrix Dlm2l=m) given
by Eq. (6). The complex spectrum of elementary excitations is
determined exactly by the eigenvalues of the 2 x 2 dynamical
matrix

(Wl 2=m) - wm(21 m) ZJ/ :l: 2 6a)m(zl m) 4372’ (DZ)

Om(2—m) = %(U)m — OQ-m))y  OWml—m) = Wy + W2y — 282.
The spectrum of elementary excitations in the one-
dimensional laser array depends only on the dispersion of
the passive-system frequencies @,,. If |§w,,/—m)| >0 for all
m # [, lasing of a single mode / is a stable steady state, as all
Ime{"? ™™ < 0 except from the non-decaying mode Eg,l) =0.
We can expand the dispersion of passive-system frequencies
W=+ v1(m— 1) +v2(m — D>+ O((m — [)?) around
the lasing frequency 2. If higher-order terms in the expansion
are negligible, the detuning between modes m and 2/ —m is
8Wpi—my = 202(m — )* + O((m — [)*). If the nonlinear coeffi-
cient v, is sufficiently small such that [v | (m — /)? < y for m close

to /, the complex frequencies are ef,_m’y_m) W, — z—(m — )4

2
(m.2l=m) 2 (m -4, corresponding to

and €’ —i[2y —
slowly decaying modes and fast—decaying modes, respectively. Fora
small nonlinear coefficient v,, the decay rate of the slowly decaying
modes can be orders of magnitude smaller than any other energy
scale in the system g, ¥, w,,, leading to long-lived elementary
excitations.

Long-lived elementary excitations generically appear in one-
dimensional laser arrays if the dispersion of the passive-system

frequencies w,, is linear around the lasing frequency.

APPENDIX E. CORRELATIONS OF AMPLITUDE
AND PHASE FLUCTUATIONS

Here we provide details about how the optical spectrum and the
second-order autocorrelation function are derived and how they
are related to the normal modes of elementary excitations.

It is convenient to study noise in terms of amplitude and phase
fluctuations, due to the U(1) symmetry of the mean-field dynami-
cal equations, ¢ ;e jei“’, where ¢ is an arbitrary overall phase.
The coherence properties of a laser driven well above threshold are
determined directly by the correlations in amplitude fluctuations
and phase fluctuations [21]. Amplitude fluctuations §C ; and
phase fluctuations §6; are related linearly to the fluctuations of
complexamplitudes §c ; and ¢ ’:

57’49/86]' + 5’0185;’7

§C;, = ,
/ 2
Eiiéfﬁfj — i
80; = — S (E1)
ZZC]'

where ¢; = C;¢'. This relation can be described by the linear
transformation
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5C Sc
(56)=7(5). =

where 80; = C 7660;. The linearized Langevin equations
around the mean-field steady state for the amplitude and phase
fluctuations are

.d [sC . { 8C Z Ci,

w(e)=mo7"(6) + 5o(6n) ®
where C;;, and O, describe real-valued Gaussian white noise, with
the following correlations: (Cj in(?) Ck,i_n(t’)) =8,6(r —1),
(0 1n(DO4in () = 8,48t — ), and (C;u()Opin(F)) =0,
Amplitude and phase fluctuations are related linearly to the normal
modes of elementary excitations

sC
<8®>=WN’ (E4)

where WW = VT, columns of the matrix V are the normal modes of
elementary excitations £@ described in Section 4, and the vector
N contains the complex amplitudes of these normal modes. Non-
equal-time phase and amplitude autocorrelations can be expressed
in terms of normal modes’ correlations

2N
(8C(D8C;(t+ AD) =Y Wia o (N (2 + AW},
o,f=1

(ES)

([36,(5) — 86;(t + AD])

2N
1
== Z Wit ma (INa (£) — N (¢ + At)|2)wg(j+N).
J a,p=1
(E6)
The correlations of normal modes are
i(RRT)aﬁ ie(@)
NaONG (4 Ap)) = ——=—"—¢" ", Ar<0,
(e®) — @
(E7)
i(RRY BV
N (ONE(+ Ar)) = #e’(“m) A Ar=0
B (e®)" —e@
(E8)

for all normal modes o and B except from the autocorrelation of
the non-decaying mode, i.e., for @ = 8 =17 and € = 0. Note
that the non-decaying mode is related only to phase fluctuations.
As aresult, the relevant autocorrelation of the non-decaying mode
is

(N (0) = Ny (e + An2) = (RRY) |As. (E9)

The dominant contribution in the autocorrelation of complex
optical amplitudes reads

(cj(t)cjf(t+At)) ~ C}eiﬂAt6*<[59j(t)*(?Gj(H*At)IZ)/Z’ (E10)

where amplitude fluctuations are neglected, since they are small
in comparison to the large mean-field occupation C ]2 [21]. Using
Eq. (E6), we express ([66;(¢) — 80, (¢ + A1)]?) in terms of corre-
lations in the normal modes of elementary excitations (E7), (E8),
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and (E9) to derive the optical spectrum Eq. (9) in the main text,
where we neglect correlations between different normal modes
(INg () — Ng(z + Ar)|?) for a # B. Only long-lived elementary
excitations have significant contributions to the optical spectrum
due to their large occupation 7. Since the corresponding normal
modes are formed from edge modes, they have a large detuning in
the real parts of complex frequencies, which suppresses the correla-
tions between different normal modes (|N; () — N (¢ + A#)|*)
fora # B.

Similarly, we can express the second-order autocorrelation func-
tion (10) in terms of correlations in the normal modes of elemen-
tary excitations.

APPENDIX F: DISORDER

Here we study effects of a moderate on-site disorder on the
spectrum of elementary excitations and long-lived elementary
excitations. We consider lasing at a frequency that lies in the middle
of the passive-system band gap. The on-site disorder is represented
by a Gaussian distribution of on-site frequencies v; with a zero
mean value and a standard deviation 0. We consider a moderate
disorder with the standard deviation ¢ smaller than the size of the
passive-system band gap 6+/3#, sin ¢ but larger than the decay rate
yandgaing.

We compare the spectrum of elementary excitations for 30
disorder realizations and the spectrum of elementary excitations
without disorder in Fig. 4(a). The large hybridization of edge
modes with frequencies close to the lasing frequency leads to long-
lived elementary excitations with a very small decay rate for all
disorder realizations (brown crosses). This shows the robustness of
long-lived elementary excitations against disorder. The incoherent
occupation 74 of the corresponding slowly decaying normal modes
is large even in the presence of moderate on-site disorder, and it
leads to satellite peaks in the optical spectrum [see Fig. 4(b)].

(a) . 10*

- Jh 5

N o35 | 38, >

\QJ/ xx xx J-;

) ¥ W =

S W 3

& 73

3 —0.02 107*

° 4 0 4 -3 0 3

oscillation frequency Re(e)/1, frequency (w — Q) /t

Fig.4. Effects of moderate disorder. (a) Complex spectrum of elemen-
tary excitations for 30 disorder realizations (brown and gray crosses)
for Q/# =~ 0 compared to complex spectrum of elementary excitations
without disorder with band gap (orange region), bulk modes (black
points), as well as edge modes (blue points) for the lasing frequency
2/t = 0. Purple and blue lines show the splitting in imaginary parts of
complex frequencies due to the hybridization of bulk modes and edge
modes, respectively. (b) Optical spectrum of a pumped optical site lying
at the edge of the topological array for a single disorder realization and for
lasing at the frequency Q/# = 0.01. Linearization of Langevin equations
around the mean-field steady state (black line) and numerical simulations
of nonlinear Langevin equations (purple line). The orange region shows
the band gap in the spectrum of elementary excitations. [Parameters:
(@), (b) n/n=0.15, ¢ =m/2, y/t, =0.01, g/n =0.05, 6/4 =0.1;
(b) Ly /q =25,2=10.01]
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APPENDIX G: LONG-LIVED ELEMENTARY
EXCITATIONS IN A TRIVIAL LASER

We now study long-lived elementary excitations in a trivial laser
based on the Haldane model. We focus on the effects of disorder
on the long-lived elementary excitations, and we compare them
to the effects of disorder on long-lived elementary excitations in a
topological laser studied in Appendix F.

We introduce the Haldane mass term M in the Hamiltonian

A=MY wiéiei+ny Satn Yy e®rile, (G
J n.n

n.n.n.

which is a staggered on-site potential with 1; =1 for sites in
sublattice A and w;=—1 for sites in sublattice B [25]. For
| M| > 3+/3t,| sin @, a trivial band gap opens. For this topo-
logically trivial phase, the finite-sized array depicted in Fig. 1(a)
has trivial edge modes, whose energies lie within the bulk bands.
On the mean-field level, we observe single-mode lasing of a trivial
edge mode. We plot the spectrum of elementary excitations (black
points) in Fig. 5(a) for the lasing frequency €2/# = 1.03. For this
lasing frequency, long-lived elementary excitations whose decay
rates are one order of magnitude smaller than any other energy scale
in the system (y, g, #1 and #,) appear due to a large hybridization
of trivial edge modes. This is analogous to the long-lived elemen-
tary excitations in a topological laser due to the hybridization of
topological edge modes discussed in Section 6.

For moderate on-site disorder, the single-mode lasing is still
stable. We compare the spectrum of elementary excitations (gray
crosses) for 30 disorder realizations and the spectrum of elementary
excitations without disorder (black points) in Fig. 5(a). The decay
rate of elementary excitations with small oscillation frequencies
varies strongly in each disorder realization. For some disorder
realizations, the hybridization of trivial edge modes is obstructed,
and the decay rate of the corresponding elementary excitations
increases by one order of magnitude. This can be seen in Fig. 5(b)
where we plot the complex frequency (gray crosses) with the small-
est imaginary part ming.,|Ime®| for each disorder realization.
In contrast to the long-lived elementary excitations in a trivial

) 0 X tqpplogical
X trivial
- (b) S
5 < !
E—0.01 < x
o £ _0.005
[od 2 X .
= ©
g 5 *
©_0.02 3 —0.01
-4 0 4 © 0 0.3 0.6
oscillation frequency Re(e)/t; oscillation frequency Re(e)/t,
Fig. 5. Effects of moderate disorder in a trivial laser based on the

Haldane model compared to a topological laser. (a) Complex spectrum of
elementary excitations in a trivial laser for 30 disorder realizations (gray
crosses) and for the lasing frequency Q/# ~ 1 compared to complex
spectrum of elementary excitations without disorder (black points) for
€/t = 1.03. Purple lines show the splitting in the imaginary parts of
complex frequencies due to the hybridization of trivial edge modes.
(b) Complex frequency with the smallest imaginary part ming, |Ime |
for each disorder realization (30 in total), for a trivial laser with Q/# ~ 1
(gray crosses) as well as for the topological laser with 220 (brown
crosses). [Parameters: (a), (b) n/fn =0.15, y/5n =0.01, g/ =0.05,
o/t =0.1; (a), (b) gray crosses ¢ = 27 /3, M/# = 0.8; (b) brown crosses
¢=m/2,M/t, =0.]
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laser, the long-lived elementary excitations in a topological laser are
robust against disorder (see Appendix F). In the topological laser,
the smallest decay rate of elementary excitations only moderately
changes, depending on each disorder realization, and the corre-
sponding oscillation frequency is unchanged [see brown crosses in

Fig. 5(b)].
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