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ABSTRACT 

Kinetics of gold-nanoparticle-surface modification with thiols can take more than one hour for 20 

completion. 7-Mercapto-4-methylcoumarin, can be used to follow the process by fluorescence 

spectroscopy and serves as a convenient molecular probe to determine relative kinetics of other 

thiol compounds. SERS studies with aromatic thiols further support the slow surface 

modification kinetics observed by fluorescence spectroscopy. The formation of thiolate bonds 

is a relatively slow process; we recommend one to two hour wait for thiol binding to be 25 

essentially complete, while for disulfides, overnight incubation is suggested. 
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INTRODUCTION  

While there are numerous ways to stabilize gold nanoparticles (AuNP) the most common ones 

involve the formation of the thiolate S-Au bond (~130 kJ/mol), frequently by reaction of thiols 30 

with the gold surface (1). The modification of gold surfaces with thiol compounds has been 

extensively explored as one of the best gold surface passivation methods, as well as the best way 

to anchor different functional groups to the surface (1-6). While the strategy has proven 

thermodynamically effective and efficient, the complex kinetics of the reaction have been 

frequently overlooked. The process is well understood when it involves the formation of self-35 

assembled monolayers (SAM) on atomically flat gold surfaces, but to a lesser extent in the case 

of AuNP where polydispersity and irregularities on the surface and curvature variations make 

the binding process more complex and the conclusions more difficult to generalize (7). Surface 

enhanced Raman spectroscopy (SERS) has proven a useful tool to study structural effects and 

kinetics of thiol-AuNP interactions (7, 8), although relatively large particle sizes (e.g. 50-200 40 

nm) and aromatic thiols tend to be preferred to suit SERS optimal experimental conditions (9). 

Thus, we combine fluorescence and SERS as a way to generalize our results to different 

chemical structures and particle sizes. 

While working on preparing thiolated stabilized AuNP, we have asked ourselves how long we 

had to wait until the derivatization was complete, so as to avoid working with nanostructures 45 

that were still undergoing significant change. A few literature studies (such as those mentioned 

above) address this question for specific systems, yet, much more frequent are literature 

contributions where the delay between thiolate derivatization and usage of the nanostructures is 

simply not mentioned. A study of the influence of thiolate derivatization on the catalytic 

reduction of 4-nitrophenol serves as a perfect example of the importance of thiolate coverage on 50 
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the catalytic performance (10). The free catalytic site density determines the activity of the 

material. Interestingly, considerable catalytic activity is retained even when the coverage is 90 

%. 

The motivation for this study is our interest in the delay between reagent mixing and completion 

of the S-Au derivatization process. In order to address this issue, we employed two strategies. 55 

One of these methodologies involves simple fluorescence spectroscopy. In our work, 

fluorescence spectroscopy is used as a tool that is suitable for different combinations of 

nanostructure and sensing molecules (Scheme 1). In the other approach, Raman spectroscopy is 

used to further support our results. While recognizing that our data contain kinetic and 

mechanistic information and do some simple kinetic analysis, we use a rather pragmatic 60 

approach by trying to answer this question. It is important to note that the type (particularly size) 

of nanoparticles and the organic structures required to optimize fluorescence and SERS 

measurements are different and thus the sections that follow, dealing with fluorescence and 

Raman spectroscopy are not directly comparable. In this case, this is an asset, as it allows us to 

establish the generality of the conclusions we reach in this contribution. Scheme 1 shows the 65 

molecules examined in this contribution.  

 

Scheme 1. Thiol compounds used in this study. 
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MATERIALS AND METHODS 70 

Materials and Instrumentation: All reagents have been purchased from Sigma-Aldrich and 

have been used without further purification unless otherwise stated. S-methyl-7-mercapto-4-

methylcoumarin (C-SMe) was synthesized as previously described (11). AuNPs were 

synthesized using a reported method (12) via reduction with sodium citrate. Briefly, 230 mL of 

a 0.3 mM aqueous solution of HAuCl4 were heated up to boiling point, then 20 mL of a 39 mM 75 

solution of sodium citrate were quickly added to the solution and boiled for 2 h. The ruby-red 

solution obtained was kept at room temperature and properly diluted before use. Transmission 

electron microscopy (TEM) images were collected using a JEM-2100F FETEM (JEOL) 

working at an acceleration voltage of 200 kV. Steady-state absorbance and fluorescence 

measurements were recorded on a Cary 100 spectrophotometer and a Photon Technology 80 

International (PTI) fluorimeter, respectively. Raman spectra were recorded in a Horiba Xplora 

microscope configured with 532 nm (at 24 µW) and 785 nm (at 50 µW) laser lines at 100 % 

power. Data analyses were done using LabSpec 6 software.  

Fluorescence spectroscopy measurements: Initial fluorescence testing was run to determine 

appropriate concentrations of 7-Mercapto-4-methylcoumarin (dimethyl sulfoxide –DMSO– 85 

solution) for fluorescence testing. Kinetic studies were performed by monitoring the 

fluorescence of fixed-volume AuNP solutions (~ 12 nm average diameter, 1.2 nM) in the 

presence of varying amounts of 7-mercapto-4-methylcoumarin; kinetic runs were followed at 

430 nm (Excitation wavelength = 358 nm). In addition, fluorescence spectra were recorded by 

exciting 7-mercapto-4-methylcoumarin solutions before and after 1.5 h of kinetic testing. 90 
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Surface enhanced Raman spectroscopy measurements: AuNP’s surface 

functionalization was monitored utilizing two different thiols, namely thiophenol (PhSH) and 2-

Naphthalenethiol (NaphSH). Stock solutions of PhSH were prepared daily and diluted in 

purified 18.2 MΩ water; while stock solutions of NaphSH were prepared in EtOH and stored at 

4 ºC for a maximum of one week, followed by the appropriate daily dilution in a 1:1 EtOH/Water 95 

mixture. Measurements were performed in solution upon addition of thiol into AuNP (~ 60 nm 

average diameter, 31 pM) solutions at given concentrations. SERS measurements were 

performed on AuNP solution in the presence of various thiol concentrations and recorded at the 

following acquisition conditions: 785 nm laser (25% power), 5s integration time, 10 

accumulations per spectrum and 60 s measurement interval time. The peak areas were calculated 100 

using LabSpec software (HORIBA).  

All kinetics experiments were fitted using a user-defined fitting with Kaleidagraph or Origin 

software.  

RESULTS AND DISCUSSION 

Kinetics based on fluorescence spectroscopy 105 

In our work, fluorescence spectroscopy was used as a suitable tool to study different 

combinations of AuNP and various sensing molecules (Scheme 1). While analyzing the obtained 

data to extract kinetic and mechanistic information, we use a pragmatic approach by trying to 

answer the question on hand: how fast can thiols bind to the gold-nanoparticle surface? 

We have found that 7-mercapto-4-methyl coumarin (C-SH) is an excellent substrate for 110 

fluorescence spectroscopy, and commercially available. Interestingly, C-SH is weakly 
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fluorescent as a result of non-radiative deactivation (13), attributed to the thione resonance 

structure contributions  (Scheme 2) (11). 

 

Scheme 2. Excited C-SH is prone to deprotonate and favor the thione-like resonance form (non-115 

emissive). Notice in red the coumarin core. Adapted from Ref (11). 

 

When the S-H bond is substituted, for example by a methyl group (C-SMe) the molecule 

becomes strongly fluorescent (Figure 1), despite what is expected for its hydroxy counterpart 

(14). Notice that Figure 1 shows that C-SMe is a much stronger emitter than C-SH, typically 20-120 

100 times. We have explained this effect in an earlier contribution using Scheme 2 to rationalize 

the effect (11). Additionally, a modest fluorescence enhancement due to the presence of AuNP 

is detected, in contrast to typical plasmonic enhancements reported to be an order of magnitude 

larger (15). It is known that while proximity enhances the signal, surface contact results in 

emission quenching; the experimental observation depends on the balance of these effects, on 125 

the system as well as on the experimental conditions (15, 16). 
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Figure 1. Emission spectra of 0.52 µM of C-SH (black), 0.052 µM of C-SMe (red) and the C-SMe sample after 

addition of 1.2 nM AuNP (blue) and a 5 min incubation. All in 10% DMSO:H2O.  

 130 

The addition of C-SH to the gold surface leads to the displacement of citrate and the formation 

of thiolate bonds (12), Scheme 3, with concomitant spectral changes in the AuNP region (~530 

nm) and the appearance of the coumarin absorption band in the 360 nm region, Figure 2. Thus, 

the S-H bond can be eliminated by coordination to the gold surface (Scheme 3), which is 

typically the key step in AuNP derivatization. With this in mind, we decided to design a simple 135 

way to determine how fast the interaction between thiols and AuNP surface can take place, using 

C-SH as a probe. Thus, we expect the thione-like resonance form of C-SH to be less favored as 

the thiol moiety is engaged in binding to the AuNPs surface, increasing the fluorescence 

emission of the coumarin. The increase in fluorescence signal can account then for the formal 

interaction between the thiol moiety and the Au surface, and help reveal kinetic information 140 

about the process. While fluorescence quenching is expected, when fluorophores sit right on the 

surface of plasmonic materials such as AuNP, the experimental balance in this case is a moderate 

(but readily detectable) fluorescence enhancement (16). Thus, the use of fluorescence 
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enhancement provides a novel approach to monitor reactivity with the gold plasmonic surface. 

The changes in Figure 2 are attributed to modifications on the surface of the AuNPs, as well as 145 

changes in the dielectric media, as a consequence of the presence of C-SH. Changes produced 

by the addition of the different solvent were ruled out. Pure DMSO was added to AuNP under 

the same conditions and no deviations in the absorption spectrum were detected.  

 
Scheme 3. The formation of strong thiolate bonds causes the displacement of citrate from the gold surface. 150 

 

 

Figure 2. Normalized absorption spectra of AuNPs in the absence (black) and in the presence (red) of 160 µM of 

C-SH. Notice the plasmon band maximum for AuNP shifts from 522 nm to 528 nm. 

 155 

AuNP used for fluorescence spectroscopy (Figure 3) have an average size of 12 nm, significantly 

smaller than those used for Raman spectroscopy (~60 nm, vide infra). Particles were initially 

tested at two different AuNP concentrations: 2.4 and 1.2 nM (calculated as previously reported 
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(16)). Figure 4 shows how the emission at 440 nm, corresponding to C-SH, increases after 

mixing with AuNP solution. Notice that while essentially the same rate constants are obtained, 160 

diluted AuNP solutions reach higher fluorescence intensities, more likely due to better light 

penetration and minimal light re-absorption.  

 

   
 165 
Figure 3. HR-TEM images of the AuNP used for fluorescence experiments and (inset) particle size distribution for 
one of the two batches on AuNP used. 
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Figure 4. Fluorescence intensity change (F-F0) monitored at 430 nm (𝛌ex = 358 nm) versus time for 4 µM of C-SH 170 
in the presence of 1.2 nM (black) and 2.4 nM (red) of AuNP. Fit to a first-order exponential growth model (solid 
line). Notice same rate constant values, kobs, are obtained for both NP concentrations.  

 

Figure 4 clearly shows that changes in the AuNP concentration led to unusual effects (such as 

more signal with less AuNP) that while readily explained on a qualitative basis pose serious 175 

challenges for quantification. Thus, most of the experiments that follow center on kinetic studies 

where thiol concentrations are changed while maintaining the AuNP concentration constant. 

Representative results are shown in Figure 5, where C-SH was added in concentrations ranging 

from 1 to 6 µM and monitored for 2000 s. Note that only the emission growth component of the 

signal is displayed in Figure 5, as C-SH, while weak is somewhat emissive (see Figure 1). This 180 

emission is probably slightly enhanced by non-reactive initial interaction with the gold surface. 

An example of the uncorrected traces is shown as an inset in Figure 5. A simple visual inspection 

of Figure 5 shows that about 30 minutes is required for 90% of the reaction to take place.  

 

Figure 5. Fluorescence intensity for different concentrations of C-SH added to 1.2 nM of AuNP and monitored at 185 
430 nm versus time. The fitting lines shown have been calculated by global analysis of the reaction kinetics. 
Concentration of C-SH from the bottom to the top: 1, 2, 3, 4, 6 µM. Inset: uncorrected trace for 4 µM solution. 
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The surface of each AuNP must present sites with different reactivity, further, the material size 

distribution is not monodisperse, as Figure 3 shows. Under these conditions, it is remarkable 190 

that the plots of Figure 5 can be reasonably fitted with a monoexponential growth, in other 

words, they follow excellent Langmuir-type first order kinetics. In fact, it was possible to use a 

kinetic global fitting approach to fit the data in Figure 5 using equation (1). 

A = A0(1 – e –kt)   (1) 

where k is the observed rate constant for the growth of A (enhanced Raman or emission signal) 195 

and is equal to the inverse of the lifetime (1/t). We obtain k as the value that minimizes the mean 

squared error between the fitted and the observed kinetic curves with different values of A0.  

Global kinetic analysis of Figure 5 yields a lifetime (t) of 735 s. Considering that three 

lifetimes corresponds to 95% completion, the visual estimate of 30 minutes mentioned above 

appears quite reasonable. Beyond a single lifetime or rate constant, global analysis also yields a 200 

projected plateau value for the signal (A0). These values were recorded and plotted against 

concentration in Figure 6. The plot reaches a plateau that implies the mercaptan and not the 

AuNP is the likely limiting reagent in this system. At the highest C-SH concentration, this 

corresponds to ~3300 thiolate bonds per nanoparticle. 
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 205 
Figure 6. Fluorescence intensity change (A0) determined from the calculated plateau in figure 5 plotted as a function 
of the C-SH concentration. Errors estimated as 15%. 

 

In order to prove the reproducibility of this methodology, a second batch of AuNP (~17 nm, see 

SI) was prepared and the same type of kinetics were evaluated. Figure 7 shows the kinetic traces 210 

obtained. 

 

Figure 7. Fluorescence intensity for 4 µM of C-SH added to 1.2 nM of AuNP batch 1 (black) and batch 2 (red) and 
monitored at 430 nm versus time. The fitting lines shown have been calculated by first exponential growth kinetics 
(eq. 1).  215 
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The lifetime values of 767, 638 and 660 s, derived from single curve analysis (Figure 7) and 

global analysis (Figure 5) illustrate the type of reproducibility that can be expected in these 

systems as the sample batch and/or type of analysis is changed. 

 220 

Kinetics based on Raman spectroscopy 

Surface enhanced Raman spectroscopy (SERS) is also an important and complementary tool in 

determining the reactivity of the S-H bond towards the gold surface. The best suited molecules 

for SERS differ from those preferred for fluorescent studies, and thus, non-fluorescent or weakly 

fluorescent aromatic molecules, such as PhSH and NaphSH (see Scheme 1) were the choices for 225 

these studies. AuNP concentration was also optimized in order to have greater Raman signal 

enhancement. Further, larger particles are optimal for SERS, and thus citrate-covered 65 nm 

AuNP were preferred. The Raman spectra for PhSH and NaphSH are shown in Figure 8; notice 

in the inset that in addition to polydispersity, the sample shows some polymorphism. 
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Figure 8. Raman spectra for thiol-modified AuNP obtained with different concentrations of thiol after 30 min of 
mixing. (A): PhSH at 0 (green), 60 nM (black), 100 nM (red) and 200 nM (blue). (B): NaphSH at 0 (green), 50 
nM (black), 100 nM (red) and 200 nM (blue). In both cases, the Raman signal increases with concentration 

 

In the case of PhSH, Raman peaks at 408 (C-S), 1067 (C-H) and 1565cm-1 (C=C) could be 235 

monitored to observe the enhancement that results from binding at the AuNP surface. In our 

case, we found the 1565 cm-1 peak to be the most convenient for PhSH (Figure 9). Likewise, we 

followed the addition of NaphSH monitoring the area of the C=C peak at 1370 cm-1 (Figure 10). 
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Figure 9. Kinetics experiment for the AuNP surface modification with different concentrations of PhSH in water 240 
added to 31 pM AuNP solution, monitoring the area of the C=C peak at 1565 cm-1 and fitted using global analysis. 
[PhSH] from the bottom to the top: 20, 40, 50, 55, 60, 80, 100, 140, 200, 220 nM. 

 

 
Figure 10. Kinetics experiment for the AuNP surface modification with different concentrations of NaphSH in 245 
water added to 31 pM AuNP solution, monitoring the area of the C=C peak at 1370 cm-1 and fitted using global 
analysis. [NaphSH] from the bottom to the top: 20, 40, 50, 60, 90, 100, 200 nM.  
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Figure 11. Raman area change (A0) determined from the calculated plateau in figure 8 and 9 plotted as a function 
of the thiol concentration. Notice the saturation of the plot up to ~ 3200 molecules of thiol per AuNP, corresponding 250 
to a concentration of 100 nM of thiol per 31 pM AuNP solution.   

 

Competition binding by lipoic acid 

The case of lipoic acid (LA) is particularly interesting, as its behavior should mimic disulfides, 

however –due to its cyclic structure– once LA binds to the gold surface produces more stable 255 

molecular arrangements because of the formation of two S-Au bonds. (17). We have designed 

two types of fluorescence experiments where LA and C-SH compete for the gold surface. In the 

first one equimolar concentrations of both are added simultaneously to a AuNP solution. As 

shown in Figure 12, the presence of LA has virtually no effect on the growth of the fluorescence 

of C-SH from the gold-bonded mercaptocoumarin. This result implies that for C-SH and LA, 260 

thiols are more reactive than disulfides, likely because S-S bond breaking is required for LA. In 

the second type of experiments the reagents are exactly the same, however, in this case the AuNP 

were pre-incubated at the same concentration of LA for 24 h, prior to addition of C-SH. These 

results are also presented in Figure 12, and show a smaller and somewhat slower fluorescence 

growth, illustrating that LA has bonded to the gold surface thus reducing the number of active 265 

sites available for C-SH reaction.  
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Figure 12. Fluorescence intensity change (F-F0) monitored at 430 nm versus time from solution 
of 1.2 nM of AuNP after addition of 4 µM C-SH (black), 4 µM C-SH and 4 µM LA (green) and 
4 µM C-SH added to a AuNP solution previously incubated for 24 h with 4 µM LA (red). The 270 
purple line fits simultaneously black and green data (differences within the experimental error). 

 

Thus, the competition of C-SH with LA shows that thiols are far more reactive than disulfide, 

as adding LA as a competitive reagent does not affect the growth curve giving a growth lifetime 

of 560 ± 70 s. On the other hand, if AuNP are pre-incubated overnight with LA, the disulfide 275 

can bind to the surface (frequently described as two-footed binding) and protect it from the thiols 

attack. This results in a lifetime of 620 ± 70 s and the final fluorescence is only 78% of that 

achieved without pre-incubation. With pre-incubation less sites are available, but those that 

remain available are within experimental errors just as reactive as those encountered on a fresh 

surface. Overall LA binding must be about ten times slower than thiol reaction, thus needing 280 

overnight incubation to make a real difference in C-SH binding. 

 

CONCLUSION 
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These results prove the reactivity of several thiols occurs within the same timescale, however 

disulfides (such as LA) react much more slowly. To answer the title question, we recommend 285 

one to two hour wait for thiol binding to be essentially complete, while for disulfides, overnight 

incubation is recommended. Any “ready-mix” strategy is bound to lead to results obtained while 

the formation of thiolate bonds was still in progress. 
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SUPPLEMENTARY MATERIALS  

Supporting materials include details of the calculation of nanoparticle concentrations and 295 

additional TEM images. 

REFERENCES 

1. Hakkinen, H. (2012) The gold-sulfur interface at the nanoscale. Nat. Chem. 4, 443-455. 
2. Pensa, E., E. Cortes, G. Corthey, P. Carro, C. Vericat, M. H. Fonticelli, G. Benitez, A. A. 

Rubert and R. C. Salvarezza (2012) The Chemistry of the Sulfur-Gold Interface: In 300 
Search of a Unified Model. Acc. Chem. Res. 45, 1183-1192. 

3. Goldmann, C., R. Lazzari, X. Paquez, C. Boissiere, F. Ribot, C. Sanchez, C. Chaneac and 
D. Portehault (2015) Charge Transfer at Hybrid Interfaces: Plasmonics of Aromatic 
Thiol-Capped Gold Nanoparticles. ACS Nano 9, 7572-7582. 

4. Reimers, J. R., M. J. Ford, S. M. Marcuccio, J. Ulstrup and N. S. Hush (2017) Competition 305 
of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles. Nat. 
Rev. Chem. 1, 0017. 



 20 

5. Stamplecoskie, K. G., G. Yousefalizadeh, L. Gozdzialski and H. Ramsay (2018) 
Photovoltaics as an Experimental Tool for Determining Frontier Orbital Energies and 
Photocatalytic Activity of Thiol Protected Gold Clusters. J Phys. Chem. C 122, 13738-310 
13744. 

6. Yousefalizadeh, G. and K. G. Stamplecoskie (2018) Norrish type I photochemistry as a 
powerful tool in the isolation of thiol protected Au25SR18 clusters. J. Photochem. 
Photobiol., A 353, 251-254. 

7. Villarreal, E., G. F. G. Li, Q. F. Zhang, X. Q. Fu and H. Wang (2017) Nanoscale Surface 315 
Curvature Effects on Ligand-Nanoparticle Interactions: A Plasmon-Enhanced 
Spectroscopic Study of Thiolated Ligand Adsorption, Desorption, and Exchange on 
Gold Nanoparticles. Nano Lett. 17, 4443-4452. 

8. DeVetter, B. M., P. Mukherjee, C. J. Murphy and R. Bhargava (2015) Measuring binding 
kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced 320 
Raman spectroscopy. Nanoscale 7, 8766-8775. 

9. Stamplecoskie, K. G., J. C. Scaiano, V. S. Tiwari and H. Anis (2011) Optimal Size of Silver 
Nanoparticles for Surface-Enhanced Raman Spectroscopy. J Phys. Chem. C 115, 1403-
1409. 

10. Ansar, S. M. and C. L. Kitchens (2016) Impact of Gold Nanoparticle Stabilizing Ligands 325 
on the Colloidal Catalytic Reduction of 4-Nitrophenol. ACS Catal. 6, 5553-5560. 

11. Lanterna, A. E., M. Gonzalez-Bejar, M. Frenette and J. C. Scaiano (2017) Photophysics of 
7-mercapto-4-methylcoumarin and derivatives: complementary fluorescence behaviour 
to 7-hydroxycoumarins. Photochem. Photobiol. Sci. 16, 1284-1289. 

12. Vanegas, J. P., J. C. Scaiano and A. E. Lanterna (2017) Thiol-Stabilized Gold 330 
Nanoparticles: New Ways To Displace Thiol Layers Using Yttrium or Lanthanide 
Chlorides. Langmuir 33, 12149-12154. 

13. Gonzalez-Bejar, M., M. Frenette, L. Jorge and J. C. Scaiano (2009) 7-Mercapto-4-
methylcoumarin as a reporter of thiol binding to the CdSe quantum dot surface. Chem. 
Commun., 3202-3204. 335 

14. Demelo, J. S. S., R. S. Becker and A. L. Macanita (1994) Photophysical Behavior of 
Coumarins as a Function of Substitution and Solvent - Experimental-Evidence for the 
Existence of a Lowest Lying 1(n,π*) State. J Phys. Chem. 98, 6054-6058. 

15. Anger, P., P. Bharadwaj and L. Novotny (2006) Enhancement and quenching of single-
molecule fluorescence. Phys. Rev. Lett. 96. 340 

16. Pacioni, N. L., M. Gonzalez-Bejar, E. Alarcon, K. L. McGilvray and J. C. Scaiano (2010) 
Surface Plasmons Control the Dynamics of Excited Triplet States in the Presence of 
Gold Nanoparticles. J. Am. Chem. Soc. 132, 6298-6299. 

17. Asadirad, A. M., Z. Erno and N. R. Branda (2013) Photothermal release of singlet oxygen 
from gold nanoparticles. Chem. Commun. 49, 5639-5641. 345 

 


