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Photoinduced hydrogen fuel production and water 

decontamination technologies. Orthogonal strategies 

with a parallel future? 

The photochemical splitting of water into H2 and O2 has fascinated photochemists since the 

OPEC oil embargo in 1973, yet progress has been slow largely due to the challenge of oxidizing 

water, an energetically uphill reaction (1).1 Much of this research has utilized solar light, 

semiconductor catalysis and “sacrificial electron donors” (SED); that is, molecules that facilitate 

H2 evolution at the expense of the degradation of valuable chemicals. For instance, methanol 

splitting, where the reaction yields H2 and CH2O, is relatively facile, with a ΔG0 = 64 kJ/mol 

compared with 238 kJ/mol for water splitting.2-3 This approach has been criticized in a 2013 

commentary that stated, “…measuring H2 gas formation in such a sacrificial system no longer 

generates any mechanistic information.”.4 While the argument is indeed valid, it is clear that the 

sacrificial donor approach has helped with the understanding of the H2 formation, half of the 

water splitting reaction. 

 
 

Photochemical H2 generation and water treatment fit well the useful concepts of positive and 

negative photocatalysis developed by Corma and Garcia;5 these concepts separate catalysis 

aimed at the production of valuable chemicals (frequently organic) from catalysis aimed at water 

2H2O(l) 2H2(g) O2(g)+ ΔG0 = 238 kJ/mol or 1.23 eV (1)
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remediation. The definition reflects the general perception that positive and negative catalysis are 

orthogonal, that is, photocatalytic processes are usually designed with either a positive or 

negative outcome in mind. We propose that in the context of H2 generation positive and negative 

photocatalysis can be viewed as parallel or concurrent processes that in the future may provide 

simultaneous solutions to both hydrogen fuel generation and water decontamination (Figure 1).  

  

Figure 1. Hydrogen generation and pollutant remediation as coupled processes. 

While the intimate understanding of the water splitting process may require pure water in the 

absence of any sacrificial donors, the same may not be true for the practical generation of H2. 

Whereas alcohols have been the preferred choice for sacrificial donors,6 the reality is that 

numerous molecules that can be easily oxidized can fulfill this role, including many of the 

contaminants that are present in polluted waters (Figure 2). Region-specific contaminants may 

add to traditional ones, such as fossil fuels, industrial discharges and the modern-age 

microplastic pollution, a subject of current concern.7 Key to the performance of the mechanism 

of Figure 2 is the fate of the electron, which will depend on pH, oxygen availability, and the 
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 3 

nature and intrinsic affinity of the surface electron host,8 all parameters that can be easily 

controlled.  

 

Figure 2: Hydrogen fuel production and water remediation can be coupled by using contaminants 
as sacrificial reducing agents. In many cases, hybrid materials incorporating surface metal or 

metal oxides may be the initial electron traps that also reduce electron-hole recombination rates. 

In our own research with decorated TiO2 we find that waters from regional river sources in 

Ontario and Quebec (Canada) generate much more hydrogen than pure water.9 Further, addition 

of less valuable chemicals, such as glycerine (not shown), an abundant by-product of biofuel 

production, could also be employed. Preliminary results also show that the bacterial content in 

water is linked to the amount of H2 generated; indeed, bacterial growth is inhibited under H2 

generation conditions.10  
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Figure 3: Hydrogen generation from different sources of water under solar simulated radiation.  
In this case MQ water is pure water from a Milli-Q system with 18.2 MW resistance. River A 

(Quebec) and river B (Ontario-Quebec border).  

 

We propose a strategy in which H2 gas generation and pollutant remediation are coupled 

processes (Figure 2) leading to water remediation on one side, and simultaneously to H2 

generation with higher efficiency than strict water splitting. The concomitant development of 

technologies that couple improved H2 fuel production and water quality remediation using solar 

energy will eventually become important. Closely related, the use of wastewater in the energy 

field is a subject of current interest.11 It is possible that geographical and economic realities will 

dictate whether H2 generation, water remediation, or both will be initially exploited. Depending 

on the mode of utilization the choice of the preferred catalyst may change, reflecting the primary 

objective, but research on the development of photocatalysts will no doubt establish the 

performance and scope of individual catalysts. 

We propose that parallel technologies that couple positive (H2 generation) and negative (water 

quality) catalysis should be the preferred strategy and that strict water splitting, valuable for 
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fundamental research may not be the most practical, valuable of efficient route to hydrogen fuel 

generation. 
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