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Raquel V. Vico: 0000-0002-1982-8823 

ABSTRACT  

The interaction of hydrophobic silver nanoparticles with different phospholipids and stratum corneum 

mimic (SCM) membranes is studied in Langmuir monolayers. Thus, silver nanoparticles coated with oleic 

acid (AgNP-OA) were synthesized, characterized and incorporated in Langmuir monolayers of single 

phospholipids –having different chain length, saturation degree and phase state– or of a SCM mixture. 

The incorporation of AgNP-OA to the lipid monolayers generated an expansion of the monolayers and a 

decrease of the surface compressional modulus compared to the pure lipid. X-ray photoelectron 

spectroscopy (XPS) suggested that the zwitterionic choline-phospholipids can be adsorbed onto the 

nanoparticles’ surface, which is relevant considering that phospholipids are the major constituents of the 

cell membrane. We also studied the changes in the topography at the mesoscale level using Brewster 

angle microscopy. We found the most prominent changes in the lipids with liquid-condensed phase, such 

as SCM, showing segregation of their components. This could have major implications in the barrier 

function of the membrane, affecting for example the skin permeability towards hydrophobic 

nanoparticles. Finally, the capability of hydrophobic AgNP-OA for delivering Ag
+
 ions was studied in 

aqueous media in the absence and presence of phospholipids. In both conditions, AgNP-OA released Ag
+
 

at reported-bactericidal concentrations, being double in the presence of phospholipids. 

KEYWORDS  

Silver nanoparticles, nano-biointerface, phospholipids, stratum corneum, Langmuir monolayers, silver ion 

delivery, phosphatydilcholine adsorption. 
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INTRODUCTION 

Silver-based compounds and silver nanoparticles (AgNP) have been used for years as 

antibacterial and antifungal agents, and are largely employed in surgical, hygienic and burn supplies due 

to their antimicrobial properties.
1
 Silver NPs with diameters smaller than 100 nm, however, have shown 

higher antimicrobial activity when compared with other silver non-nanoparticulate compounds.
1–3

 This 

can be attributed to the large surface-to-volume ratio of NP that provides better contact with the media 

and favor the continuous release of silver ions (Ag
+
), considered one of the biologically active species of 

silver.
1,4,5

 It is well known that ionization of metallic silver is related to the surface area exposed, and it 

has been proved that the rate of Ag
+
 release is hundred-times higher from silver nanocrystals than from 

silver bulk materials.
1
 Additionally, some reports suggest that AgNP can have antibacterial properties 

non-related to the release of silver ions; thus, the NP entities can affect the normal cell machinery due to 

changes in proteins, genetic material, and cellular membranes.
5–7

 Liu et al have made relevant 

physicochemical studies regarding the fate of Ag
+
 and AgNP present in biological media. They have 

demonstrated that AgNP experience a wide range of biochemical transformations, including oxidative 

dissolution in gastric acid, thiol and selenium binding and exchange, as well as the generation of 

secondary zero-valent AgNP.
4
 Also, it has been demonstrated that Ag


 species induce ROS generation in 

bacteria by interacting with the cell membranes.
5
  

Many AgNP proposed as antimicrobial agents are stabilized with hydrophilic passive agents, 

usually citrate
5
 or polymers

8,9
. Although they have good antimicrobial activity and compatibility with 

aqueous media, some difficulties may be present when they are used in lipophilic environments, 

especially in terms of their ability to reach and remain at the desired location.
3,10,11

 For antimicrobial 

topical applications, hydrophobic AgNP may find several advantages over the hydrophilic ones because 

the hydrophobic nature of the skin, where the first barriers that AgNP need to survey are the stratum 

corneum and the cell membranes. Consequently, there have been considerable efforts to understand how 

the NP skin penetration mechanism, including their fate in the cells, as well as their mechanism of action 
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and toxicity, can be related to the physicochemical properties of the NP.
3,11–13

 Nevertheless, NP local 

distribution, partition, organization at the mesoscale level, and their interactions and effect on 

biomembranes are yet not well-understood.
8,10,14–18

 Therefore, the study of the physical interactions 

between AgNP and lipid membranes can contribute to the knowledge of their mechanism of action as 

well as their toxicity. Working with model biomembranes offer many advantages compared to working 

with living cells since the composition and organization can be easily controlled and the changes 

produced upon interaction can be directly measured.
8,14,19–21

 Among the various biomembranes models, 

such as supported lipid bilayers
22

 and liposomes
23

, Langmuir films are excellent to study the membrane 

biophysics considering that a biological membrane can be conceived as two weakly coupled 

monolayers.
24–27

 Langmuir monolayers studies provide valuable knowledge to understand for example 

how the interaction of amphiphilic drugs or transmembrane proteins occurs in cells. Also, the 

reproducibility of results and the correspondence with in vitro and in vivo pharmacological or 

toxicological behavior further support their use.
24,28

 Other advantageous biomembranes models can be 

simulated by computational modeling.
29

 For instance, Gupta and Rai used molecular dynamics 

simulations to study the effect of the surface charge and size of gold nanoparticles (AuNP) on skin 

permeability.
10

 They simulated a skin lipid biomembrane composed by a ceramide, a long chain fatty 

acid, and cholesterol and demonstrated that neutral hydrophobic AuNP can disrupt the bilayer of the skin 

model, enter, and remain on it; whereas, the positive- or negative-charged AuNP can only be adsorbed at 

the interface of the skin model bilayer. Moreover, they found that the permeability of the hydrophobic 

AuNP is several times higher when compared with their hydrophilic counterparts.
10

 

Considering the importance of the interaction of NP with biomembranes, and the role of the 

released silver ions for antimicrobial applications, the use of hydrophobic AgNP that can be retained at 

the biomembrane could increase the local action, probably reducing the dose, and optimizing their 

transdermal performance. Here we synthesized hydrophobic AgNP stabilized with a natural fatty acid, 

oleic acid (AgNP-OA), and studied their interactions with several biomembrane models using Langmuir 
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films. This study aimed to elucidate how hydrophobic AgNP-OA interact with model biomembranes and 

to which extent the biomembrane properties can change due to the presence of this nanomaterial. Thus, 

we evaluated the rheological properties and topography of AgNP-OA and AgNP-OA/lipids films. For this 

purpose, we selected single phospholipid monolayers (main constituents of cell membranes) with 

different phase state, and a mixture of lipids that mimic the stratum corneum.
30

 Additionally, we studied 

the adsorption of phospholipids onto the AgNP-OA surface using X-ray photoelectron spectroscopy 

(XPS). Considering the relevance of released Ag

 for the antimicrobial activity of AgNP, we tested the 

capability of the hydrophobic AgNP-OA to deliver silver ions into aqueous media when they are embed 

into lipids. We found that AgNP-OA could deliver Ag
+
 in amounts that surpass the antimicrobial 

concentrations reported.
5,31

  

 

MATERIALS AND METHODS 

1. Materials 

Silver trifluoroacetate, isoamyl ether, cholesterol (Cho), cholesterol 3-sulfate (ChoS), lignoceric acid 

(LA) and 3,3′,5,5′-Tetramethylbenzidine (TMB) were purchased from Sigma-Aldrich and Oleic acid 

(OA) from Tetrahedron. The lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-

dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) 

and (d18:1/24:0) N-lignoceroyl-D-erythro-sphingosine (Cer24) were purchased from Avanti Polar Lipids 

(Alabaster, AL, USA). All solvents and chemicals used were of the highest commercial purity available. 

A Milli Q system (Millipore) was used to obtain deionized water with a resistivity of 18.2 Mcm.  

2. Synthesis of silver nanoparticles coated by oleic acid (AgNP-OA) 

Silver nanoparticles were synthesized by thermal reduction of silver trifluoroacetate in isoamyl ether in 

the presence of oleic acid (OA) at 160 ºC under nitrogen atmosphere according to the procedure reported 
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by Ling et al.
32,33

 The purification of AgNP-OA was performed by precipitation of the nanoparticles using 

ethanol, followed by 10 min of sonication and 10 min of centrifugation at 3000 rpm in order to remove 

the excess of oleic acid. Five cycles of ethanol washing, sonication, and centrifugation were performed 

and finally the AgNP-OA were dried under N2. FT-IR spectroscopy confirm the presence of a monolayer 

of OA covering the silver core in accordance with literature, see Figure S1.
34–36

 

A stock suspension of AgNP-OA was prepared in distilled n-hexane and stored at -20 ºC. The typical 

concentration of the AgNP-OA stock suspension was 1 mg/mL (or 1.9 M). The molar concentration was 

calculated by considering that the average nanoparticle molar mass that was estimated as 529 KDa. The 

molar mass of AgNP-OA was assessed based on their chemical characterization. For this, we assumed 

that the particles are covered by an OA monolayer and we used the AgNP average diameter determined 

by TEM and the specific density of silver. (see Equation S1).
21,37

 Additionally, the total amount of  silver 

in the n-hexane stock dispersion was quantified by using a colorimetric method based in the sensing probe 

3,3′,5,5′-tetramethylbenzidine (TMB) as described below.
38

  

3. Characterization of AgNP-OA 

3.1 Fourier transform-infrared spectroscopy (FT-IR) 

FT-IR spectra were obtained using a Thermo Scientific Nicolet iN10 Infrared Microscope operating 

between 500 and 4000 cm
−1

 with a resolution of 4 cm
−1

. AgNP-OA sample was deposited and dried onto 

a AgBr disk. FT-IR spectra confirmed that AgNP-OA were under protection of a single layer of OA
34,36

, 

where the carboxylate group was interacting with the silver surface and the hydrocarbon chains were 

pointing towards the exterior, leading to the NP hydrophobic properties. FT-IR spectra of AgNP-OA and 

OA are shown in Figure S1. 

3.2 UV-Visible spectroscopy 
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UV–Vis spectra of AgNP-OA dispersed in n-hexane were measured on an HP Multispect 1501 

spectrophotometer. The surface plasmon resonance (SPR) band showed a maximum absorbance at 413 

nm. The stability of AgNP-OA was monitored by UV-Vis during 30 days since the preparation date 

(Figure S2). 

The biotechnological applications of nanomaterials require to keep their physicochemical properties 

constant for a reasonable period of time, therefore we evaluated the stability of the stock dispersion of 

hydrophobic AgNP-OA. The SPR maximum position and the intensity did not change for at least 15 days; 

beyond that the absorbance droped about 10% probably due to nanoparticle precipitation. Nevertheless, 

the initial absorbance is recovered after sonication (15 min) of the stock dispersion. No shift in the SPR 

was observed indicating the absence of aggregates or the coalescence of the NP as shown in Figure S2. 

3.3 Transmission electron microscopy (TEM) 

TEM images were acquired with a Siemens Elmiskop 101 microscope operated at an accelerating voltage 

of 80 kV. The average size of the silver core was determined as 5.2 ± 0.6 nm using the Image J software, 

Figure S3. Statistical analysis was obtained by measuring the diameter of ~3000 nanoparticles. TEM 

images show that AgNP-OA maintained the same morphology and mean average size after being stored 

in an n-hexane stock dispersion for at least 50 days, Figure S3.  

3.4 X-Ray powder diffraction 

X-Ray diffraction pattern was collected overnight with a Philips PAN analytical X’pert using Cu Kα 

radiation beam (λ=0.15406 nm) operated at a voltage of 40 kV and current of 30 mA in the range 20–80
0
 

(2θ). The X-Ray diffraction pattern shows the typical signal expected for pure silver metal (Ag(0))
 
with 

face-centered cubic symmetry
39

, Figure S4. 

4 Langmuir monolayers 
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The Langmuir film of pure AgNP-OA, pure lipids (or lipids mixtures) and AgNP-OA/lipids were 

obtained by seeding a stock solution of the corresponding sample at the air-water interface of a Langmuir 

trough. POPC, DMPC, and DSPC solutions were prepared in chloroform. The stratum corneum mimic 

(SCM) mixture was prepared by mixing Cer24, LA, Cho in a proportion 1:1:1 with the addition of ChoS 

in 5 wt % using n-hexane:ethanol (0.98:0.02) as solvent.
30,40,41

 

The samples containing AgNP-OA/lipids were typically prepared by mixing adequate volumes of the 

lipid stock solution and the AgNP-OA stock dispersion in n-hexane to obtain a mole fraction of AgNP-

OA (X
AgNP-OA

) equal to 0.0005 (corresponding to 0.5 mg of AgNP-OA per mL or 0.95 M AgNP-OA). 

The total amount of silver in each AgNP-OA/lipids stock sample was verified by the TMB colorimetric 

method (vide infra).
38

 

The monolayers were obtained by spreading the pure AgNP-OA, pure lipid (or lipids mixture) or 

AgNP-OA/lipids solution at the aqueous interface of a KSV minithrough equipment (KSV, Helsinki, 

Finland) using Milli Q water as subphase, and waiting 10 minutes to allow for solvent evaporation before 

compression. The films were compressed at a rate of 10 mm/min at (23 ± 1) ºC. The absence of surface 

active impurities in the subphase and spreading solvent was daily checked.
21

 Surface pressure () was 

measured by a platinized sensing plate. At least three surface pressure versus mean area isotherms were 

measured and averaged.  

To evaluate deviations from the ideal behavior, the average experimental isotherms of the mixed 

AgNP-OA/lipids monolayers were compared to the ideally mixed films. The ideal isotherms of mixed 

films were calculated according to Equation (1):  

Aideal [A
AgNP-OA

 . X
AgNP-OA

+ A
L
. X

L
]           (1) 

where Aideal is the calculated area at constant surface pressure (π) for ideal mixed films (this is, films with 

an ideal mixing behaviour –no interactions–), while A
AgNP-OA

, A
L
 are the areas corresponding to the pure 
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AgNP-OA and pure lipid, and X
AgNP-OA

, 
 
X

L
 are the mole fractions of the AgNP-OA and pure lipid, 

respectively. 
 

The interfacial elastic modulus of area compressibility, which reflects variations of the film inplane 

elasticity, was calculated as Cs
1
 A(dπ/dA), where Cs is the compressibility and  is the surface pressure 

measured at each area (A) point of the isotherm. The in-plane elasticity of AgNP-OA mixed with the 

different lipids was obtained from the experimental Langmuir isotherm measurements and compared to 

the elasticity of ideal mixed films. The latter was calculated for the binary mixtures using the Cs
-1

of the 

pure components, the mole fractions (         and   ), and the mean molecular area           and 

    in the mixture at the corresponding  as shown in Equation (2):
42,43

 

  
                  

           
  

        
 
 

    
    
  

  
 
 
                         

 
       (2) 

5 Surface topography and morphology characterization 

The surface topography, morphology and texture of the films were studied by Brewster Angle 

Microscopy (BAM). The images were obtained with an auto-nulling EP
3
BAM (Nanofilm Technologie 

GmbH, Göttingen, Germany) using a 20x objective and captured with a cooled charge-coupled device 

(CCD) camera with a speed of 25 Hz. The wavelength of the laser beam was 532 nm and the angle of 

incidence was set at 53.1°. The surface pressure was measured with a KSV minithrough mounted under 

the microscope. In BAM, the intensity of the reflected light represents an operational “optical thickness” 

that is proportional to the thickness (d) and refractive index (n) of the film.  

6 XPS analysis of phospholipid adsorption on AgNP-OA 

The surface chemical compositions were analyzed by X-ray photoelectron spectroscopy (XPS) and 

the spectra were collected using a Kratos analytical model Axis Ultra DLD, using monochromatic 

aluminum Ka X-rays at 140 W. XPS data were analyzed using CasaXPS software, Version 2.3.15 and all 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 10 

fittings obtained using a Gaussian 30% Laurentian and a Shirley baseline. The peak positions were 

internally referenced to the C 1s peak at 284.8 eV. 

HR XPS were performed to evaluate if phospholipids adsorbed onto the silver nanoparticle surface. 

Samples were prepared as follows: 200 L of AgNP-OA/POPC stock dispersion (X
AgNP-OA

= 0.0005) were 

placed in a vial and dried until solvent complete evaporation; after that 2 mL of Milli Q water was added 

and the samples were vigorously stirred at room temperature during 4 days. In order to remove the free 

POPC from the dispersion the sample was centrifuged at 3000 rpm for 10 min, the supernatant discarded 

and the pellet suspended in 2 mL of chloroform. Subsequently, two more centrifugation/washing cycles 

with chloroform were performed. Finally, the pellet was resuspended in 50 L of chloroform and 

deposited on a previously cleaned (H2SO4/HNO3 2:1 mixture) silicon wafer. Additionally, 50 µL of the 

last supernatant were also seeded on a silicon wafer in order to confirm there was no POPC residue in the 

solution. XPS spectra obtained for OA, POPC and AgNP-OA are shown in Figure S5-S7. 

7 Quantification of silver 

 ilver ions were  uantified following the methodology reported  y  on  le -Fuenzalida et al
38

 based 

on the use of the colorimetric sensing probe TMB that allows measuring Ag
+
 in the presence of AgNP. 

Typically, a calibration curve was constructed by adding 1.2 mL of an aqueous AgNO3 solution 

(concentration ranging between 2 to 10 ppm) to 100 μL of an ethanolic TMB solution (10 mM) 

previously mixed with 200 μL of NaAc/AcH (pH= 4, 1M) buffer solution. After the optimum reaction 

time (15 min), the absorbance at 655 nm was measured. A typical calibration curve is shown in Figure 

S11. Silver quantification was performed by triplicate at 25 ºC. 

In order to determine if hydrophobic AgNP-OA were able to release Ag
+
 in aqueous media, the amount 

of silver ions, in the presence of AgNPs, was quantified. For this 200 L of AgNP-OA stock dispersion 

(containing 0.82 mg Ag per 1 mg/mL AgNP-OA) or 200 L of AgNP-OA:POPC or AgNP-OA:DMPC 

with a X
AgNP-OA

= 0.0005 (containing 0.41 mg Ag per 0.5 mg/mL AgNP-OA), were placed in a glass vial 
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and the organic solvent evaporated; then 2 mL of Milli Q water (or 2 mL of 145 mM NaCl aqueous 

solution) were added, and the samples vigorously stirred to avoid precipitation. Aliquots of 217 L of 

each sample were taken at different times. Each aliquot was treated by adding 100 μL of TMB solution 

(10 mM in ethanol) and 683 μL of NaAc/AcH (pH= 4) buffer solution.  The measurements were run in 

water or in the presence of NaCl in order to compare if the presence of chloride ions can affect the release 

of silver ions.  

To quantify the total silver present in the AgNP-OA stock dispersion in n-hexane, AgNP-OA were 

previously digested with HNO3 to completely oxidize Ag(0) into Ag(I). For this 1 mg of AgNP-OA were 

mixed with 160 μL of HNO3 65%, once the solid was dissolved, 200 μL of NaOH 50% P/V were 

incorporated in order to neutralize the proton excess and the mixture was raised up to 2 mL with water. 

An aliquot of 50 μL of the above solution was placed in a glass vial and leveled to 1.2 mL with buffer. 

Then, the buffer/TMB solution (NaAc/AcH, 200 μL, 1 M, pH= 4; TMB 100 μL, 10 mM in ethanol) was 

added to the sample and the absorbance at 655 nm was monitored after 15 minutes of reaction. 
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RESULTS AND DISCUSSION 

AgNP-OA stability, organization and mechanical properties at the air-water interface 

The organization of AgNP-OA at the air-water interface was studied by means of Langmuir 

isotherms ( vs. mean area). Figure 1 shows the compression isotherms and the surface compressional 

modulus (Cs
-1

) obtained for AgNP-OA. The film formed by these hydrophobic silver nanoparticles is 

highly stable upon compression and allow evaluating the entire isotherm up to the collapse (c) of the 

film, where 2D to 3D transitions occurs and volume material or multilayers are formed. Noteworthily, 

isotherms of Langmuir films containing hydrophilic nanoparticles in general cannot be entirely 

investigated because the desorption of NP occurs from the interface to the subphase before reaching the 

collapse of the film.
8,14,19

 Interestingly, here we show that these hydrophobic AgNP-OA exhibited a high 

collapse surface pressure at about 50 mN/m. Furthermore, once the AgNP-OA film is compressed up to 

near the collapse, upon expansion, the isotherms practically do not present hysteresis indicating that the 

system does not retains energy, for example in the form of new particle-particle interactions (Figure S8). 

This suggests that no clustering or agglomerations are formed between the NP, even when they are forced 

to be in intimate contact. These results are in contrast to what was found for hydrophobic magnetite 

nanoparticles of similar size and same stabilizer (OA), where the NP films show an important hysteresis.
21

 

Consequently, the interparticle interactions established at the air-water interface are not only dictated by 

the molecules that stabilize the nanoparticles and directly exposed to the media, but also the nature of the 

NP core (i.e., silver versus magnetite) plays an important role on the regulation of the interparticle 

interactions and the organization at the interfaces.  

Using the surface compressional modulus (Cs
-1

) one can get insights on the physical state of a 

film and determine the in-plane surface elasticity or fluidity.
18,44

 For instance, for classical amphiphiles 

such as lipids, the Cs
-1

 allows to know the phase state and infer the packing order in a monolayer.
45

 Since 

NP are not classic amphiphiles, it is not appropriate to directly compare the Cs
-1 

values from NP films to 
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that obtained for typical surfactants. However, in the case of films formed by NP, the Cs
-1 

is useful to 

detect changes in the organization of the NP at interfaces. By inspection of Cs
-1 

of the AgNP-OA film 

(Figure 1A), we can observe that upon compression from the lit-off pressure up to about 12 mN/m (i.e., 

from 20000 to 7000 Å
2
/particle), the Cs

-1
 values varies from 5 to 20 mN/m. The behaviour of the Cs

-1
 

values in this region indicate that the particle surface density is fluctuating without significant changes in 

the in-plane elasticity and organization. This behaviour is also noticeable in the surface topography 

obtained using BAM imaging, where we can see conglomerates of NP separated by void space at the air-

water interface, Figure 1B. Beyond 12 mN/m the surface pressure, the surface compressibility modulus, 

as well as the optical thickness of the film sharply increase. The void space is filled because the NP 

merged and this has as consequence the steep increment in the surface pressure and surface compressional 

modulus that reveal a less flexible film. A similar behavior was reported by You et al for Langmuir 

monolayers composed by AgNP capped with oleilamine.
46

 The limiting extrapolated area to zero surface 

pressure (A0) for AgNP-OA, which corresponds to the cross section of the NP in the more condensed 

region of the isotherm, is  6300 Å
2
/particle. This value is similar to that calculated by the theoretical 

sectional area of AgNP-OA ( 5600 Å
2
/particle) taking into account the diameter of the silver core (5.2 

nm) and the length of two fully extended oleic acid chains (1.75 nm each OA),
47

 as shown in the inset in 

Figure 1A. All these findings suggest that beyond 12 mN/m the AgNPs-OA are organized in a 2D array 

up to near the collapse of the film.  
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Figure 1. A) Variation of surface pressure (solid line) and surface compressional modulus (Cs
-1

, dashed 

line) with the average area of AgNP-OA at the air-water interface. The inset shows the size of AgNP-OA 

(yellow Ag core, blue OA). The theoretical sectional area calculated (Ag core + 2 oleic acid molecules) 

was  5600 Å
2
. B) BAM images of the AgNP-OA topography at the air-water interface upon the 

indicated surface lateral pressure. Scale bar 30 m.  

 

Interaction of AgNP-OA with model biomembranes. 

In order to explore how the hydrophobic AgNP-OA interact with model biomembranes and to 

which extent the properties of both are modified, we studied different biomembranes models (i.e., 

different composition and phase state). The lipid monolayers evaluated include pure DMPC, POPC, or 

DSPC, and a lipid mixture that mimic the composition of the stratum corneum (SCM).
30

 The 

phospholipids selected for this study contain acyl chains of various length and saturation degree, and 

therefore adopt different phase states at the air-water interface. Thus, DMPC (saturated PC) and POPC 

(unsaturated PC) adopt a liquid-expanded (LE) phase over the entire compression isotherm, whereas 
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DSPC (saturated PC) exist in a liquid-condensed phase (LC). On the other hand, SCM, constituted by 

Cer24/LA/Cho 1:1:1 and 5% w/w ChoS,
30,48

 is a quaternary monolayer that was previously studied by 

compression isotherms and diffusion properties showing LC behavior.
30

 

Upon analysis of the surface pressure-area isotherms (Figure 2) at the air-water interface, we 

were able to see how the presence of the hydrophobic AgNP-OA induced a shift of the lipid isotherms 

towards higher areas compared to the isotherms expected for the ideal NP-lipid mixture. This indicates 

that AgNP-OA are incorporated into the film as a non-ideal mixture. Comparing the different lipids, the 

highest displacement in areas accounts for SCM followed by the saturated phospholipids DSPC and 

DMPC, and finally the unsaturated POPC. Additionally, we evaluated the Cs
-1 

values for AgNP-OA/lipids 

mixtures as a function of the surface pressure (see Figure S9). The Cs
-1 

value provides essential 

information about membrane properties such as fluidity; thus, it provides a quantitative measurement of 

the monolayer in-plane packing elasticity. When Cs
-1 

for AgNP-OA/lipids mixtures is evaluated as a 

function of the surface pressure and compared with that of the pure lipids (see Figure S9), the general 

trend observed is a decrease in the Cs
-1

. LC phase lipids, particularly SCM, are more susceptible to the 

presence of the particles than LE phase lipids. The films composed by AgNP-OA/DSPC or AgNP-

OA/SCM (LC phase lipids) showed a marked decrease in Cs
-1 

 at low and high surface pressure indicating 

that the films become more compressible and acquired a more expanded or fluid character (lower Cs
-1

 

values) in reference to the pure lipid. We can assume that LC phase lipids experience a greater disorder at 

the molecular level of organization introduced by the AgNP-OA. In the case of SCM, the decrease of the 

Cs
-1

 values caused in the presence of AgNP-OA may have important implications as it can modify the 

cross-membrane processes, the skin permeability, and the barrier function of the stratum corneum.  

Furthermore, we were able to map the topography of the films at different surface pressures using 

BAM. When DMPC, POPC, DSPC and SCM films were observed by BAM they showed homogenous 

topography along the entire isotherm since the gaseous phase is left.
21,30

 The BAM images of the different 

AgNP-OA/lipid mixtures acquired at different surface pressures clearly show the presence of AgNP-OA 
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as brilliant spots at the interface that remained even after compression without any particular pattern. 

Besides, SCM in the presence of AgNP-OA presented the coexistence of different phases up to 8 mN/m 

(Figures 2 and S10), suggesting the segregation or demixing of their constituents. This topographic 

pattern is consistent with the large area displacement observed for AgNP-OA/SCM isotherm as well as 

with the significant change in Cs
-1

 values compared to those obtained using SCM only. It is possible that 

the greater changes evidenced for SCM in the presence of AgNP-OA are due to the presence of the 

cholesterol in the membrane, as it has previously been demonstrated by Gupta and Rai
10

 studying the 

effect of anionic, cationic and hydrophobic gold nanoparticles on the skin permeability. 

 

Figure 2. Surface pressure-Area isotherms at the air-water interface for I) POPC, II) DMPC, III) DSPC 

and IV) SCM in the absence or in the presence of AgNP-OA. Pure lipid/s (blue, short-dashed line), pure 

AgNP-OA (black, long-dashed line), experimental (green, solid line) and ideal mixed monolayer with 

X
AgNP-OA

=0.0005 (red, dot-dashed line). BAM images showing the topography of the films in the absence 

(panels A) or in the presence (panels B) of AgNP-OA at the indicated surface pressure. Images are 250 × 

200 μm. 

Adsorption of phospholipids at the AgNP-OA surface 

When we study the interaction of NP with biomolecules it is important to describe their interface; 

i.e., the biomolecules can be present on the NP surface either by interaction with the NP surface ligands 

Area (≈2)

20 40 60 80 100 120 7000 14000 21000

S
u
rf

a
c
e
 P

re
s
s
u
re

 (
m

N
/m

)

0

10

20

30

40

50

60 W aterA

B 2 mN/m

2 m N/m

20 mN/m

I) POPC/AgNP-OA

I) POPC

Area (Å2) Area (≈2)

20 40 60 80 100 120 7000 14000 21000

S
u
rf

a
c
e
 P

re
s
s
u

re
 (

m
N

/m
)

0

10

20

30

40

50

60
W ater 2 mN/m

20 mN/m

A

B 2 m N/m

II)   DMPC/AgNP-OA

II) DMPC

Area (Å2) 

Area (≈2)

20 40 60 80 7000 14000 21000

S
u

rf
a

c
e

 P
re

s
s
u

re
 (

m
N

/m
)

0

20

40

60

III)   DSPC/AgNP-OA 
A

0 mN/m 20 mN/mB

0 mN/m 20 mN/mIII) DSPC

Area (Å2) 

A

B

20 mN/m

20 mN/m

3 mN/m

3 mN/m

0 mN/m

0 mN/m

 Area (≈2) 

20 40 60 80 7000 14000 21000

S
u

rf
a

c
e
 P

re
s
s
u

re
 (

m
N

/m
)

0

10

20

30

40

50

60
IV)   SCM/AgNP-OA

IV) SCM

Area (Å2) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 17 

(i.e. van der Wall or electrostatic forces) or undergoing ligand exchange.
19,49,50

 It is well known that in 

biological fluids NP have the ability to adsorb proteins and form a protein layer, known as protein 

corona,
49–51

 which dictates the biological response to the NP. Understanding the interaction of 

nanomaterials with biological systems becomes a key feature for their fate, safe and efficient applications. 

Nevertheless, only few studies reported about the adsorption or ligand exchange among lipids and 

nanoparticles. Lipids represent the major components of cell membranes, and therefore they are directly 

related to the role of the membrane as a barrier towards NP permeation (or endocytosis). This issue has 

special concerns for those nanoparticles proposed for topical use, such as those designed as antimicrobial 

agents or as part of cosmetics or sunscreen. Segota et al studied the interaction of hydrophobic Ag- and 

Au-NPs caped with a stearyl-based ligand and DMPC using as biomembrane model supported lipid 

bilayers.
22

 Interestingly they found that the hydrophobic part of the stearyl-derived ligand stays within the 

hydrophobic region of the bilayer and fuses with the surrounding hydrocarbon chain of the lipid. This 

leads to a reorganization of the bilayer that result in an increased amount of lipid in the region 

surrounding the NPs and a decrease in the region that are located between them.
22

 

To further understand the interaction of the phospholipids and the silver nanoparticles, we 

evaluated the presence of phospholipid at the AgNP-OA surface by XPS analysis using POPC as the 

model lipid. Figures S7-S9 show the XPS spectra obtained for OA, POPC and AgNP-OA, respectively, 

and their corresponding characterization. In order to evaluate the interaction between POPC and AgNP-

OA, we mixed the nanoparticles and the lipid in aqueous media for about 96 h. After that, several 

centrifugation and washing cycles were performed in order to remove the free POPC and evaluate the 

resulting pellet. The HR XPS spectra of the AgNP-OA/POPC pellet shown in Figures 3A-C are 

compared to those obtained from the wash chloroform from the last washing cycle (Figures 3D-F). First 

we notice in the AgNP-OA/POPC pellet the presence of the Ag 3d signals (Figures 3A) corresponding to 

the presence of AgNP-OA and the N 1s and P 2p (Figures 3B-C) signals belonging to the POPC. On the 

other hand, the complete removal of POPC was confirmed by the absence of the corresponding XPS 
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signals (P 2p and N 1s) in the wash chloroform used in the last washing cycle (Figures 3E-F). 

Additionally, no residues of AgNP-OA are detected (absence of Ag 3d signal in Figure 3D). These 

results indicate that certain amount of phospholipid remains adsorbed on the nanoparticle surface, either 

by physisorption (likely favored by Van der Waals forces between POPC and the hydrocarbon chain of 

the oleic acid) or binding to the Ag surface through interactions with the POPC phosphate oxygen. The 

latter would require some empty space on the NP surface, or undergo OA-ligand exchange. Considering 

that phospho-choline lipids showed poor ability acting as capping agents,
52

 we can expect POPC to be 

weakly adsorbed on the silver surface, and therefore it is unlikely to displace the OA ligands.   
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Figure 3. HR XPS spectra showing the Ag 3d, N 1s, and P 2p regions for the AgNP-OA/POPC pellet (A-

C) and the wash chloroform from the last washing cycle (D-F) showing no residual POPC or AgNP-OA. 

 

Release of silver ions from hydrophobic AgNP-OA 

 An important issue regarding biotechnological applications of AgNP is their ability to release Ag
+
 

to the surrounding media. It is well known that AgNP can progressively release Ag
+
 from their crystalline 

core.
2,4

 Also, the Ag
+ 

released
 
from NP inside cells, activate a Trojan-horse-type mechanism that induces 

ROS production and lipid peroxidation that causes a lethal effect on bacteria.
5
 Most of the data available, 
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mainly related to hydrophilic nanoparticles, reflect that the amount of Ag
+
 needed for the inhibition 

against different microorganisms depends on the microorganism and on the nanoparticle characteristics. 

In general, the amount of Ag
+
 required to inhibit microorganisms growth is on the nano- to micro-molar 

range.
5,31

 Even though it has been demonstrated that hydrophilic AgNPs are successful for many 

biomedical applications, hydrophobic nanoparticles could possess a better compatibility with lipophilic 

media as they can reach, remain and disturb such environments probably reducing the dose needed. 

Therefore we measured the amount of Ag
+
 released from the hydrophobic AgNP-OA in different media; 

i.e., in water, in an electrolyte solution (NaCl, 145 mM), or in the presence of lipid (POPC or DMPC) 

suspensions in water. Table 1 summarizes the amount of Ag
+
 it was released from each sample after 5 

days. The values are almost constant for at least 15 days (see Figure S12).  

Table 1. Ag
+
 released from hydrophobic AgNP-OA in different media after 5 days at 25 

o
C. 

Sample Ag
+ 

ng/mL per mg AgNP-OA 

AgNP-OA (water) 4560± 200 

AgNP-OA (NaCl 145 mM) 4480 ± 200 

AgNP-OA + DMPC (water) 10047 ± 200 

AgNP-OA + POPC (water) 8160 ± 200 

 

No significant difference was found for Ag
+
 released in water or in a NaCl solution, or between 

suspensions containing POPC or DMPC. Nevertheless, in the presence of phospholipids the amount of 

Ag
+
 doubled that found in aqueous media. This trend can be rationalized considering that phospholipids 

facilitate the dispersion of the hydrophobic nanoparticles in the aqueous media, which is not possible 

when there is only water or an electrolyte solution. The amount of Ag
+ 

released after 5 days from 1 mg of 

AgNP-OA represents about 0.5-1.0% of the initial mass of the AgNP-OA and reaches the M range in the 

conditions here explored. This result demonstrates the potential of these hydrophobic silver nanoparticles 

to act as antimicrobial agents compatible with lipophilic media.  
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CONCLUSION  

In this work, we have been able to identify that hydrophobic silver nanoparticles covered with the 

natural fatty acid oleic acid strongly interact with model biomembranes. The presence of AgNP-OA in 

single phospholipid monolayers (DMPC, POPC, DSPC) or in a mixture that mimic the stratum corneum 

(SCM) occasioned changes in the monolayers giving higher areas than that expected for an ideal mixed 

film. In addition, the surface compressional modulus Cs
-1

 was lowered reflecting changes in essential 

membrane properties, such as fluidity. Lipids having LE or LC character were affected, but those with LC 

phase reflect the major changes, in especial SCM. This suggests that lipids with LC phase experienced a 

greater disorder at the molecular level of organization introduced by the AgNP-OA, which increase the 

fluidity of the films. In the case of the SCM, this can have important implications because the cross-

membrane processes, the skin permeability and the barrier function of the stratum corneum could be 

modified in the presence of AgNP-OA. The demixing of its constituents that lead to phase segregation, as 

was monitored by BAM, also evidenced the effect of the AgNP-OA in the SCM films. In addition, we 

were able to demonstrate the adsorption of phosphocholine molecules (POPC) on the AgNP-OA surface. 

The complexity of the interactions among the monolayer components was analyzed at the molecular and 

at the mesoscale level. The presence of favorable interactions between the hydrocarbon chain of oleic acid 

–present in AgNP-OA– and that of the lipids, mainly through van der Waals cohesive forces, was 

demonstrated through XPS analysis as well as reported by Segota et al.
22

 At the mesoscale level, the 

system adopts a supramolecular organization at the interface, far from ideal behavior, imposed most 

probably by steric effects. 

Finally, we were able to determine that AgNP-OA can release Ag
+
 in aqueous and lipophilic 

environments at reported bactericidal-concentration ranges. Therefore, these hydrophobic AgNP-OA can 

be potentially used as antimicrobial agents in lipophilic environments, such as topical applications. These 

results could be helpful in designing customized nanoparticles for cosmetic and transdermal applications.   
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