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Abstract

A major difficulty in the mechanical simulation of large
aerospace structures is the multi-scale nature of mod-
ern designs due to, at least in part, the increased use
of composite materials. “Thin” materials are typically
idealised by shell elements in order to make simulations
computationally tractable, however this significantly
limits the fidelity of solutions. Through thickness stress
states, for example, are important in predicting delam-
ination but are known to be poorly approximated by
shell element. To solve this issue, a multi-scale method-
ology, such as MARQUESS, is required to accurately
model these systems. This work is focused on the ap-
plication of a goal oriented error estimator methodol-
ogy in MARQUESS to suggest confidence bounds of
“hot-spot” predictions. The goal oriented error esti-
mator uses the combination of dual formulations and
Zienkiwicz-Zhu recovery to estimate volume averaged
errors at training locations in a candidate structure.
Bayesian recovery processes are then used to approx-
imate full error fields from local solutions. This es-
timator is applied to two systems, one 2D system and
one full 3D system, both modelled using shell elements.
The 2D system investigates the mesh refinement to de-
note the convergence properties of the estimator. For
the 3D system, the Gaussian process is used to reduce
the number of dual problems from 1, 300 to 100 simu-
lations with only small differences from the full simula-
tions. This work demonstrates the initial implementa-
tion of this non-intrusive estimator to denote the error
associated with the modelling in the macro-level scale.

1 Introduction

One difficulty in the modelling of large aerospace struc-
tures is the multi-scale nature of the modern designs
with the inclusion of light-weight composite materi-
als. Refined modelling of the large assemblies in de-
tail is impractical while modelling only at the macro
scale loses the information about the composite nature
of the construction. For example, individual lamina
and associated inter-lamina behaviours are not typi-
cally represented in large models, where the preferred
modelling uses a simplified two dimensional represen-
tation (or “shells”). One method to accurately recover
these details for this type of system is to utilize a multi-
scale approach such as the methodology used in MAR-
QUESS, which uses a bottom-up and top-down ap-
proach [1, 2]. In MARQUESS, pre-computed solutions
of detailed “feature” models are used in conjuncture
with the simplified global model to approximate mate-
rial responses in regions of interest. This work is the
preliminary evaluations of the error estimator aspect
of MARQUESS.

To achieve confidence in the simulations results, er-
rors from both the bottom-up and top-down modelling
procedures must be considered. In particular, error es-
timation techniques must be non-intrusive as it is often
the case where only “orphan” meshes (only node loca-
tions and element connectivity with no physical model)
are available. This paper focuses on the top-down pro-
cedure to demonstrate the implementation on simpli-
fied systems. A similar approach can also be done on
the bottom-up procedure and combined to give a global
error estimate. While not presented in this work, it is
part of continuing research for MARQUESS.

The error estimation technique used in this work is
a goal oriented error estimator (GOEE) [3, 4, 5] that
utilizes the Zienkiwicz-Zhu (ZZ) [6, 7, 8] recovery based
error estimator for selected goal Quantities of Interest
(QoIs) such as average stress in a region. These QoIs
can be computed through a dual (or adjunct) problem



that performs a secondary simulation [5]. Using a dual
problem helps alleviate some of the intrusive require-
ments that are often required for particular QoIs. This
error estimator method can identify “hot-spots” that
might require more attention from the design engineer
for further specification, mesh refinement, or a region
to pay attention to if there is any design modifica-
tions on other parts/sections of the system. One of the
major issues with this method is the large number of
computational evaluations required to solve these QoIs.
This work reduces this computational burden through
the use of Bayesian surface identification/sampling via
Gaussian Process (GP) by using training simulations
then sampling instead of performing a full simulation
for each QoI.

This paper looks at two systems and applies the gen-
eral work-flow to both of these systems. The first sys-
tem is a simplified 2D flat panel to help demonstrate
the work-flow and to ensure the accuracy of the imple-
mentation. For this system, only one QoI is used, thus
the Bayesian surface identification is not performed.
The second system is a portion of a stiffened panel sub-
jected to a bending load. This is used to demonstrate
the GP for multiple QoIs and to show a more realistic
system in 3D. This paper is organized as follows: the
general work-flow along with the underlying theories
are presented in Section 2. Within this section, sev-
eral subsections explain the theory to the many indi-
vidual parts of the work-flow. Section 3 goes through
the 2D flat panel system and the results, while Sec-
tion 4 discusses the 3D stiffened panel and the analysis
performed on it. This paper is concluded with some
remarks and expected future work in Section 5.

2 Methodology and Theory

The general methodology of this work follows the
flowchart in Fig. 1. In this work-flow, there are five
main aspects that will be discussed in this section. The
first is the Finite Element (FE) formulation used in this
work. In an ideal case, this work would use ABAQUS
for these simulations. Unfortunately, ABAQUS acts
as a black-box and prevents (or greatly hides) some of
the information needed for this work. In particular, the
deformation matrix and stress/strains at each integra-
tion location. While these are required calculations,
they are not easily accessible outside of the black-box.
To alleviate this issue, a similar element is custom pro-
grammed in MatLab with future work to incorporate
this into ABAQUS for industrial use with the use of an
user-defined element. This custom element is discussed
in Section 2.1.

The second section for discussion is the aspect of
the primal and dual system. In general, the primal
system is the ordinary force-stiffness-displacement cal-

Figure 1: General methodology

culation while the dual system uses the same stiffness,
but solves a different linear system, which is discussed
in Section 2.2. The ZZ recovery method is discussed
in Section 2.3 and is used in the GOEE, discussed in
Section 2.4. Finally, a discussion of the Bayesian re-
sponse surface/GP is discussed in Section 2.5. One
aspect to note is that the Bayesian response surface is
only applied to the 3D stiffened panel in Section 4.

2.1 Finite Element Model Formulation

Commercial finite element codes, such as ABAQUS
[9], are widely used for the structural analysis of com-
ponents and structures within industrial applications.
However, for the purposes of this work, additional in-
formation is required to calculate the error estimator
which not returned by ABAQUS to the user. To over-
come this, a custom shell element has been developed
for the simulation of 3D components [10, 11]. This
work uses a general-purpose, iso-parametric, degener-
ate continuum shell element formulation, where small
strains with linear material and geometric properties
are assumed.

The shell element uses a bi-linear interpolation with
4 nodes, with 2x2 Gauss points for the bending and
membrane and a single point contribution for shear
[12]. With the rotational degree of freedom (DOF)
about the z-axis, often termed the drilling DOF, ne-
glected due to the thin nature of the elements. For the
purpose of this paper, as the mid-surface is assumed
as flat (not curved) the shell element can essentially be
classified by the super-position of plane stress and plate
bending, where the effects of bending and membrane
actions are assessed independently [13]. The internal
energy is defined for each element by a linear geomet-
ric interpolation scheme throughout the element, ex-



pressed as

Ue =
1

2

∫
Ωe

σb ·εbdΩe+
1

2

∫
Ωe

σm ·εmΩe+
κ

2

∫
Ωe

σs ·εsΩe,

(1)
where σα and εα are defined for the corresponding
bending, membrane and shear components {α} for
each element domain Ωe, and σα · εα is the tensor dot
product of the stress and strain. The linear-elastic
stress-strain relations are defined for a homogeneous
isotropic material as

σα = Cα · εα, (2)

where εα is the applied strain and the material material
matrix Cα is defined by the constitutive equation for
plane stress as

Cm =
Et

(1− v2)

1 ν 0
ν 1 0
0 0

(
1−ν

2

)
 (3a)

Cb =

(
t2

12

)
Cm (3b)

Cs =

[
G 0
0 G

]
, (3c)

where E and ν are the material Young’s modulus and
Poisson’s ration, t is the thickness, which is constant
over the shell, and G is the shear modulus given as

G = κ
Et

2 (1 + ν)
, (4)

where κ is an additional correction factor, taken as 5/6.
The generalised strain-displacements for bending,

membrane and shear are independently interpolated in
the local coordinates by

u (x, y) =


ux
uy
uz
θx
θy
θz

 =

4∑
i=1

uiNi (ξ, η) , (5)

where Ni(ξ, η) are the shape functions of a standard
bi-linear four node element. With bending, membrane
and shear strains computed from displacements via:

εα = Bαd
e. (6)

The strain-displacement matrices (Bα) are defined by
the derivation of the shape functions by defining indi-
vidual matrices as given in Eq. 7.

B
(e)
b =


0 0 0 0 ∂N1

∂x 0 . . . 0 0 0 0 ∂N4

∂x 0

0 0 0 ∂N1

∂y 0 0 . . . 0 0 0 ∂N4

∂y 0 0

0 0 0 ∂N1

∂x
∂N1

∂y 0 . . . 0 0 0 ∂N4

∂x
∂N4

∂y 0


(7a)

B(e)
m =


∂N1

∂x 0 0 0 0 0 . . . ∂N4

∂x 0 0 0 0 0

0 ∂N1

∂y 0 0 0 0 . . . 0 ∂N4

∂y 0 0 0 0

∂N1

∂x
∂N1

∂y 0 0 0 0 . . . ∂N4

∂x
∂N4

∂y 0 0 0 0


(7b)

B(e)
s =

∂N1

∂x N1 0 0 0 0 . . . ∂N4

∂x N4 0 0 0 0

∂N1

∂y 0 N1 0 0 0 . . . ∂N4

∂y 0 N4 0 0 0

,
(7c)

where the displacement vector is defined by six DOFs
as shown for the first element node as

deT1 = {ux, uy, uz, θx, θy, θz}. (8)

The element stiffness matrix, defined as the sum of
bending membrane and shear, is then obtained by nu-
merical integration for each element by

Ke =

∫
Ωe

Bb : Cb : BbdΩe +

∫
Ωe

Bm : Cm : BmdΩe

+

∫
Ωe

Bs : Cs : BsdΩe.

(9)
The vector of nodal forces, which are equivalent to dis-
tributed forces P are then calculated as

fe =

∫
Ωe

tN · PdΩe +

∫
Γe

tN · t̂dΓe, (10)

where t̂ is the surface traction and Γe are the Dirichlet
Boundary Conditions (BC). This selective integration
for both the stiffness matrix and force vector, using a
classical shell theory, is considered the simplest proce-
dure for avoiding shear locking of the element.

Currently the proposed formulation is suitable for
the analysis of thin shells of arbitrary shapes. Curved
surfaces can be modelled, however in order to capture
the curvature with the same accuracy, a greater num-
ber of element would be required. More appropriately
a curved shell element formulation, with a second or-
der geometric interpolation scheme or higher would be
adopted. Where bending and membrane actions do
interact and cannot be treated independently [14].

The main purpose of using this custom element is
to be able to gather all the information used in the
calculation. In the GOEE, values such as the strain-
displacement matrices, integration point locations, and
other quantities are required. For a typical ABAQUS
analysis, this information is either not stored in mem-
ory or is not easily available. Ideally, this analysis could
be performed using ABAQUS’s S4 element if all the in-
formation was stored, but due to the black-box nature
of the ABAQUS element formulation, this is not pos-
sible.



2.2 Primal and Dual Problem Formu-
lation

For the methodology applied to this work, multiple FE
evaluations are required. These come from the dual
formulation (also called adjunct formulation) for esti-
mating the error [15, 16]. The first evaluation is the
standard primal formulation/system. This is a tradi-
tional FE evaluation with applied forces resulting in
nodal displacements. The systems that are considered
in this work are static, so only the stiffness matrix is
required for these calculations. More results from the
primal solution are required in the GOEE, but are dis-
cussed in Section 2.4. For any given system, only one
primal solution is required.

The dual formulation is heavily dependent on the
selection of the QoI. This evaluates the solution to a
generalized force vector to output a QoI via the gen-
eralized displacement vector. In general for a static
system, this can be expressed as:

[K] {Z} = {Qi} , (11)

where [K] is the stiffness matrix, {Z} is the nodal
contribution to the QoI, and {Qi} is the generalized
forcing vector that depends on the QoI. The stiffness
matrix is the same as the primal stiffness in the cases
presented in this paper, while the generalized forcing
vector is dependent on the type of QoI (average stress,
max displacement, etc.) and the location of interest.
To calculate {Qi}, the QoI must be written as:

QoI = {Qi}T {u} , (12)

where {u} is the displacement field from the primal
solution.

In this work, two QoIs are considered: the average
stress and average displacement in a region. For the
average stress in the y-direction, Eq. 12 is expressed
as:

σ̄y =
{
Qσy

}T {u} , (13)

where the value of the Q vector is calculated as:{
Qσy

}
=

1

Ω0

∫
Ω0

Cy : B [ê] dΩ0, (14)

with Cy being the y-component of the material con-
stitutive tensor, B is the deformation matrix (spacial
derivatives of the shape functions), [ê] is a pointer ma-
trix to identify the DOFs associated with the location
within the integration, C : B is the double dot product
of C and B, and Ω0 is the domain being considered.
This integration is typically decomposed by the the el-
ement boundaries since both B and [ê] are dependent
on the which element is being evaluated.

This formulation is useful if a specific region is de-
sired. For this work, point-wise measurements are of

interest due to the MARQUESS work-flow. In general,
this would require Ω0 to be very small that causes issue
due to the Gauss quadrature integration used in FE.
To utilize all the information gathered in the FE anal-
ysis, this Q vector is calculated by the approximation
of:

{
Qσy

}
≈ 1

Ω0

Nint∑
k

Cy : Bk [ê]k |Jk|WkŴk, (15)

where Nint is the number of Gauss quadrature loca-
tions in the domain, |Jk| is the determinate of the Ja-
cobian matrix, Wk is the Gauss quadrature weight for
the integration point, and Ŵk is a spacial weight distri-
bution to identify importance in the overall calculation.
With this formulation, there are two main constraints,
written as:

Nint∑
k

|Jk|Wk = Ω0 (16a)

Nint∑
k

Ŵk = 1. (16b)

One reason this approximation is used is due to the
fact that all the information about the system is known
at the Gauss integration points. The custom made FE
stores this information while a typical ABAQUS sim-
ulation does not. There are two methods that using
spacial weights can help simplify the analysis. The first
method is to define a specific region where all the inte-
gration points within that domain have a weight value
of Ŵk = 1/Nint. This is the same as defining a spe-
cific domain in Eq. 14 where the integral is split along
element boundaries. The second method, and the one
used in this work, is to apply the weights based on the
Euclidean distance from the target location. In this pa-
per, these weights are based on a squared exponential
distributed by:

Ŵk = a exp

(
−|xk − xt|

2

2l2

)
, (17)

where l is a user-defined length, xt is the location of
the center of the distribution, and a is a normalization
factor to ensure Eq. 16b is valid.

One caveat of this generation is the multi-physics
nature of the shell element formulation. As discussed in
Section 2.1, the stiffness is comprised of three separate
components (bending, membrane, and shear). Each of
these components have individual B and C matrices.
In order to calculate the total Q vector, the individual
component Q vectors are computed then summed. For
example, the bending component of the Q vector is
calculated similar to Eq. 15 as:

{
Qσy

}
b
≈ 1

Ω0

Nint∑
k

Cb,y : Bb,k [ê]k |Jk|WkŴk, (18)



where the subscript b represents the bending compo-
nent. This calculation is done for each component then
summed as:{

Qσy

}
=
{
Qσy

}
b

+
{
Qσy

}
m

+
{
Qσy

}
s
, (19)

with the subscripts m and s being the membrane and
shear components respectively.

Once the Q vector is determined for a specific QoI,
then the FE analysis can be recomputed in order to
determine the variable {Z}, the dual solution. After
this computation, then the GOEE can be determined
for that particular QoI. In general, there are multiple
QoI, thus requiring multiple dual solutions. There is
a separate Q vector for each QoI in general, but Sec-
tion 2.5 discusses a method to approximate some QoI
to reduce the total computational time for an analysis.

2.3 Zienkiwicz-Zhu Recovery

ZZ recovery is used in GOEE to create piece wise con-
tinuous gradient based fields (for example stress and
strain fields)[3, 8]. It is the difference between pri-
mal problem solutions and continuous ZZ recovered
fields that is treated as an approximation of error in
the present work. For the shell element considered,
the shape functions are C0 continuous, such that the
derivative (strain) is not continuous across element
boundaries. In order to make the strain continuous,
the ZZ recovery method is used to create a smooth
strain distribution [6, 7]. This section will focus of the
ZZ recovery of the strain field due to the utilization
in the GOEE, but the ZZ recovery is not restricted to
strains.

To perform the ZZ recovery, the strain must be
known at specific locations. For the use in FE, these
locations are specified as the Gauss integration loca-
tions (similar to the calculation of the Q vector in the
dual formulation). Once these values are known, then
the ZZ recovery can be performed for the location of
each node. For each node, the ZZ recovery averages the
known strain values at the nearby integration points.
In MARQUESS, there are two methods for this aver-
aging. The first method is called the Nearest Neigh-
bour’s (NN) approach. This requires the information
about the nodal connectivity (which nodes are in each
element). The NN approach then takes the nearest
integration point location for each element that node
is connected to and averages them based on distance.
Note that this information is easily available in the
mesh data that describes each element as a collection
of nodes. An alternative approach is to do a similar
weighting that is used in Section 2.2, where the weights
are based on the Euclidean distance via a squared ex-
ponential such as Eq. 17. One alternative to the for-
mulation in Eq. 17 is to apply user-defined length pa-
rameters for each direction. The work presented in this

paper uses the NN approach due to the possible com-
plications (especially in the 3D panel) that comes from
a distance based ZZ recovery.

Once the nodal values of the recovered strain field
are determined, a surface is applied to the system. For
an ease-of-use, the element shape functions are used as
the basis function for this surface. The equation for
this surface is defined as:

ε∗(x) =
∑
i

Ni(x) [ê] {ε∗} , (20)

where {ε∗} is the recovered strains at the nodal values,
the superscript ∗ representing a recovered value, and
Ni(x) are the element shape functions. This function is
used in the GOEE for both the primal and dual strains
to calculate the estimated error.

2.4 Goal-Oriented Error Estimator

The main purpose of this work is to create an error
estimator that has physical significance to aid design
engineers in the design and analysis of an aerospace
system. To create this error estimator, two main meth-
ods are used: ZZ recovery and dual problems. Both of
these are discussed in Section 2.3 and Section 2.2 re-
spectively.

This formulation of the GOEE closely follows the
work in [5] with slight differences on how the dual prob-
lem is performed. The calculation is based on the en-
ergy norm, which is defined as:

|H|e =

∫
Ω

H : C : HdΩ, (21)

where H is any quantity of interest, |H|e is the en-
ergy norm of H, C is the material constitutive tensor,
and Ω is the domain of interest. In a typical system,
one GOEE that can be used is the energy norm of the
difference between the ZZ recovered QoI and the FE
values [8]. However, this does not account for the dual
formulation used in this work.

To account for the dual problem formulation used in
this analysis, the GOEE is defined as:

GOEE =

∫
Ω

(ε∗u −∆uh) : C : (ε∗z −∆zh)dΩ, (22)

with ε∗u and ε∗z being the ZZ recovered strain for the
primal and dual problem respectively, uh is the dis-
placement determined by the primal FE problem, zh is
the generalized displacement from the dual FE prob-
lem (in units of the force normalized QoI), and ∆ is
a collection of spacial derivatives. In simplified terms,
the difference (ε∗−∆uh) is equivalent to the difference
of applying the shape function interpolation before and
after the differentiation. For a refined mesh, this dif-
ference is nearly zero while a difference will occur for a
course mesh.



Similar to the method used to calculate the Q vec-
tor in Section 2.2, the GOEE is comprised of three
components (bending, membrane, and shear). For the
bending component, Eq. 22 is calculated as:

GOEEb =

∫
Ω

(ε∗u,b −∆uh,b) : Cb : (ε∗z,b −∆zh,b)dΩ.

(23)
This is then performed for each component then
summed as:

GOEE = GOEEb +GOEEm +GOEEs. (24)

In the general case, the GOEE is calculated for each
QoI. This value can be stored as a scalar for the to-
tal error, or as an array to signify specific region’s (or
element’s) contribution to the error. Storing this in-
formation for each element is one method to identify
“hotspots” where the design engineer can focus atten-
tion to for mesh refinement or design modifications.

2.5 Bayesian Recovery of the Error
Field

While the calculation of the GOEE can be done for
each QoI, this can take a lot of computational time. It
effectively runs a full FE model for each QoI and is dif-
ficult for large systems such as aircraft. One method
used to reduce this computational burden is through
the use of GP or Bayesian response surface identifica-
tion.

The basis of the Bayesian response surface is to use a
select number of evaluations (called training points) in
order to get a stochastic response surface that can be
easily sampled at selected locations (called test points)
[17]. This surface is made predominately through a ker-
nel (or covariance) function. There are many choices
for the kernel function (many described in [17]) that
can better characterize the response depending on the
analysis being performed. For this work, a Squared
Exponential (SE) kernel is used that is expressed as:

k(x, x′) = exp

(
−|x− x′|2

2l2

)
, (25)

with x and x′ being two locations and l is a length
hyper-parameter. One aspect of this kernel function
is that it is only dependent on the distance between
the two locations (stationary). Future work for this
project is the inclusion of the Matérn kernel since it
better represents the physics of a FE analysis and is
expected to provide a more accurate surface [17]. One
special effect of using this is:

k(f(x), f(x′)) = k(x, x′) = exp

(
−|x− x′|2

2l2

)
. (26)

This allows for the covariance of the response to be
described by the covariance of the evaluation locations
[17].

The first step in defining a Bayesian surface is the
evaluation of the training points to create the known
response space. For this work, these are done with a FE
analysis while this is also possible with experimental
measures. These training points give observations as:

Y = f(X) + ε, (27)

where Y is the training point observations at locations
X, f(x) is the simulation function (in this case the FE
analysis), and ε is Gaussian noise with variance σ2

n.
This leads the covariance between the training point
evaluations to be described as:

cov(Y ) = K(X,X) + σ2
nI, (28)

where K is a matrix such that Ki,j = k(xi, xj) and
I is an identity matrix. This formulation is useful if
scalar values are known at exact locations, such as ex-
perimental measurements. Although other approaches
are possible, this work uses the simplified expression
that the dual results are scalar values known at the
evaluated locations.

In this work, for simplicity, the test points are taken
as each nodal location of the system, and the train-
ing points are either manually selected by the user or
selected as random nodal locations. For either case of
the training points, a total response location vector X∗
is computed as the concatenation of the training and
test locations. Because of this concatenation, a train-
ing point identification matrix can be defined as:

H = [I, 0] , (29)

where I is an identity matrix with a size of the number
of training points (Ntrain) and 0 being a matrix of zeros
of size Ntrain×Ntest. With the known observations, a
joint normal distribution can be described as:[

Y
f∗

]
∼ N

(
0,

[
HΣHT + σ2

nI HΣ
ΣHT Σ

])
, (30)

where f∗ is the test location responses and Σi,j =
k(xi, xj) is the covariance of the locations (also known
as the prior distribution) for all the locations in X∗.
Knowing this joint distribution, a predictive distribu-
tion can be determined for f∗ ([17] for more specific
details). This results in the mean (f̄∗) and covariance
of f∗ being calculated as:

f̄∗ = ΣHT (HΣHT + σnI)−1Y (31a)

cov(f∗) = Σ− ΣHT (HΣHT + σnI)−1HΣ. (31b)

This predicted joint normal distribution can be sam-
pled to get the predicted distribution for each nodal
location.



For the use in this paper, the Bayesian surface is used
to describe the GOEE field of the 3D system. This is
used to reduce the computational time since only a few
full FE simulations are performed while the other loca-
tions are sampled from a simple distribution. Selection
of these few FE simulations are based on a random se-
lection of nodes. However, there is one required simu-
lation that is enforced. This is a dual problem based at
the applied force location. In addition to the selected
FE simulations, the Boundary Condition (BC) nodes
are also enforced as training locations. For this work,
it is assumed that the point-wise GOEE is zero at the
BC to enforce the Dirichlet BC.

3 2D Flat Panel

3.1 System Description

In order to demonstrate the general work-flow of this
analysis (minus the GP), a 2D flat panel is used for ver-
ification. This panel uses the full shell element formu-
lation previously described in Section 2.1. The loading
condition for this system is a quadratic tensile loading
such that the edges have zero force applied to them.
This can be seen in Fig. 2 in addition to the BC of
a pinned bottom surface. The maximum applied force
(at the center) is based on the maximum pressure load-
ing of 100 KN/m resulting in 1 KN force for the nom-
inal mesh. This was chosen to obtain a stress at the
center of the system to be near 100 MPa.

Figure 2: Mesh, loading and BC of 2D system

The material properties of this system are based on
2024 aluminium and reasonable physical parameters.
These properties are the same for the 2D and 3D sys-
tems tested in this work. For the 2024 aluminium: the
Young’s modulus is assumed to be 73.1 GPa, and the
Poisson’s ratio is 0.33. The thickness of the shell ele-
ments are all assumed to be 1 mm thick.

For the simplified 2D panel, only one QoI is selected.
This is the stress at the center of the panel, which is cal-
culated using a weighting function of a squared expo-

nential for Ŵk in Eq. 15. For this QoI, the user-defined
length is set to the length of 10 mm. This is thought
of as the spacial standard deviation in all directions.
The determination of this length (by expert opinion or
maximum likelihood method) will but further explored
in future work.

For this system, three meshes are analysed to show
the convergent nature of the GOEE. The nominal mesh
is defined with an element edge-length of 10 mm, re-
sulting in a grid of 50 × 25 elements. In order to test
the convergent nature of the GOEE (more refined mesh
should have smaller GOEE), the other two meshes are
defined as half and double the element edge-length.

3.2 Results

Since the 2D panel only has one QoI, this results sec-
tion will focus on the main steps while the 3D system
will focus on the Bayesian analysis. For this work, the
FE simulation is only performed for the primal solu-
tion while the dual solutions are solved within Python
using the stiffness matrix that is outputted by the FE
analysis via Eq. 11. In the current implementation,
the FE simulation produces text files that in read into
Python and used in this analysis. Currently, the sim-
ulation creates 10 files that are imported into Python,
including:

• The stiffness matrix. This is written on an
element-by-element basis in lower triangular for-
mat.

• The displacement for each DOF at each node.

• The nodal locations in the global coordinate sys-
tem.

• The nodal definition for each element. Contains
the information about what nodes are in each ele-
ment.

• The rotation matrix for each element. This is only
used in the 3D system.

• The Gauss integration point locations in the global
coordinate system.

• The individual membrane, bending, and shear B
matrices at each integration location.

• The determinant of the Jacobian matrix at each
integration point.

With this information, the stress and strains are cal-
culated at each Gauss integration location. The strains
are stored to be used for ∆uh and the stresses are used
for verification. Using these integration values, the ZZ
recovery is performed for each node then stored in ε∗u.
After the primal solution is calculated, the Q vector is



calculated. Using the primal stiffness matrix and this
Q vector, the dual displacement Z vector is calculated.
With the Z nodal vector, the dual strains are calcu-
lated at each integration location and stored as ∆zh.
With these values, the ZZ recovery is also performed
for the dual strains to be stored in ε∗z. With these
pieces of information, the GOEE is calculated for the
QoI by separating the domain into the elements and
using Gauss quadrature to evaluate the integral.

For this system, three different meshes are tested.
The results for all these simulations are summarized in
Tab. 1. In general, the GOEE follows the expected pat-
tern of decreased error with a more refined mesh. The
results in Tab. 1 are based on a QoI of approximately
91.7 MPa. The largest error was 0.31 MPa, which is
less than 1% error. This small error is partially due to
the selected QoI and the simple nature of the system.

Table 1: Total GOEE Results

Description GOEE
Half Mesh 310 KPa
Nominal Mesh 75 KPa
Double Mesh 19 KPa

While the percent error is small, one of the main
purposes of this analysis is to highlight the areas of
highest error. For the nominal mesh, the hot-spots are
shown in Fig. 3. This shows that the elements near
the center (where the stress is being evaluated) have
the largest error. For ease of viewing, the contour plot
shown in Fig. 3 is the magnitude of the total GOEE
for each element. Some of these elements contribute to
higher estimated stress while others contribute to lower
stress. This plot is also generated for the other meshes,
but not shown here. These identify the same hot-spot
areas of high importance with different scaling.

Figure 3: Element based GOEE to identify hot-spot
locations

One important aspect of Fig. 3 is that the GOEE

is symmetric around x = 0.25. This is due primarily
due to the symmetric loading and the QoI being at
the center. The hot-spot identification near the center
meets the expected result of locations near the point
of interest. Overall, this example shows the GOEE
workflow without the GP sampling.

4 Stiffened 3D Panel

4.1 System

The second example is a representative 3D stiffened
panel, formed of a flange and longitudinal stiffener
(web). The structural component is used to represent
a simplified flat section of a typical T-stringer stiffened
panel, which would form part of a larger representa-
tive aircraft wing or fuselage structure. The idealised
T-sectional component, has a length of 0.5m by 0.2m
wide and a web height of 0.05m. Both the flange and
web thicknesses are 1 mm.

The finite element model, shown in Fig. 4, is formed
from the same shell element, with identical material
properties as for the 2D system described in Section 3
and a nominal mesh size of 10 mm. The boundary
conditions and loading are similar to a simple cantilever
beam, with the cross-section at one end being pinned
supported at all nodes with a point loading applied as
a 1.5KN force at the intersection between the flange
and web on the opposite free end.

Figure 4: 3D system shell element model showing
mesh, boundary conditions and applied load

The loading and material properties where chosen
to ensure the beam remains elastic with the applied
load. The maximum end deflection of the beam is
within 1% compared against the analytical solution
and ABAQUS’s S4 element for compared displace-
ments and stresses. Shell element results for the scaled
deformation and averaged von Mises stress are shown
in Fig. 5.



Figure 5: Von Mises stress, with the deformation (scale
factor of 1) compared against the undeformed state

Using this implementation, models can be ei-
ther manually generated or imported from ABAQUS
(shown in Fig. 4) into the custom finite element code.
For visualisation the returned results are imported into
ABAQUS CAE’s Viewer module. Python scripting is
used to generate an ODB file, building the mesh ge-
ometry and creating history output data by importing
the external result files for displacements, stresses and
GOEE.

4.2 Results

The first result for the stiffened 3D panel is the case
where a dual problem was performed for each node.
For a more realistic system, this would not be feasible,
but can be taken as the reference GOEE field that the
Bayesian prediction is compared to. To illustrate this
field, a color plot is mapped onto the geometry and is
shown in Fig. 6. For the dual problem formulations,
the characteristic length used is the edge length of an
element (10 mm).

Figure 6: Reference GOEE field to identify hot-spot
locations

The main aspect of Fig. 6 is that error of the z-

direction displacement is largest at the applied force
location, which also has the largest displacement. This
follows the design common-sense that a refined mesh
near the loading will increase the accuracy. In total,
there are 1, 300 FE simulations used for Fig. 6 and
takes about two hours to perform all the simulations,
keeping in mind that this system is small compared
to the intended systems. For realistic systems with
hundreds of thousands of nodes, performing this many
simulations is not practical. In order to reduce the
computational burden, the GOEE is predicted with a
GP using only a subset of 100 FE simulations.

The reduced basis for the GP uses the results from
100 dual solutions. For these dual problems, the center
is selected as random nodes. This is thought of as a
preliminary investigation without an investigation into
optimal selection of locations. For the GP kernel, a
characteristic length was selected to be four elements
(40 mm). This is selected to give a disperse represen-
tation for the GP. Future work includes the selection
of this length via maximum likelihood opposed to the
manual selection currently used. The predictive mean
of the GOEE field is presented in Fig. 7.

Figure 7: 100 Dual solution recovered GOEE field

For the majority of this recovered field, there is little
differences between the true and recovered fields. How-
ever, in particular, there are two main locations where
there is a difference. The first location is the corner of
the web portion. In the true field, there is little differ-
ence between the corner and the applied force location,
while the recovered field has a larger difference. This is
specific to the selected 100 dual problems. By placing
a dual solution centered near that corner, the differ-
ence between the true and recovered fields decreases.
The second location of a noticeable difference is near
the bottom edge. This is noticed by the yellow con-
tour surrounded by green. Despite these two locations,
the recovered GOEE field matches well. One note on
these results is that there is no assumption of symme-
try along the web section made in this system. If this
assumption is made, then the 100 simulations would



only be required to span half the space, thus produc-
ing an expected more accurate mean GOEE field.

5 Conclusions and Remarks

This work demonstrates the use of Bayesian regression
of a goal oriented error estimator field in 3D shell el-
ement structures. The work in this paper is intended
to be used by design engineers in the design of large
aerospace systems. This includes the combination of
several techniques, primarily Zienkiwicz-Zhu recovery
and dual problem formulation for GOEE evaluation.

This methodology is applied to two separate systems,
one 2D system looking at the mean stress at the center
and one 3D system investigating the average displace-
ment while investigating the computational reduction
of using the Gaussian process to reconstruct the er-
ror field. The reconstruction using less than 10% of
the simulations produces an accurate field with a mi-
nor difference at two noticeable locations of difference.
This difference and locations can be adjusted based on
the locations of the dual problems. Future work in this
methodology is to determine error bounds for a speci-
fied number of dual problems.

In addition to the determination of error bounds,
future work is focused on the industrial size implemen-
tation. For this work, a custom finite element solver
is used and outputs the stiffness matrix and the re-
sults from the primal solution, and the dual problems
use this outputted stiffness matrix to create the dual
solutions. The main aspect for the future work is to
use ABAQUS to perform both the primal and dual
problems. This will be done by developing a USER-
ELEMENT (UEL) that implements the shell formula-
tion used in this work. Once the implementation into
ABAQUS is complete, future work is to include the
bottom-up aspect of MARQUESS.
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