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Abstract 

A new framework for the development of the perfectly 

matched layer (PML) in the Transmission Line Modelling 

(TLM) method is demonstrated. The formulation is based on 

the stretched coordinate PML and involves the mapping of the 

TLM node to an analytically extended geometric domain. The 

implementation demonstrates the more stable second order 

discretization of the PML equations in TLM.  The validity of 

the PML formulation is demonstrated on a canonical case of a 

metal waveguide and compared with an existing PML TLM 

scheme. 

1 Introduction 

The perfectly matched layer (PML), developed by Bérenger 

offers a powerful and effective way to model open boundary 

wave propagation problems [1]. Originally devised for the 

Finite-Difference Time Domain (FDTD) method, the PML is 

an artificial absorbing layer introduced at the boundaries of a 

computational domain and achieves a theoretical reflection 

free outward propagation by an impedance matching scheme. 

The success and simplicity of the PML has encouraged 

different revisions and extensions of Bérengers original theory 

and has resulted in various formulations beyond the initial 

FDTD technique [2]-[4]. To date, the performance of PMLs 

have been demonstrated in the transmission line model (TLM) 

method for the split-field [5,6] and stretched coordinate based 

(SCB) [7] PML interpretations, all of which have a first-order 

approach in their implementations. Whilst these have achieved 

some success, they also report such issues as temporal 

(exponential) growth in the solution domain and, a lower 

absorption performance when compared to their FDTD 

counterpart. 
 

In this paper, we explore an alternative method to the 

implementation of PMLs based on the discretization of the 

second-order SCB PML equations. A motivation for this 

approach is reported by [8]-[9] as an improved stability 

performance of the discrete second-order PMLs compared to 

their first order complement. The proposed formulation 

follows a mapping of the TLM node to a complex stretched 

domain which is shown to transform the constituent LC 

transmission line components.  

 

For simplicity, the theory is presented for the two-dimensional 

(2D) TLM node which can be straightforwardly extended to 

the three-dimensional (3D) case and as space precludes giving 

the details here, will be the subject of a future communication.  

The results are demonstrated for the 3D canonical case of the 

metal waveguide where the formulation is validated by 

comparing the absorption performance and stability against an 

existing TLM PML scheme [6]. The framework presented can 

be easily extended to advanced TLM nodes thus encouraging a 

review of the PML in TLM. 

2 Mapping the TLM node to a complex 

stretched domain 

TLM is a well-established numerical technique developed 

based on an analogy between the wave equation and passive 

circuits. It offers an intuitive approach to the simulation of 

complex electromagnetic wave propagation problems by a 

translation to an equivalent transmission line network. 

Therefore, fundamental to the TLM method is establishing a 

field-circuit equivalence which allows the medium properties 

to be properly encapsulated into the LC components of the 

transmission lines [10]. 

 

A second-order 2D SCB PML wave equation for the transverse 

magnetic case is derived from [3] to obtain  
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where 𝜇  and 𝜖 are magnetic permeability and electric 

permittivity, respectively and 𝑠𝑥  and 𝑠𝑦 represent the complex 

stretch factors given as 

 

 𝑠𝑖 = 1 +
𝜎𝑖

𝑗𝜔𝜖0 
,              𝑖 = 𝑥, 𝑦 (2) 

 

where 𝜎𝑖  ≥ 0  is a conductivity function used to control the 

attenuation of the fields propagating in the i-direction, and 𝜖0 

is the permittivity of free space. It can be shown [10] that there 

exists a circuit expression defined in a block of space 

analogous to Equation (1) given as  
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where ∆𝑙 represents the dimension of the block of space, 𝐿𝑥 and 

𝐿𝑦 represent the total inductance in x and y-directed 

transmission lines, respectively, and 𝐶𝑧 and 𝑉𝑧  represent the 

total capacitance and  voltage in z-directed transmission line, 

respectively. The block of space modelled by Equation (3) is 

referred to as a shunt node which is well defined in the 

literature for real space i.e. 𝑠𝑖 = 1 [10]. By comparing the form 

of Equations (1) and (3) the following equivalences can be 

made between the field and circuit parameters in the complex 

stretched space: 

 

𝐿𝑥   ↔ 𝜇∆𝑙
𝑠𝑥

𝑠𝑦
           𝐿𝑦 ↔ 𝜇∆𝑙

𝑠𝑦

𝑠𝑥
         2𝐶𝑧  ↔ 𝜖∆𝑙𝑠𝑥𝑠𝑦   

 

Applying the transmission line equations relating the 

characteristic admittance 𝑌 = √𝐶/𝐿   and propagation delay   

∆𝑡 = ∆𝑙√𝐿𝐶, the equivalent circuits of the shunt node mapped 

to a complex stretched domain is derived as illustrated in         

Fig. 1a,b. 

 

 

(a) 

 
 

 
(b) 

 

Figure 1: (a) TLM equivalent of the shunt node mapped to an 

analytically extended domain and (b) Thevenin equivalent circuit of 

the mapped shunt node. 
 

According to Fig. 1 the second-order SCB PML is interpreted 

in TLM as a transmission line network composed of complex 

stretched characteristic admittances (𝑌𝑥𝑠𝑦  , 𝑌𝑦𝑠𝑥  ) with 

associated complex time delays (∆𝑡𝑥𝑠𝑥  , ∆𝑡𝑦𝑠𝑦) applied along 

each x and y-direction of propagation. Evidently, such a 

transformation of line parameters results in a modification of 

the TLM scatter-connect algorithms. 

 

In the 2D TLM node, the reflected voltage 𝑉𝑛
𝑟 at each port n is 

given as [10] 

𝑉𝑛
𝑟 = 𝑉𝑧 − 𝑉𝑛

𝑖 (4) 

 

where 𝑉𝑛
𝑖  is the voltage incident on the line. By a simple circuit 

analysis of (Fig. 1b) the following expression is obtained 

 

𝑉𝑧 =
𝑠𝑦𝑌𝑥𝑉1

𝑖  +  𝑠𝑥𝑌𝑦𝑉2
𝑖 + 𝑠𝑦𝑌𝑥𝑉3

𝑖  +  𝑠𝑥𝑌𝑦𝑉4
𝑖

𝑠𝑦𝑌𝑥 + 𝑠𝑥𝑌𝑦

. (5) 

 

Arriving at a time domain solution to Equation (5) is nontrivial 

and requires an appropriate handling of the complex and 

frequency dependent line admittances. This requires a series of 

transformations to be deployed for the implementation of 

digital filters that enable a mapping of frequency dependent 

material parameters to the time domain and these are [11]: 

 

𝑗𝜔 →    𝑠     →
2

∆𝑡

(1 − 𝑧−1)

1 + 𝑧−1
     →      [𝑛∆𝑡]. 

Upon solving Equation (5) the resulting discrete time solution 

to Equation (4), which represents the modified scatter equation, 

is expressed as  
 

 

𝑉𝑛
𝑟 = 𝛼𝑉𝑧 − 𝑉𝑛

𝑖 + 𝑉𝑝𝑚𝑙 (6) 

 

   𝑠𝑖 = 𝛼 = 1 , 𝑉𝑝𝑚𝑙 = 0            (In regular space) 

𝑠𝑖 ≠ 𝛼 ≠ 1, 𝑉𝑝𝑚𝑙  ≠ 0         (In PML layer) 

 

where 𝛼 is a scaling factor dependent on 𝑠𝑖 , and 𝑉𝑝𝑚𝑙 is a non-

physical voltage introduced by the complex stretching.  

 

Finally, as previously highlighted, the propagation delay along 

each i-direction in the mapped shunt node is a complex 

stretched variable given as  
 

∆𝑡𝑖𝑠𝑖 = ∆𝑡𝑖  ( 1 +
𝜎𝑖

𝑗𝜔𝜖0
 ) (7) 

 

According to Equation (7) the stretching is only applied to the 

imaginary time component, therefore the TLM criteria for 

impulse synchronism is maintained. The complex time 

component 
∆𝑡𝑖𝜎𝑖 

𝑗𝜔𝜖0
  is mathematically interpreted, through an 

inverse Fourier transform, as an attenuation factor 𝑒
− 

∆𝑡𝜎𝑖
𝜖0  for 

the propagating pulses along each i-directed line. This direct 

attenuation is applied to both pulses incident through the PML 

and those reflected within the PML region and is applied as a 

scaling factor in the connection process. For example, the 

voltage reflected from port 3 in k time step is incident on port 

1 of the adjacent node in k+1 time step by the following rule 
 

 

   𝑘+1𝑉1
𝑖 (𝑥 + ∆𝑥, 𝑦)   =   𝑘𝑉3

𝑟(𝑥, 𝑦)𝑒
− 

∆𝑡𝜎𝑥
𝜖0 (8) 
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3 Numerical Experiments 

The developments presented in section 2 have been extended to 
the symmetrical condensed node (SCN) to demonstrate the 
validity of the formulation in 3D. We compared the reflection 
performance and numerical stability of the mapped SCN PML 
against an existing SCN-PML scheme [6] for the canonical 
metal waveguide test case. 

3.1 Reflection performance 

The reflection performance was investigated for an empty 

rectangular waveguide WR90 with dimensions 22.86mm by 

10.16mm by 40mm (∆𝑙 =  0.5mm) truncated by a 20layer 

PML with parabolic conductivity grading with an end 

conductivity 𝜎𝑚𝑎𝑥 = 5𝑆/𝑚. The PML layer was backed by a 

perfect electrical conductor (PEC). The dominant 𝑇𝐸10 mode 

was excited by an amplitude modulated Gaussian pulse with a 

centre frequency of 10GHz and a bandwidth of 4GHz. The 

plane of excitation was located at one node from the             

PML-waveguide interface and the observation node was set at 

the other end of the waveguide – one node away from the PML. 

An illustration of the simulated waveguide is shown in Fig.2. 

The reflection coefficient shown in Fig. 3 was computed using 

the reference solution of a longer waveguide terminated with 

PMLs. As observed, the mapped SCN demonstrates good 

agreement with the PML formulation proposed in [6].  

 

 
Figure 2: Geometry of the WR-90 waveguide  

 
 

 
 

Figure 3: Reflection coefficients obtained from a TLM simulated 

empty rectangular waveguide WR-90 truncated with parabolic graded 

 𝜎𝑚𝑎𝑥 = 5𝑆/𝑚  20∆𝑙 PML.  

3.2 Stability 

We investigated the stability of our formulation by loading the 

waveguide simulated above with a capacitive iris. The iris was 

placed close to the PML (5 nodes away) to ensure high 

evanescent energy is present at the PML interface. The PML 

was terminated by a matched boundary condition and the end 

conductivity was set to 𝜎𝑚𝑎𝑥 = 28𝑆/𝑚.  Observation and 

excitation were made at the same node at the opposite end of 

the waveguide. The time domain plot of the 𝐸𝑦 component is 

presented in Fig. 4, where the mapped SCN PML is shown to 

exhibit no instability even with the iris placed at such close 

proximity to the PML. This demonstrates an improved 

performance over existing PML schemes simulated in a similar 

context [5]-[7]. The appearance of oscillations in the time 

domain arise due to the inability of the PML equations in the 

continuous form to properly absorb evanescent modes. This is 

well reported and not related to the numerical method 

employed.  

 

To corroborate our claim of improved stability, other 

investigations have been carried out involving computational 

domains containing strong discontinuities which were 

simulated for time steps of five to six orders of magnitude and 

operated at the maximum time step. In these contexts, the 

stability of the mapped SCN PML also demonstrated an 

improved late time stability over existing TLM-PML schemes. 

A possible explanation for the stability improvement can be 

found in the approach employed by this formulation. Unlike 

the previous TLM-PML schemes, the mapping of the TLM 

node elaborates the transformation of the LC line components 

which are then accounted for by modifications in the TLM 

scatter-connect processes. In addition to this, a truly second-

order implementation is maintained by employing an 

equivalent network model [12],[13] in the derivation of its 

scatter equations. This is different to existing TLM-PML 

schemes which have been developed based on a direct first-

order discretization of the modified Maxwell’s equation. 
 

 
Figure 4: Time domain waveform of an empty waveguide WR-90 

charged with a capacitive iris and truncated by different TLM-PMLs. 
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4 Conclusion 

Perfectly matched layers are a critical enabler for large-scale 

electromagnetic simulations and it is imperative to optimise 

their performance. It is essential that PML implementations 

guarantee stability as well as high quality absorbing properties. 

A framework for the development of second-order SCB PMLs 

in TLM was proposed. The formulation is shown to modify the 

standard TLM scatter-connect processes whilst maintaining 

the fundamental TLM criteria of synchronism and connection. 

Conceptually the formulation is stable since each unit 

operation can be proved to be stable. This agrees with results 

obtained in which no instabilities have been found. The 

reflection performance is also shown to be in agreement with 

existing TLM-PML schemes. Based on its simple approach 

extensions will be made to advanced TLM nodes in the future. 
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