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A B S T R A C T

Uncertain reward outcomes are characterised by statistical parameters that capture the numerical values of the
underlying probability distributions of reward values, including the expected value, risk (variance) and prob-
ability. Here we show coding of an integrated expected value signal by single orbitofrontal neurons in response
to visual cues predicting uncertain rewards. Separate subpopulations of orbitofrontal neurons predominantly
code the prediction of one statistical parameter with few neurons showing combined coding. These signals are
likely combined with subjective value signals to inform learning and decision making under conditions of un-
certainty.

1. Introduction

Decision making under conditions of uncertainty requires proces-
sing of multiple variables relating to possible outcomes. Models of de-
cision making suggest that the first two central moments of reward
probability distributions, namely expected value and risk, are key
parameters for decision-making processing mechanisms. It is therefore
a fundamental requirement of brain systems to accurately process these
variables in order to guide efficient choices.

Blaise Pascal’s development of probability theory in the 17th cen-
tury recognised that by calculating the likelihood of different outcomes
from a gamble, value (v) and probability (p), an informed decision
maker could choose the option that results in the maximum outcome
[1]. This quantity, (v x p), known as expected value, equals the mean,
average outcome from a range of possible outcomes (the first central
moment).

Risk, the second central moment of reward probability distributions,
captures the dispersion of the possible outcomes. This dispersion of
probabilistic outcomes is typically measured as the variance or standard
deviation (square root of variance). Note that risk defined in these
terms is distinct from reward probability, which has a non-monotonic
relationship with risk: for binary outcomes, risk is maximal when the
probability of each outcome is equal to 0.5 since the certainty that an
outcome will occur increases from p=0.5 to p=1 and the certainty
that an outcome will not occur increases from p=0.5 to p=0 [2].

Risky information predicting reward outcomes is coded by single
neurons in the orbitofrontal cortex [3–8], cingulate cortex [8,9],

supplementary eye field [10], anterodorsal septal region [11], striatum
[12] and midbrain dopamine neurons [13].

Probabilistic information predicting reward outcomes is coded by
single neurons in frontal and parietal cortical areas including the lateral
intraparietal and parietal reach regions [14,15], the orbitofrontal,
dorsolateral prefrontal and anterior cingulate cortices [16–19]. Reward
probability predictions are also coded by single neurons in subcortical
regions including the globus pallidus and substantia nigra [20,21],
lateral habenula [22], amygdala [23], dorsal striatum [24] and mid-
brain dopamine neurons [13].

Thus predictions of reward probability and risk are coded in the
brain at the single neuron level and in a distributed fashion between
interconnected cortical and subcortical areas. Single neurons in orbi-
tofrontal cortex have been shown to code both reward probability and
risk predictions in separate studies. Also, neurons in the orbitofrontal
cortex have been shown to code predictions of reward values that re-
flect the subjective value of the reward predictions [25] and integrate
reward magnitude and reward probability [7]. However it is not yet
known if the activity of individual neurons in the orbitofrontal cortex
predicts expected reward value through integration of probability,
magnitude and risk. Therefore, the purpose of this study was to test for
integrated expected value coding by single neurons in the orbitofrontal
cortex. We identified subpopulations of orbitofrontal neurons that
predominantly code the prediction of one statistical parameter with few
neurons showing combined predictions of expected reward value, re-
ward probability and risk. The ability of orbitofrontal neurons to code
expected value, which requires integration of reward value, reward
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probability and reward risk, suggests that the orbitofrontal cortex is
capable of local parsing of statistical information relevant for predicting
uncertain reward outcomes.

2. Materials and methods

2.1. Subjects

Two adult male rhesus monkeys (Macaca mulatta), weighing
10–14 kg, were implanted, under general anesthesia, with a head
holder and a stainless steel chamber on the skull to enable daily elec-
trophysiological recordings from single neurons. All surgical and ex-
perimental procedures were performed under a Home Office License
according to the United Kingdom Animals (Scientific Procedures) Act
1986.

2.2. Behavioural task

During training and testing, the monkeys were on a restricted water
schedule 6 days of the week and 24 h water ad libitum. The monkeys
were trained to sit in a restraining chair in front of a computer monitor
with the head fixed and perform a memory-guided saccade task (Fig. 1).
An aperture in the front of the chair provided access to a touch-sensitive
key. To commence a trial, the monkey fixated on a red spot in the center
of the monitor and contacted the key. After 1.5 s, a visual cue appeared
in pseudorandom alternation to either the left or right of the fixation
spot for 0.5 s, respectively (Table 1). The animal maintained fixation for
a further 2 s before the center spot extinguished, which was the signal
for the monkey to saccade to the left or right cue location. A successful
saccade led to appearance of a red fixation spot at the peripheral lo-
cation. After fixation for 1 s, the spot turned green and the animal re-
leased the key. Juice reward was delivered 1 s later. The next trial
started with appearance of the central fixation spot at 3.5 s after the
reward. Thus, intertrial interval was 3.5 s, and total cycle time (trial
duration+ intertrial interval) was 10.5 s. Typically, a session lasted for
600 trials in total.

2.3. Stimuli and independent variables

We used black bars on framed, rectangular white backgrounds as
cues. The vertical position of the bar indicated juice volume. One bar
within the rectangle indicated a certain juice volume that would be
delivered (p= 1). Two bars indicated that one of two possible juice
volumes would be delivered with equal probability (p=0.5 each), thus
explicitly indicating the risk of the outcomes (Table 1). We used three
different levels of risk while keeping the mathematical expected values
(EV) of the three binary distributions of juice volumes constant, and the
probability of a large or small reward on any given risk trial also a

constant of 0.5 (Table 1). This differentiates reward probability on any
given trial from risk as they vary independently. Risk is defined as the
standard deviation (SD) of a probability distribution with:

∑=
=

EV (p *x )
i

n

i i
1 (1)

∑= −
=

SD p *(x EV)
i

n

i i
1

2

(2)

n = number of possible juice volumes.

2.4. Neuronal recording and data analysis

We isolated and recorded the activity of single neurons in the or-
bitofrontal cortex while monkeys performed the task, according to
procedures previously described [5]. In the first step of analysis, we
defined the presence of cue-related neuronal responses by the Wilcoxon
test, which compared neuronal activity during a period of 0.1–0.6 s
following cue onset against a control period of 1.0 s before the fixation
spot. In the second step we carried out a multiple linear regression
analysis on the cue responses identified by the Wilcoxon test:

Y= β0+ β1EV+ β2Probability+ β3Risk+ e (3)

Y is neuronal firing rate, β1, β2, & β3 are corresponding regression
coefficients, β0 is intercept, and e is error.

As the EV was the same for all three risk cues, and equal to the EV of
the medium value cue (Table 1), we carried out a Tukey-Kramer post-
hoc ANOVA to test whether the neuronal responses were statistically
similar or different between the risk cues compared to the medium
value cue.

To quantify the extent to which the regressors accounted for the
variance of the neuronal data, we used the coefficient of partial de-
termination (CPD). We also carried out a chi-square test on the cue
responses to pairs of variables to test for the likelihood of combined
coding of pairs of variables.

3. Results

We recorded the extracellular activity of 170 single neurons in the
orbitofrontal cortex during task performance. Of these, 126 neurons
(74%) responded significantly to the cues (p < 0.05, Wilcoxon test).

The multiple regression analysis (Eq. (3)) revealed that the cue re-
sponses of 42 of 126 neurons (33%) coded the EV, 21/126 coded the
reward probability (17%) and 13/126 coded the risk (10%). Of the 42
neurons coding EV, 19/42 had significant positive and 23/42 had sig-
nificant negative correlation coefficients (Fig. 2; all p<0.05). Of these
neurons, the cue responses of all 19/19 neurons with positive slope and
15/23 neurons with negative slope was not significantly different be-
tween all three risk cues and the medium value cue, which were all
equal in EV (left and right panels in Fig. 2, respectively; Tukey-Kramer
post-hoc ANOVA test, all p > 0.05). Of the 21 neurons coding reward
probability, 16/21 had significant positive and 5/21 had significant
negative correlation coefficients (left and right panels in Fig. 3, re-
spectively, all p < 0.05). Of the 13 neurons coding risk, 7/13 had

Fig. 1. Behavioural task. Visual cues were presented on a monitor while
monkeys fixated on a spot in the center of the screen and contacted a touch-
sensitive key in front of the monitor. Only one cue was displayed per trial to the
left or right of the fixation spot. When the fixation spot extinguished the
monkey was required to make a saccade to the to the side where the cue was
displayed. A red dot appeared in this location for 1 s before turning green, in-
dicating that the trial was complete and the key should be released to receive a
juice reward (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article).

Table 1
The trial types, visual cues and actual measures used in the experimental de-
sign. The possible juice volumes to be delivered at the end of the trial were
represented by the height of horizontal black bars on a white background.

Cues:

Expected value (ml): 0.3 0.18 0.3 0.42
Reward probability: 0.5 1

Risk (SD): 0.03 0.06 0.12 0
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significant positive and 6/13 had significant negative correlation
coefficients (left and right panels in Fig. 4, respectively, all p < 0.05).

Of the 126 neurons with cue responses, 32 coded only EV, 13 coded
only probability, 5 coded only risk, 5 coded both EV and probability, 5
coded both EV and risk, 2 coded both probability and risk and 1 coded
all three variables. Chi-square tests on all pairs of variables were not
statistically significant (all p > 0.05). In addition, the amount of var-
iance explained was not positively correlated among any pair of re-
gressors (Fig. 5; left, EV and probability, Pearson’s r=−0.26, p=0.05;
middle, EV and risk, Pearson’s r=−0.35, p=0.01; right, probability
and risk, Pearson’s r=0.26, p=0.16). Taken together, these results
suggest that EV, probability and risk are coded by distinct subpopula-
tions of neurons in this neuronal population.

4. Discussion

This study investigated the representation of statistical parameters
relating to reward predictive coding in the orbitofrontal cortex. We
show that single neurons code the expected value, the risk (variance)
and the reward probability at the time of visual cues, predominantly by
separate subpopulations of neurons. The experimental design in-
tentionally facilitated orthogonalisation of the independent variables,
thereby enhancing the likelihood of observing separate coding, and
alternative approaches could be used in future to facilitate detection of
interactions between these variables. Nonetheless, these findings ad-
vance on our previous work, showing a categorical distinction between
value and risk coding [26], by showing that OFC neurons code an in-
tegrated expected value signal.

In the 17th century Blaise Pascal first proposed that decision makers
perform a mental calculation to derive the expected value of uncertain,

Fig. 2. Orbitofrontal neurons code expected value. (A) Smoothed histo-
grams showing examples of individual neurons coding expected value following
cue onset with positive slope (left) or negative slope (right). The shaded area
shows the time window used for analysis. (B) Smoothed histograms showing
population responses from all neurons with statistically significant correlation
coefficients for expected value during the shaded period. Risk cues with equal
expected value are shown in red, and value cues with no risk are shown in blue.
Colour coding of the cues in the figure legend are for presentation purposes only
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).

Fig. 3. Orbitofrontal neurons code reward probability. (A) Smoothed his-
tograms showing examples of individual neurons coding reward probability
following cue onset with positive slope (left) or negative slope (right). The
shaded area shows the time window used for analysis. (B) Smoothed histograms
showing population responses from all neurons with statistically significant
correlation coefficients for reward probability during the shaded period. Colour
scheme the same as Fig. 2.

Fig. 4. Orbitofrontal neurons code reward risk. (A) Smoothed histograms
showing examples of individual neurons coding risk following cue onset with
positive slope (left) or negative slope (right). The shaded area shows the time
window used for analysis. (B) Smoothed histograms showing population re-
sponses from all neurons with statistically significant correlation coefficients for
risk during the shaded period. Colour scheme the same as Fig. 2.
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risky outcomes in order to make informed decisions. Here we show that
Pascal’s proposition is indeed reflected in the brain at the level of single
neurons in the orbitofrontal cortex. The observation of expected value
coding to risk cues in this study is of particular interest because the
expected reward value, measured in millilitres of juice (0.3 ml), is never
experienced in those risk trials. Nonetheless, the neuronal activity at
the time of the cue reflects this never-experienced value. This implies a
predictive neuronal signal that represents a theoretical reward value
associated with the visual stimuli. Expected value, risk and reward
probability information must be constructed a priori through learning
to represent the distribution of possible outcomes. These signals to-
gether are necessary for maintaining and updating accurate expecta-
tions of uncertain reward outcomes.

4.1. How are these calculations performed?

It is not yet clear how these signals are generated through the
learning process. Cleary stimulus-reward associations occur, and these
signals have been widely observed throughout the brain and are widely
accepted as contributing to learning of stimulus-reward associations.
However, it is not yet known how variables representing central mo-
ments of reward probability distributions arise. For example, how many
trials are required for a neuron to assign an accurate statistical value to
a stimulus based on the history of rewards associated with that sti-
mulus? A recent study provides insight to this mechanism, showing that
dopamine neurons acquire predictive value signal coding from the
frequency of rewards [27]. More studies are required to further eluci-
date the generation of predictive coding signals in other brain areas
including the orbitofrontal cortex.

4.2. How are these objective values combined with subjective values?

Decision makers’ choices typically do not represent objective, sta-
tistical information of uncertain rewards linearly. They tend to distort
reward signals, as in risk-seeking or risk-averse behaviour, which re-
present non-linear transformations of risk (variance) information [28].
There is also a tendency to overestimate low probabilities and under-
estimate high probabilities, reflecting distortions of reward prob-
abilities [29–31]. Distortions of both risk and reward probability result
in non-linear transformations of value signals. These observations
clearly show that reward signals are not transmitted through the ner-
vous system linearly, as they are not expressed this way in behaviour of
revealed preferences. Yet, objective reward parameters are represented
in the brain through coding at the single neuron level. So what happens

to these objective representations between the coding stage and beha-
vioural expression? Recent studies have shown that subjective values of
reward signals are indeed also represented through coding at the single
neuron level. For example, the dopamine prediction error signal ap-
pears to be derived from a subjective rather than an objective reference
point [32,33]. Likewise, reward value signals in orbitofrontal neurons
also represents subjective values [7,25,34]. Therefore, both objective
and subjective values are coded by single neurons in the orbitofrontal
cortex and other brain regions. It is not yet clear how exactly these
objective and subjective values are combined to drive observed beha-
viour.

4.3. Crosstalk between areas

Finally, many studies provide correlational evidence from single
neurons and causal evidence from lesion studies identifying the in-
volvement of several brain areas in coding objective and subjective
values relevant for decision making. However, it is clear that there is
communication between these brain areas, and we do not yet know
what are the key components of communication between these areas
that give rise to behaviour and in particular distortion of learned re-
ward values as revealed through behavioural preferences. Future stu-
dies will benefit from recordings in multiple areas simultaneously to
identify the relative contribution of different areas during learning and
decision making under conditions of uncertainty.
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