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Abstract 

Multiscale complex surfaces possessing high form accuracy and geometric 
complexity are widely used for various applications in fields such as 
telecommunications and biomedicines. Despite the development of multi-sensor 
technology, the stringent requirements of form accuracy and surface finish still present 
many challenges in their measurement and characterization. This paper presents a 
fiducial-aided data fusion method (FADFM), which attempts to address the challenge 
in modelling and fusion of the datasets from multi-scale complex surfaces. The 
FADFM firstly makes use of fiducials, such as standard spheres, as reference data to 
form a fiducial-aided computer-aided design (FA-CAD) of the multiscale complex 
surface so that the established intrinsic surface feature can be used to carry out the 
surface registration. A scatter-searching algorithm is employed to solve the nonlinear 
optimization problem, which attempts to find the global minimum of the 
transformation parameters in the transforming positions of the fiducials. Hence, a 
fused surface model is developed which takes into account both fitted surface 
residuals and fitted fiducial residuals based on Gaussian process modelling. The 
results of the simulation and measurement experiments show that the uncertainty of 
the proposed method was up to 3.97 x 10-5 μm based on a surface with zero form error. 
In addition, there is a 72.5% decrease of the measurement uncertainty as compared 
with each individual sensor value and there is an improvement of more than 36.1% as 
compared with the Gaussian process based data fusion technique in terms of root-
mean-square (RMS) value. Moreover, the computation time of the fusion process is 
shortened by about 16.7%. The proposed method achieves final measuring results with 
better metrological quality than that obtained from each individual dataset, and it 
possesses the capability of reducing the measurement uncertainty and computational 
cost. 
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1. Introduction 

Freeform optics, especially multi-scale freeform surfaces, are widely used in many 
fields such as advanced optics and biomedical engineering [1] due to their excellent 



performance in optical functionalities [2]. To ensure the performance of these 
advanced surfaces, advanced manufacturing technologies such as ultra-precision 
diamond cutting, milling and precision measurement technology are critical for the 
quality control of these surfaces. Many measurement instruments and principles, 
ranging from coordinate measuring machine (CMM) and interferometers to scanning 
electron microscopy, have been applied to fulfill different requirements and improve 
reliability or reduce uncertainty. However, with the increasing complexity of freeform 
surfaces, relatively few of these devices are capable of fulfilling all the measuring tasks 
because of the limitation of their own technology in terms of levels of resolution, 
measuring range and accuracy. For example, light scanners do not easily measure 
structured surfaces with sharp features, and touch probe-based coordinate measuring 
machines cannot capture microstructure information. Hence, multi-sensor data fusion 
using a common format to represent several datasets obtained from different sensors 
was developed to evaluate the metrological evaluation [3]. 

There are two main operations in the data fusion process, which are registration 
and data fusion. Registration is a process that unifies the dataset sources into a 
common coordinate system. To achieve this, an imaging sensor, a white light sensor 
and a tactile scanning sensor were integrated into a Werth VideoCheck UA 400 multi-
sensor coordinate measurement machine[4]not only avoided misalignment but also 
possesses the ability to measure complex multi-scale surfaces. However, it is common 
for many measurements that the datasets are obtained from different coordinate 
measurement systems. Although the Iterative Closest Point (ICP) method [5] and its 
variants have been widely used for surface or discrete point matching/fitting [6], these 
methods are reported to be easily trapped in their local minimum and are very 
sensitive to the initial values of the given transferring parameters [7]. Some researchers 
have made use of intrinsic independent and immovable surface features, such as 
curvatures [8-11], to find corresponding pairs among data sources. These approaches 
have achieved fruitful results but they are still limited by their uncertainty and 
sensitivity to the machined structure [12].  

The fusion process generates high quality unique information from all the datasets 
with different resolutions and different uncertainties in the overlapping area. Ye et al. 
[13] used the invariance of the curvature radius to obtain a good registration result 
and applied an optimal stitching planning method that is able to achieve a sub-
micrometer level of stitching accuracy. The weighted fusion method [14, 15], which 
also sets the measured datasets in a linear system, has also been used in many studies, 
but the fusion results are obtained from minimizing the weighted summation of each 
system. Wang [16] analyzed four weighted fusion methods and their uncertainties 
were also investigated. The state-of-the-art-data fusion process focused on building 
models of the residuals of the datasets by using the Gaussian process [17, 18]. In this 
method, the residuals are defined by a linear measuring system so that the mean and 
covariance function of the Gaussian Process (GP) model can represent the fused 
results. However, these methods may be still used on simple surfaces, which are based 
on a linear system and are time-consuming. B-spline model is another developed 
technique to represent complex local geometry. Ren [19] employed B-spline to 



reconstruct a measured surface that had removed the residual. Results of the 
investigation indicate that this method has technological merit in terms of reducing 
computation cost and fusing complex surfaces. One drawback of the B-splines is that 
the unknown control points, or knots, require sophisticated optimal techniques. 

This paper therefore presents a new method called fiducial-aided data fusion 
method (FADFM), which addresses the key problems in the multi-sensor data fusion, 
including improvement of the accuracy and robustness of the surface registration, 
reducing uncertainty and computational cost of the fusion process. Comparison 
experiments have been conducted for the existing methods based on both simulation 
study and experimental testes so as to verify the validity of the proposed method. 

2. Fiducial-aided data fusion method 

The proposed FADFM was purposely developed to improve the quality of the 
dataset from the following two aspects: 

1) Enhance the surface registration step, which unifies different coordinate frames 
including that of the designed surface and those of the measuring datasets into 
one common coordinate frame.  

This method firstly makes use of fiducials as reference data to generate the fiducial 
aided CAD surface, which is provided for a robust process of surface registration. 
Fiducials such as standard balls are designed and mounted on the fixture and they are 
able to provide intrinsic surface features. 

2) Reduce the uncertainty and computational time in the fusion process. 
The measurement results of the fiducials can provide uncertainty information of 

the measuring instruments in their measuring workspace. The uncertainty 
information was firstly used to determine the prior information in the Gaussian 
process modelling and it was used to determine the weight of each dataset in the 
weighted mean fusion step. 

As shown in Fig. 1, the proposed FADFM is composed of three processes, which are 
surface registration, fusion, and the merging process. It starts with the generation of 
the fiducial-aided computer-aided design (FA-CAD) by using standard balls 
surrounding the surface with different heights. In the second step, the fiducials are 
measured in the different coordinate frames and are transformed so that the generated 
transformation spatial parameters are then used to transform the surfaces into a 
common coordinate system. Hence, the registration forms residuals of measured 
surfaces and the fiducials in different measuring processes are obtained. It is 
interesting to note that the accuracy of surface registration is further improved and a 
robust process is performed since the intrinsic surface feature patterns are registered. 
In the third step, the errors of fiducials serve as a reference to determine their own 
measuring uncertainty. The residual of surface registration in each measuring process 
is fused by a weighted mean fusion based on the Gaussian Process (GP). In the final 
step, merging the fused surface error with the FA-CAD generated the fused surface. 
The core fusion algorithms are discussed in detail in the following sections.  



 

Fig. 1 Framework of the fiducial-aided data fusion 

2.1 Fiducial-aided surface registration 

Measured datasets from several uncorrelated sources are normally embedded in 
different coordinate systems. A surface registration process has to be carried out so 
that all the measured information is matched and unified in one common coordinate 
system. Matching is one of the most important and decisive processes in multi-sensor 
data fusion. It can be summarized as searching for an optimal vector m with six spatial 
parameters so as to minimize by the least square function as shown in Eq. (1): 

 
2

1
min

N
k

i i
i=

− P ( )PT m    (1) 

where iP  are the points of the CAD; k
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measured source, and T is the coordinate transformation matrix determined by 
transformation parameter vector m = (α,β,γ,Tx,Ty,Tz)’, the first three parameters are the 
rotary angles and the others are translational offsets.  

This nonlinear optimization problem (NLP) is able to be solved by using the 
Levenberg-Marquardt algorithm [20] or Gausss-Newton algrithm [21] by letting the 
Eq. (1) partial differential equal 0, i.e.: 
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However, these methods are easily trapped into their local minima and the results 
are sensitive to the initial starting search for the six spatial parameters. To ensure the 
robustness and accuracy of the registration and feature-based surface descriptions, 
fiducials are used to carry out the surface matching [11]. Firstly, the fiducials in 
different datasets serve as intrinsic surface features to achieve a global minimizer m by 
employing the OptQuest/NLP method which is a scatter searching method based on 
the multi-start framework [22] in Eq. (2). The description of the OptQuest/NLP method 
can be simply given by following the steps shown in Fig. 2. 



 

Fig. 2 Description of the Global Search Algorithm 

It is clear that the OptQuest/NLP algorithm consists of two key stages. In the first 
stage, the given known point m0 is used to run a NLP local solver so that an initial 
assessment of the radius of a basin of attraction can be recorded if the solver converges. 
Then the scatter search algorithm [23] is used to generate a group of trial points. These 
points are examined in a score function (penalty function). The bestscored points are 
prior to run the local solver and the results and themselves are stored in a linked list. 
The remaining trial points are checked in stage two with some initialized parameters 
such as basins and threshold referred to as the objective function values under valuable 
m0 and the best start point. If the so-called trial points satisfy the distance and merit 
filter criteria, the solution list will be updated after a convergence of the local solver. 
Otherwise, the initialized threshold is increased in the loop. Finally, all the found 
solutions are sorted by an objective function from the lowest to the highest and the 
lowest solution is considered to be the global minimum *m found by the fiducials. 
Hence, Eq. (1) can be solved robustly and the surface registration can achieve better 
results. 

 

2.2 Fiducial-aided weighted mean fusion based on the Gaussian Process 

It is assumed that the residual results obtained from the last fiducial-aided surface 
registration are distributed as Eq. (3): 

 ( ) ( ) 0,k kR x,y f x,y N σ= + ( )I  (3) 

where ( )kR x, y  is a d-vector of the k th residual results at points ( ) Rdx, y ∈  and 

( )f x, y  is the ‘true value’ that is being pursued in which the white noise is removed 

so that the normal distribution has 0 mean and kσ  standard deviation. I  is the 



identity matrix. The Gaussian Process (GP) [24] is employed to estimate the unbiased
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where kf
∧

is the output values from the GP model predicted position, V and V**  are 

the variance-covariance matrix at input and the predicted positions, respectively. V*  

is the covariance between the input and the predicted positions.  
In the GP modeling, the zero mean function is used and the spectral Mixture kernel 

as described by Eq. (5) is chosen to model residual surface reconstruction:  
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where x,x'  are the inputs and evaluated positions with P = 2 dimensions, Q = 10 is 

the total numbers of mixture kernels, and qμ  and p
qv( ) are the mean P-vector and 

covariance P dimensional diagonal matrix of the q th kernel.  
Firstly, the fiducials (standard balls) in different measurement sources are 

evaluated and compared with the calibrated results with relatively higher accuracy so 

that the measurement uncertainty kσ ' in the whole measuring space can be achieved 

by Eq. (6): 
 

 

2

1=

N

n k
n

k N

σ
σ =

 ,
'  (6) 

where N is the number of fiducials and 2
n kσ ,  denotes the variance of the n th ball in 

the k th datasets. These obtained uncertainties can serve as Gaussian prior so that the 

hyperparameters =k kσ σ ' in Eq. (4) are fixed. 

Secondly, other kernel hyperparameters can be trained by minimizing the negative 
log marginal likelihood function by using BFGS/nonlinear conjugate gradients in the 
MATLAB toolbox [25]. 

Finally, a total of K datasets with different resolutions and sizes are given; the fused 
surface residuals can be derived as: 
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where kw  is the designed weight of each dataset source. 

For the simple linear system expressed in Eq. (7), the uncertainty variance of the 
fused result can be denoted as:  
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In order to obtain the minimum uncertainty, using the constrained nonlinear 
program conditions to solve the minimum solution of Eq. (8), the calculated weight 
can be set as: 
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3. Experimental Investigation 

3.1 Simulation and discussion 

The two main steps of the proposed method are fiducial-aided surface registration 
and fiducial-aided residual error fusion. A case study on two complex surfaces was 
designed and embedded in the same fiducial-aided structure. One optical freeform 
surface was the sinusoidal surface as defined by: 
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Another surface was a more complex sinusoidal surface superimposed with micro-
lens arrays as given by: 
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where ( , )p qm n
 are the locations of the micro-lens which distribute in the grid 

[ 6,6], [ 4, 4]x y∈ − ∈ −  with p=7 and q=5; 8.5r = mm and 8.48Λ = mm are the lens 

radius and offset respectively. 
There were six fiducials (standard balls with a diameter of 10 mm) that were 

designed surrounding the designed surface. The coordinates of the centers were (−6, 
10, 14.5), (0, 10, 15), (10, 0, 15.5), (6, −10, 14.5), (0, −10, 15.5), (−6, −10, 15) (unit is mm) in 
the coordinate frame of the designed surface. Fig. 3 shows the two designed surfaces 
and the embedded fiducials. 



 

Fig. 3 Designed fiducial-aided (a) sinusoidal surface (b) micro-lens 

In this case, two different sensors were used to measure the surfaces. Measuring 
noise with standard deviations of 1 μm and 5 μm were added respectively to the 
designed surface and fiducials so as to generate the measured datasets. Furthermore, 
the machined errors of the surfaces were set to zero. The measured points cloud of the 
surface denoted S1 was obtained with high-accuracy datasets and uniformly sampled 
with a spacing of 0.5 mm, and S2 was sampled with a spacing of 0.2 mm in the low-
accuracy datasets. Then S1 and S2 were transformed with two different arbitrary 
known vectors m = (α, β,γ,Tx,Ty,Tz)’ as mentioned in Eq. (1) so that S1 and S2 were 
located in different coordinate frames with different uncertainties under different 
resolutions. 

Fig. 4 shows the process of fiducial-aided surface registration by taking the micro-
lens as an example. Both S1 and S2 were firstly transformed into the coordinate frame 
of FA-CAD by using the fiducials. Two surface residuals were then achieved after the 
surface registration. The GP model was used to reconstruct the measured residuals 
with the known measured uncertainty according to the measured results of the 
fiducials. The points were then resampled on the fused weighted mean system. 



 
Fig. 4 Process of fiducial-aided surface registration 

 
In order to evaluate the robustness and accuracy of the fiducial-aided surface 

registration, a total of 500 iterations of matching were repeated in the surface matching 
process using both the popular ICP and the proposed method. The results of the mean 
errors of the evaluated vector m for its six spatial parameters are shown in Fig. 5. It is 
clear that the proposed method performed better in terms of surface registration. This 
is due to the fact that the fiducials create intrinsic surface features which enhance the 
robustness of the registration process. 

 

Fig. 5 Accuracy of the fiducial-aided surface registration compared with the ICP method in 
terms of six spatial parameters; α, β,γ are in micro-radians, and Tx, Ty, Tz are in micrometers 



In the final stage, the performance of the FADFM was examined as compared with 
the result of the GP-based fusion method (GPBFM) which had no prior information of 
the uncertainty. It is noted that zero machined error was added to the surface, so the 
fused result should be close to zero. The simulation process was run using MATLAB 
software on an Intel Core i7 CPU 3.60 GHz PC with 16 GB of RAM.  

There were 640 points on S1 and 4,000 points on S2. A total of 60,000 points 
(300×200 in x and y directions) were sampled on the fused model. Fig. 6 shows the map 
of the fused form error. Table 1 shows the running time and fusion results by using the 
mean of root − mean − square  (RMS) and − − 	(PV) values after 50 
repeated simulations. The results clearly show that the surface residuals sharply 
decreased over the original measurement results and the computation time was 
slightly shortened. 

 

Fig. 6 Fused results of sinusoidal surfaces using two different fusion methods: (a) fiducial-
aided weighted mean fusion (b) GP-based fusion method 

Table 1 Fusion results of the designed surface based on different fusion models after 50 simulations 

 Sinusoidal surfaces Micro- lens 

 FADFM GPBFM FADFM GPBFM 

Mean of RMS (μm) 3.97E-5 9.61E-02 2.75E-05 8.38E-02 

Mean of PV (μm) 0.75 5.82 0.49 5.09 

Mean of Time (s)     29.2    34.5    35.4     39.8 

Notes: FADFM means fiducial aided data fusion method. GPBFM means GP-based fusion method. 

3.2 Discussion 

From the simulations shown in Fig. 6 and Table 1, the proposed method performed 
much better than the GPBFM. One reason is that the step of the surface registration is 
more robust with a lower uncertainty than the performance of the ICP method (see Fig. 
5). Another reason is that enough information is used for the optimization in the core 
operations of the Gaussian process modelling. 

In the FADFM, the RMS values in the two complex surfaces were reduced to 3.97 



x 105 μm, and such low uncertainty indicates that the proposed FADFM almost found 
the ‘accurate value’ of the residual errors, which was zero in this case. On the other 
hand, the GPBFM also performed well although it only obtained  values up to 
9.61 x 102 μm that were several thousand times larger than that for the FADFM. The 
computational time of the fusion process was shortened by about 16.7% in FADFM, 
although both of the methods employed spectral mixture kernels which just require 

1( )P PO PN + operation [20]. This is due to the fact that the parameters to be optimized 
were decreased in the FADFM as compared with the GPBFM. It is clear from the 
simulated results that the proposed method has good capability of fusing datasets.  

However, it is interested to note that the obtained − − 	(PV) values 
in FADFM (up to 0.75 μm) was still relative large. This is due to the fact that one of the 
measurement datasets contained a lot of measuring noise, which caused the datasets 
to deviate from the true value due to bias. This is one of the limitations of data fusion 
that the fusion does not perform as well as expected when one of the datasets has large 
errors. The positive side is that the  values were at an acceptable level because of 
the balance of the weighted mean method and the uncertain information of the 
fiducials. Future work should focus on analyzing the effect of systematic errors in the 
datasets affecting the fusion results. 

3.3 Measurement experiment 

A fiducial-aided sinusoidal surface was machined to check the real surface fusion. 
The basic principle is that there are at least three non-collinear fiducials to provide the 
positions information. In order to reduce the systematic error, four standard balls were 
used as fiducials and the positions of each ball in FA-CAD are calibrated by a fiber 
sensor in the coordinate measuring machine (CMM) (Werth Videocheck from Gießen, 
Germany ) and the centres of the fiducials are listed in Table 2. Fig. 7(b) and Fig. 7(c) 
show details of the measured surface and the experimental setup. 

Table 2 Positions of the centers of the fiducials in the designed model 

Sphere X (mm) Y (mm) Z (mm) 
1 -4.71498 -84.30512 8.97918 
2 83.70395 -5.64727 4.08088 
3 3.73789 83.85195 8.58972 
4 -83.93586 5.17532 4.07039 

   
Fig. 7(a) shows the measuring process in a multi-sensor coordinate measuring 

machine (Werth Videocheck from Gießen, Germany) and the measured surface. The 
CMM is equipped with two types of sensors including the WFP (fiber sensor) and the 
TP200 (trigger probe) which are operated in a clean, thermally controlled, and stable 
environment.  



 

Fig. 7 Measurement of a machined surface (a) measurement process (b) measured surface (c) 
fiducial aided fixture with the machined workpiece 

A total of 2,184 points and 9,063 points were uniformly sampled on the entire 
surface by the sensor of WFP and the TP200 respectively. In addition, 49 points were 
sampled on each of the standard balls. Fig. 8 shows examples of the measured fiducials 
and their position errors as magnified 100 times with different sensors. 

 

Fig. 8 Measured points and their position errors (error vectors ×100) on the fiducials (a) 
sampled by WFP (b) sampled by TP200 

 
According to Eq. (6), the measuring uncertainty with WFP and TP200 can be easily 

calculated as: 

 WFP

TP200

= 2.3 
=6.1 

m
m

σ μ
σ μ

  (12) 

After the process of fiducial-aided surface registration, the surface residual errors 
are given in Fig. 9. In order to obtain the information of the fused result, a total of 9,600 

(160×60) points were modeled in the grid [ 35,35], [ 13,13]x y∈ − ∈ − . Both the fused 



results resulting from FADFM and GPBFM are given in Fig. 10. The RMS and PV 
values of the fused result as well as the dataset sources are listed in Table 3. It is worth 
noting that the computation time of the two methods was 10 seconds. 

 

Fig. 9 Residual errors of the machined surface according to (a) TP200 sensor (b) WFP sensor 

 

Fig. 10 The fused result of the two methods (a) results of FADFM (b) result of GPBFM 

Table 3 Form errors of the machined surface 

  FADFM GPBFM TP200 WPF 
Mean of RMS (μm) 3.04 4.2 11.5 10.2 
Mean of PV (μm) 32.4 50.7 65.9 64.5 

 
From the table immediately above, it is clear that there is a sharp decrease (72.5%) 

of the measurement uncertainty from each individual sensor up to 11.5 μm to the fused 
result down to 3.04 μm, which indicates that both of the two methods achieve good 
results of data fusion. In addition, the proposed FADFM exhibited better performance 
since there is an improvement of 38.2% (from 4.2 μm to 3.04 μm) for the RMS values 
and 36.1% (from 50.7 μm to 32.4) in terms of the	PV values.  

On the other hand, the fused results show that the residual errors fluctuate sharply 
in the micrometer range in the grid of the whole error surface according to Fig. 10 as 
compared with the relatively smooth error surface as shown in Fig. 9. This is due to 
the fact that an inadequate number of points were sampled from the sensors and 
adequate points were sampled in the fused error surface so that the uncertainties in 
the fusion models were lower.  

 



4 Conclusion 

This paper presents a fiducial-aided data fusion method (FADFM) for the 
measurement of multiscale complex surfaces. A specific fiducial-aided CAD of the 
designed surface was generated by integrating the designed surface into a fiducial-
aided fixture with the workpiece mounted on it. To address the key problems in the 
multi-sensor data fusion, the fiducial aided CAD was employed to carry out two main 
steps: the fiducial aided surface registration, and a priori information based Gaussian 
process modelling data fusion. A scatter searching algorithm was employed to solve 
the nonlinear optimization problem to find the global minimum of the transformation 
parameters in the transforming positions of the fiducials. Hence, a Gaussian Spectral 
Mixture kernel was also used to reconstruct the residuals of the datasets and the 
weighted mean was then determined by the fiducials, which were used to fuse the 
datasets.  

The simulation results show that the uncertainty of the proposed method was 
reduced up to 3.97 x 105 μm based on the condition that the surface with zero form 
error. In addition, the computational time of the fusion process was shortened by about 
16.7 of the proposed method as compared with the non-prior information based 
Gaussian process modelling data fusion method. There was still one limitation but it 
was common in the data fusion in the proposed method. However, this limitation has 
been improved with the aid of the prior uncertainty of the measured datasets in a 
weight mean model.  

The results of the actual measurement experiments show that the proposed fusion 
method performed with a sharp decrease (72.5%) of the measurement uncertainty as 
compared with each individual sensor in terms of the RMS value, and there was an 
improvement of 38.2% in the RMS values and 36.1% (from 50.7 μm to 32.4) in terms 
of thePV values as compared with the Gaussian process based data fusion method.  

The proposed FADFM is able to improve the Gaussian process modelling based 
data fusion method in terms of reducing measurement uncertainty and computational 
cost; it also narrows the limitation caused by the large bias of the datasets. Further 
research should address the limitation by taking into account the systematic error of 
the datasets. 
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