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In this supplemental material we show step-by-step how the Hamiltonian (3) in the main text can be rewritten as in
Eq. (7). We will also write explicitly all the interaction terms.

HAMILTONIAN IN THE EFFECTIVE SPACE

Let us start by considering the Hamiltonian describing Rydberg atoms in the effective “constrained” Hilbert space.
This reads (see Eq. (4) in the main text):

H =Ω
(∑

α

|α〉〈α|µx + µ−|α+ 1〉〈α|+ h.c.
)

+ κ
∑
α

µz − 1
2
|α〉〈α|(a†α+1 + aα+1 − a†α − aα)

+ ω
∑
α

a†αaα,

(S1)

where the µ-operators are the ones defined in the main text. The first step is to move to the Fourier space for the
bosonic modes of the harmonic traps. This is achieved by defining

am =
1√
N

N/2∑
p=−N/2

Ape
i2π
N mp. (S2)

We thus see that the difference between the phonon creation operators appearing in the interaction term can be
rewritten as

a†m+1 − a†m =
1√
N

∑
p

[(
e−

i(m+1)2π
N p − e−

im2π
N p

)
A†x

]
. (S3)

As we showed in the main text (see Eq. (4))) this leads to the Hamiltonian

H =Ω
∑
α

|α〉〈α|µx + Ω
∑
α

(
µ−|α+ 1〉〈α|+ h.c.

)
+
κ(µz − 1)

2
√
N

∑
p

[(
e−i 2πN p − 1

)
e−i 2πN α̂A†p + h.c.

]
+ ω

∑
p

A†pAp,

(S4)

in which α̂ =
∑
α α |α〉 〈α|. At this point we can apply the Lee-Low-Pines transformation, which is defined as

U = exp

[
−iα̂

∑
p

2πp

N
A†pAp

]
(S5)

U† = exp

[
iα̂
∑
p

2πp

N
A†pAp

]
. (S6)
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We stress, again, that this transformation is important because it decouples the lattice degrees of freedoms from the
phonons. Applying the transformation (S6) to the operators in Eq. (S4) we have:

U†ApU = exp

{
−i2πp

N
α̂

}
Ap, (S7)

and

U†|m+ 1〉〈m|U = e+i
∑
p A
†
pAp

2πp(m+1)
N |m+ 1〉〈m|e−i

∑
p A
†
pAp

2πpm
N = |m+ 1〉〈m|e

−i2π
N p

∑
p A
†
pAp . (S8)

Therefore, Hamiltonian (S4) can be rewritten as

U†ĤU = Ω
∑
α

[
|α〉〈α|µx + |α+ 1〉〈α|e−i 2πN p

∑
p A
†
pApµ− + |α〉〈α+ 1|ei

2π
N

∑
p pA

†
pApµ+

]
+
κ(µz − 1)

2
√
N

∑
x

[(
e−i 2πN p − 1

)
e−i 2πN α̂A†p + h.c.

]
+ ω

∑
p

A†pAp. (S9)

In order to get the rid of the lattice labels α we move to the Fourier space for the quasi-particles:

|α〉 =
1√
N

N/2∑
q=−N/2

e
iα2πq
N |q〉 (S10)

We then obtain

Ĥ = Ω
∑
q

|q〉〈q|
[
µx + µ−e−i

2π(
∑
p pA

†
pAp+q)

N + µ+e+i
2π(

∑
p pA

†
pAp+q)

N

]
+

κ(µz − 1)

2
√
N

∑
x

[(
e−i 2πN p − 1

)
A†p + h.c.

]
+ ω

∑
p

A†pAp. (S11)

Note, that Hamiltonian (S11) is diagonal in the quasi-particles momentum q. Hence, we can diagonalize for every q
the free part of it, i.e. the Hamiltonian corresponding to κ = 0.

DIAGONALIZATION OF THE FREE PART

Let us rewrite Eq. (S11) in matrix form, i.e. writing explicitly the matrices µx,± and completing the squares for the
bosonic part

Ĥq = Ω

 0 e+i
2π(

∑
p pA

†
pAp+q)

N + 1

e−i
2π(

∑
p pA

†
pAp+q)

N + 1 0

+

+ ω
∑
p

[
Ap +

κ

ω
√
N

(
e+i 2πN p − 1

)(1 0
0 0

)]† [
Ap +

κ

ω
√
N

(
e−i 2πN p − 1

)(1 0
0 0

)]
+

− κ2

ωN

∑
p

2

[
1− cos

(
2π

N
p

)(
1 0
0 0

)]
. (S12)

Defining a displacement operator for the bosons, i.e.

D̂ = exp

[
− κ√

Nω

∑
p

(
e−i 2πN p − 1

)
A†p − h.c.

]
(S13)

such that D̂†ÃpD̂ = Ap, with Ãp = Ap + κ
ω
√
N

(
e−i 2πN p − 1

)
, we can cast Eq. (S12) in the following form:

D̂†ĤqD̂ = ω
∑
p

Ã†pÃp + Ω

 0 e+i
2π(

∑
p pA

†
pAp+q)

N + 1

e−i
2π(

∑
p pA

†
pAp+q)

N + 1 0

− 2
κ2

ω
n̂+

˜̂
HII

int (S14)
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Note, that the effect of the interaction between the lattice and the phonons is only in the argument of the displacement
operator. We can now diagonalize the off-diagonal matrix appearing in (S14). Casting θ =

∑
p

(
pA†pAp + q

)
, the

matrix we want to diagonalize has therefore the form(
0 e2iθπ/N + 1

e−2iθπ/N + 1 0

)
. (S15)

Its eigenvectors are
(
−eiθπ/N

1

)
and

(
eiθπ/N

1

)
, therefore the unitary matrix S which implements the diagonalization is

S =

(
−eiθπ/N eiθπ/N

1 1

)
. (S16)

The diagonalization induces a mixing between the states |q, µz = 1〉 and |q, µz = 2〉.
The term ĤII

int = S†
˜̂
HII

intS is obtained by the action of the displacement operator D̂, definined in Eq (S13), on the
Rabi part of the Hamiltonian Eq. (S12). We want to derive an effective expression for this interaction term in the
perturbative limit. In the limit of small κ the can rewrite the displacement operator as

D̂ = e−κ
∑
p αpÂ

†
p+κ

∑
p α
∗
pÂp '

1− κ
∑
p

(αpÂ
†
p − α∗pÂp) +

κ2

2

(∑
p

(α∗pÂp − αpÂ†p)

)2
+ . . . , (S17)

where αp = 1
ω
√
N

(
e−i 2πN p − 1

)
. Therefore, we have

D̂†Hf D̂ '1− κ
∑
p

(−αpÂ†p + α∗pÂp) +
κ2

2

(∑
p

(−α∗pÂp + αpÂ
†
p)

)2
Hf

1− κ
∑
p

(αpÂ
†
p − α∗pÂp) +

κ2

2

(∑
p

(α∗pÂp − αpÂ†p)

)2
 .

(S18)

From which we obtain, order by order in κ

Hf + V =Hf − κ

[∑
p

(−αpÂ†p + α∗pÂp)Hf +Hf

∑
p

(αpÂ
†
p − α∗pÂp)

]
+

κ2

[∑
p

(αpÂ
†
p − α∗pÂp)Hf

∑
p

(−αpÂ†p + α∗pÂp)

]
+

κ2

2

(∑
p

(αpÂ
†
p − α∗pÂp)

)2

Hf +Hf

(∑
p

(−αpÂ†p + α∗pÂp)

)2
+ . . .

(S19)

At this point we can diagonalize Hf in Eq. (S19) obtaining

− Ω cos

[
π

N

(∑
p

pA†pAp + q

)]
µz + S†V S. (S20)

The interaction term S†V S is quite complicated, however as long as we are interested in the first order correction on
the ground state, we have that

HII
int, GS(q) =

Ωκ2

ω2N

∑
p

|αp|2Ap cos
(
pA†pAp + q

)
A†p. (S21)

This term contributes to the energy correction reported in the main text.
The complete Hamiltonian is therefore

Hq = ω
∑
p

Ã†pÃp1− Ω cos

[
π

N

(∑
p

pA†pAp + q

)]
µz +HI

int +HII
int, (S22)
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with

HI
int = −κ

2

ω
(1− µx) (S23)

and,

HII
int = S†V S (S24)

For the leading order correction to the energy of the ground state band EGS(q) the only terms which gives a non-zero
contribution are HI

int and the HII
int, GS (see discussion in main text).

EXPANSION OF THE POTENTIAL

In this section we justify the approximation reported in Eq. (2) in the main text. Let us consider a generic potential
of a one-dimensional lattice embedded in two dimensions. This means that we can have fluctuations around the
equilibrium position in two directions that we will call z for the longitudinal one and y for the transverse one. Without
loss of generality we can suppose that the interaction depends only on the relative distance between two atoms, i.e.

V (ri, rj) = V (|ri − rj |) = V (|ri,z − rj,z|, |ri,y − rj,y|) = V (rz, ry) (S25)

where rz = ri,z − rj,z and ry = ri,y − rj,y. For one-dimensional lattices, considering only nearest-neighbours interaction,
the equilibrium positions of the atoms are rz = a, with a the lattice spacing and ry = 0. Performing the expansion we
obtain

V (rz, ry) = V (a, 0) +
∂V (rz, ry)

∂rz

∣∣∣∣
rz=a

δrz +
∂V (rz, ry)

∂ry

∣∣∣∣
ry=0

δry + . . . (S26)

As we reported in the main text, we can rewrite the displacement δrz,y in terms of the bosonic operators, the coupling
is proportional to oscillator length, i.e.

δrµ = lµ(a†i + ai − a†j − aj) µ = z, y. (S27)

Here lµ =
√
~/(mωµ) is the harmonic oscillator length. It is possible to observe how tuning the trapping frequency in

a different way in the two directions leads to a different coupling with the transverse and longitudinal modes. For the
general case of a power-law decaying potential we have that:

V (rz, ry) ∝ 1

(r2z + r2y)
α
2
, (S28)

therefore,

∂V (rz, ry)

∂ry

∣∣∣∣
ry=0

=
αry

(r2z + r2y)
α
2 +1

∣∣∣∣∣
ry=0

= 0. (S29)

This shows that, at first order, the contribution of the transverse modes to the longitudinal interaction is zero.

EXPERIMENTAL CONSIDERATIONS

In this section we give some remarks concerning the parameters of a possible experimental realisation
of the system. We focus here on 87Rb and 133Cs. However, the order of magnitude of the parameters
is comparable to that of other experiment conducted e.g. with 39K and 7Li. We will also explain more
in detail how the observables discussed in the paper can be detected in an experiment.
Let us start by giving some typical values for the trap parameters that are usually set in optical tweezers
experiments. The lattice constant a, i.e. the distance between the Rydberg atoms, is a ≈ 5µm. The
life-time of the Rydberg state with high principal quantum number n, n ' 40 − 50, is approximately
τR ' 2 · 10−5s. The trapping frequency ω is typically ω ' 2π · 300kHz, the Rabi frequency Ω can be
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tuned until a maximum value of Ωmax ' 2π · 10MHz. The Van der Walls constant between ns-states
scales with the Rydberg principal number n as C6([ns]) = n11(c0 + c1n+ c2n

2)au [S1]. For 87Rb we have
c0 = 11.97, c1 = −0.8486 and c3 = 3.385 · 10−3, for 133Cs, instead, c0 = 10.64, c1 = −0.6249 and c3 = 2.33 · 10−3.
This leads, for n = 43, to an interaction strength between nearest neighbours of Vint,Rb ≈ 1·MHz and
Vint,Cs ≈ 0.65·MHz. In the case studied in this paper, what matters is not the interaction in itself (since
we are in the facilitation regime) but its gradient, i.e. G = −6Vinta . Considering the same parameters as
before we obtain that GRb = −1.2 · 103kHzµm−1 and GCs = −7.8 · 102kHzµm−1 . The interaction constant
κ is related to the gradient via the harmonic oscillator length, i.e. κ = − lho√

2
G. With the previous data,

we have: κRb ≈ 16kHz and κCs ≈ 9kHz. Experimentally, these coupling constants can be controlled
using microwave-dressing of Rydberg s− and p−states, as discussed in Ref. [S2]. This procedure enable
us to tune independently the gradient from the interaction.
The many-body dynamics can be characterised by measuring the spin (Rydberg) density and the
phonon density, as shown in Fig. 3 in the main text. The spin density can be detected by counting
the atoms in the Rydberg state, this can be achieved using projective measurements (see for example
[S3]). However, in these experiments we can also detect the phonon density, which is particularly
interesting because it enables us to measure directly the effect of the dressing of the excitations. This
can be done using side-band spectroscopy (as shown in Ref. [S4]). As stated in the main text, the
combination of the detection methods and the exaggerated length scales offer unique opportunities for
investigating polaron physics.
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