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Abstract

Background: The reconstruction of 3-dimensional (3D) plant models can offer advantages over traditional 2-dimensional approaches
by more accurately capturing the complex structure and characteristics of different crops. Conventional 3D reconstruction techniques
often produce sparse or noisy representations of plants using software or are expensive to capture in hardware. Recently, view syn-
thesis models have been developed that can generate detailed 3D scenes, and even 3D models, from only RGB images and camera
poses. These models offer unparalleled accuracy but are currently data hungry, requiring large numbers of views with very accurate
camera calibration.

Results: In this study, we present a view synthesis dataset comprising 20 individual wheat plants captured across 6 different time
frames over a 15-week growth period. We develop a camera capture system using 2 robotic arms combined with a turntable, controlled
by a re-deployable and flexible image capture framework. We trained each plant instance using two recent view synthesis models:
3D Gaussian splatting (3DGS) and neural radiance fields (NeRF). Our results show that both 3DGS and NeRF produce high-fidelity
reconstructed images of a plant subject from views not captured in the initial training sets. We also show that these approaches
can be used to generate accurate 3D representations of these plants as point clouds, with 0.74-mm and 1.43-mm average accuracy
compared with a handheld scanner for 3DGS and NeRF, respectively.

Conclusion: We believe that these new methods will be transformative in the field of 3D plant phenotyping, plant reconstruction, and
active vision. To further this cause, we release all robot configuration and control software, alongside our extensive multiview dataset.
We also release all scripts necessary to train both 3DGS and NeREF, all trained models data, and final 3D point cloud representations.
Our dataset can be accessed via https://plantimages.nottingham.ac.uk/ or https://https://doi.org/10.5524/102661. Our software can be
accessed via https://github.com/Lewis- Stuart-11/3D-Plant- View- Synthesis.
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Introduction

In recent years, 3-dimensional (3D) reconstruction of plants has
become an important tool in plant phenotyping pipelines. Gener-
ating a 3D representation of a plant facilitates effective extraction
of key traits and simplifies the analysis of complex plant structure.
The ability to accurately capture these traits in 3D provides valu-
able information for determining a plant’s growth rate, health,
and stress factors [1]. Plant leaves (and the canopies they form) are
inherently 3D structures, and factors such as leaf curling, rolling,
and occlusion lead to inaccuracies when determining parameters
from 2-dimensional (2D) images [2]. Determining this information
is critical in assessing the overall validity of the crop and identi-
fying potential alterations needed to improve yield.
Reconstruction of plants in 3D has typically been solved
through either hardware or software approaches. Hardware sys-
tems based on light detection and ranging (LIDAR) use time-of-
flight light measurement to accurately measure the distance be-
tween the sensor and evenly spaced points within a scene. These
devices are capable of highly accurate representations of plants
[3]. However, they are often expensive to acquire and require ex-
pertise to operate. Lower-cost software-based methods such as
structure from motion (SfM) operate by generating a point cloud
from a series of 2D images of a plant [4]. Points are triangulated

across views to estimate their position in 3D space. Modern SfM
approaches are efficient and require little hardware beyond image
capture devices. However, these methods often produce sparse
representations of a plant and may struggle to capture the fine
detail necessary for accurate phenotyping. Both LiDAR and SfM
generate point representations of scenes rather than continuous
surface representations, which may be required depending on the
phenotyping task.

Recent progress in deep learning has led to the development
of view synthesis models, which offer exciting new opportunities
for 3D plant phenotyping. These models are trained from 2D im-
ages of a scene and are commonly used to generate new views of
objects not included in the initial training set. However, they can
also be used to extract volumetric representations of plants, point
clouds, and continuous representations, potentially enabling step
change in 3D plant phenotyping.

Neural radiance fields (NeRFs) [5], popularised in 2020, utilise a
neural network and volumetric rendering to generate a continu-
ous representation of a scene. Three-dimensional Gaussian splat-
ting (3DGS) [6] projects a series of coloured ellipsoids into a scene
and employs gradient descent to optimise their positions, shape,
and shading. These methods implicitly generate a 3D representa-
tion of a scene, and while most literature focuses on generating
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unseen views, these techniques can be utilised for 3D reconstruc-
tion of plants. There has been limited research on the use of view
synthesis models for plant shoot reconstruction; these are emerg-
ing technologies, but primarily, there is finite availability of large
multiview datasets required to exploit these methods.

In this article, we introduce an extensive multiview dataset of
wheat plants and demonstrate the state-of-the-art performance
of view synthesis models on both novel view synthesis and 3D
plant reconstruction. Our dataset comprises 20 wheat plants cap-
tured over 6 time frames. For each plant and at each time point, we
train high-quality models using both NeRF and 3DGS approaches,
which we use for novel view synthesis and full 3D reconstruction
of each plant. Our dataset aims to serve as a baseline for evaluat-
ing different view synthesis models on plants and can also be used
to develop and test a large number of downstream tasks related
to 3D phenotyping, such as extraction of 3D traits, surface recon-
struction, canopy light modelling, and next-best-view problems.
We provide straightforward scripts and thorough documentation
to assist other researchers in executing our trained view synthesis
models locally.

We utilise wheat plants in this article as these species are one of
the most widely produced crops worldwide, accounting for 20% of
human calories as well as providing vital proteins, minerals, and
vitamins for a healthy human diet [7]. The global average annual
yield increase of wheat is 0.9%, but the predicted increase in de-
mand is 2.4% [8]. Wheat plants offer substantial challenges com-
pared to typical scenes used to evaluate view synthesis models.
These include multilayered occlusions and narrow leaf structure,
making them an appropriate target for evaluating the capabilities
of different 3D reconstruction methods.

Each wheat plant was captured from multiple views using a
dual-robot imaging setup, enabling the capture of a wide range of
views and good coverage of each plant. Our robot setup also facil-
itates logging of camera positions in metric units, ensuring that
the measurements recorded on the reconstructed plants from ei-
ther NeRF or 3DGS are equivalent to their real-life counterpart. We
use 2 robots to capture the widest possible range of views, but our
approaches are compatible with single-robot or other systems.

We validate the accuracy of novel view synthesis by comparing
rendered images against unseen views of the real plants. We find
that both approaches offer excellent render quality, with 3DGS of-
fering the best performance. Figure 1 shows rendered images of a
wheat plant that was reconstructed using both of these methods.

To validate the accuracy of the 3D reconstructions produced by
both NeRF and 3DGS, we manually capture several of the imaged
plants using a handheld structured light scanner (Handheld 3D
Scanner; Einstar).We compare our model reconstructions against
this ground truth by converting these representations into point
clouds and measuring the average distance between model and
corresponding ground-truth points. We found that the average er-
ror between the reconstruction and ground-truth scan was only
0.74 mm for 3DGS and 1.43 mm for NeRF. In contrast, point clouds
generated using multiview stereo (MVS) and SfM had an average
error of 2.32 mm and 7.23 mm, respectively.

We conclude by discussing the potential use cases and implica-
tions of these new technologies on the field of plant phenotyping.
We release the full dataset of 112 plant instances and over 35,000
RDB-D images, all trained models, camera parameters, computed
3D representations, and ground-truth scans. We also release our
image capture framework, compatible with any robot that sup-
ports the robot operating system (ROS) [9]. This framework can
generate new datasets ready for training on any standardised view
synthesis model. We also provide our robot configuration files,

enabling convenient replication of the setup in any environment.
If required, this same setup can be deployed virtually using the
Gazebo robotics simulator library [10], enabling the capture of
synthetic plant models.

In summary, our main contributions are:

® A new view synthesis dataset of 112 wheat plant instances.
This dataset can be used to develop and train new view
synthesis and 3D modelling approaches that target complex
plant topology or to develop and evaluate new 3D pheno-
typing approaches. This dataset can be accessed via https://
plantimages.nottingham.ac.uk [11] or https://https://doi.org/
10.5524/102661 [12].

® A dual-robot image capture setup applicable to a variety of
robot manipulators and image capture devices. Our system is
designed such that all 3D models exist in a metric coordinate
system, and so phenotyping measurements may be directly
mapped to the original plants.

® Experiments demonstrating the benefits and drawbacks of
view synthesis models compared to standardised methods
for 3D plant reconstruction and a detailed comparison of the
strengths and weakness of both NeRF and 3DGS approaches
for plant phenotyping.

e All of our robot configuration files, view capture pipeline, and
3D Gaussian splatting to point cloud conversion codebase can
be found on our GitHub Repository via https://github.com/
Lewis-Stuart-11/3D-Plant-View-Synthesis [13].

Background

3D plant representations

Point clouds represent one of the more fundamental forms of 3D
representation, wherein an object’s surface is encoded as a set of
points with a 3D position and optionally an RGB colour value. This
data representation has become popular for downstream pheno-
typing tasks, such as leaf/stem segmentation [14], or estimating
branch angles [15]. Additionally, several software packages have
been developed to automatically extract phenotypic traits, such
as plant height, projected leaf area, and convex hull volume, from
point clouds of various species [16, 17]. Consequently, many 3D
plant datasets have been developed that consist of point clouds
of plant structures that can be utilised for phenotyping [18]. De-
spite this, point clouds are often impacted by erroneous outliers,
frequently necessitating the application of postprocessing algo-
rithms to denoise the reconstructed data. In addition, point clouds
provide no explicit surface representation.

Voxel grids constitute another widely adopted representation
method, in which the 3D environment is divided into a grid of vox-
els, each constituting distinct colour values in a predefined space.
This representation has demonstrated its efficacy in various phe-
notyping tasks, including the assessment of holistic and compo-
nent characteristics [19], as well as the computation of leaf angles
[20]. While voxel grids offer good noise robustness, they often sac-
rifice fine-grained surface detail when compared to point clouds
due to their fixed grid resolution.

Meshes represent an alternative 3D representation approach
that involves the reconstruction of plant surfaces through the
use of polygons. While meshes have occasionally been utilised
for phenotyping [21], their additional complexity often sees their
use in physical simulations rather than standardised phenotyping
practices.

A drawback common across current 3D representations is that
the quality of the reconstruction is reliant on challenging data
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Figure 1: Showcase of some of the rendered images for one of the plants in our view synthesis dataset (bc1_1054: 13-03-24). Left column displays the
captured ground-truth images. Middle column contains images rendered after training with standard RGB images, with transforms calculated after
bundle adjustment, on the nerfacto NeRF model. Right column displays images rendered after training with undistorted RGB images, with transforms

calculated after bundle adjustment, on the splatfacto 3DGS model.

acquisition and 3D reconstruction methods. Image-based meth-
ods often struggle to reconstruct the complex topology of plants,
and as such, these 3D structures are often sparse, inadequately
capturing the intricacies of their real-life counterparts.

Recent developments in deep learning have led to several new
formats for representing 3D structures. One important develop-
ment has been the adoption of implicit representations, which
model plants as a continuous structure, rather than at discrete
positions such as points or voxels. Typically, this is achieved us-
ing a deep neural network that is trained to represent the plant
and sample from any position. These representations circumvent
the limitations of traditional 3D structures, as the accuracy of the
reconstruction depends solely on the resolution of the input data
and the complexity of the reconstructed model. While these mod-
els offer potentially unlimited sampling resolution, in practice,
they can be challenging to use to extract plant traits. All existing
phenotyping pipelines assume a discrete representation in a form
above, and further research is required to explore the potential of
these exiting new models.

Another recent development has been in 3D Gaussian repre-
sentations, which are conceptually similar to point clouds. This
representation is formed of a series of 3D Gaussian functions pro-
jected into 3D space, with their shape and colour being optimised
to effectively model the plant. Intuitively, these can be thought of
as a coloured or semi-transparent ellipsoids. Many ellipsoids can
be positioned and shaped to represent a dense reconstruction of
the surfaces in the scene.

Overall, these modern representations circumvent the limita-
tions of traditional 3D structures, as the accuracy of the recon-
struction depends more on the resolution of the input data and
the complexity of the reconstruction model. We refer interested
readers to [22] for a detailed discussion of 3D representations and
reconstruction approaches for plants and trees.

3D reconstruction methods

Reconstruction methods are typically split into 2 categories: ac-
tive approaches, in which light emitters are utilised to retrieve in-
formation about a 3D scene [23], and passive approaches, in which
equipment, typically RGB cameras, are employed to receive light
that can be used to extract 3D information of an environment
[24]. A common approach to active 3D reconstruction involves the

utilisation of 3D laser scanners/LiDAR cameras. These devices de-
termine distances from their optical centres by measuring the
time it takes for emitted light to reach a specific point on a sur-
face within an environment. Costly industrial-grade scanners are
capable of generating highly detailed 3D point clouds within a
defined area [25]. Where cost is prohibitive, low-cost depth cam-
eras have also been utilised for effective plant reconstruction [26].
While these technologies excel in rapid data acquisition, they do
have limitations, including restricted coverage and difficulty cap-
turing dense or topologically complex regions. As a result, these
scanners are not optimally suited for capturing plants charac-
terised by intricate detail (e.g., thin leaves, small branches, spikes)
[27].

Two-view stereo is one of the early forms of passive 3D recon-
struction and requires only 2 RGB cameras. Conversion from 2D to
3D involves triangulation of pixel data based on registered camera
positions. This process offers rapid and effective retrieval of plant
characteristics but typically yields sparse reconstructions of plant
models [28].

MVS extends this approach by introducing multiple cameras
into the image acquisition process. Consequently, this approach
can generate dense 3D point clouds with impressive high point-
position accuracy. MVS has been shown to reconstruct plant
canopies with high accuracy [29, 30] and has become popular as
an initial step in phenotyping pipelines [31, 32]. Nevertheless, this
approach can incur a high computational cost compared to active
reconstruction methods, and the accuracy of the 3D point cloud is
directly reliant on the precision of the registered camera’s position
and rotation.

MVS produces dense point clouds, but it does not compute
camera poses and so is typically preceded by a camera calibration
step such as the use of a SfM algorithm. SfM produces sparse point
clouds but can calculate camera poses that are not known prior
to image acquisition. SfM incorporates preliminary steps such as
point extraction, matching, and triangulation to accurately de-
termine camera positions before proceeding to dense reconstruc-
tion. SfM has been shown to work effectively for reconstruction
of plant geometry [33] and trees [34]. However, this process re-
quires accurate feature matching, which is challenging on plants
where texture is often repetitive, and they exhibit complex shape
and self-occlusion. Furthermore, while the process of camera
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calibration in SfM makes image acquisition more flexible, this
commonly results in 3D scenes that do not correspond to real
metric or known units. This means that scenes must be manually
scaled or otherwise registered later by some additional process.
Without such a registration, key phenotyping characteristics such
as plant height, leaf area, and convex hull would be inaccurate.

Ultimately, the choice of 3D reconstruction technique depends
on the specific plant being captured, the available capture equip-
ment, and the desired processing time [35]. Additional informa-
tion on various standardised 3D plant reconstruction methods
can be found in [36] and [37].

View synthesis models

View synthesis is the process of generating novel images of an
environment from a specific viewpoint not included in the set of
prior images. Although view synthesis models have seen limited
uptake for plant phenotyping so far, we foresee increased use in
the future, better enabling applications such as next best view and
extracting phenotypic traits from multiple views. View synthesis
models only require a set of 2D images and a series of “trans-
forms,” which define the intrinsic and extrinsic camera param-
eters, similar to the requirements to generate a point cloud using
MVS.

NeRFs [5] are a proposed solution to view synthesis, producing
novel views that have been seen to far surpass previous meth-
ods, even on complex scenes. NeRF employs volumetric rendering
techniques that utilise a neural network to predict density and
colour at positions in the environment. Consequently, NeRFs are
a promising candidate for 3D reconstruction from images.

Several impressive extensions have been proposed for NeRF,
such as improved ray-casting in Mip-NeRF 360 [38, 39] and hash-
encoding in Instant-NGP [40]. NeRFStudio, a popular view synthe-
sis framework, introduced NeRFacto, which incorporates success-
ful architectural improvements from various NeRF models [41].

While NeRFs produce extremely impressive reconstruction re-
sults, utilising a neural network to encode the entire scene leads
to slow rendering times and challenges that arise with handling
implicit data.

At the time of writing, there has been limited research utilis-
ing NeRFs for 3D plant reconstruction. First, it has been shown
that plants can be reconstructed in high accuracy by comparing
the NeRF representation to a captured ground-truth scan, yielding
an impressive result of only 10-mm error for single indoor maize
plant [42]. Other studies have extended this by evaluating NeRF
on multiple indoor and outdoor plants [43], confirming similar re-
sults, with NeRF representations trained using NeRFacto produc-
ing the most precise 3D representations.

It has also been demonstrated that NeRF can reconstruct a va-
riety of different types of fruit with high accuracy [44], including
peppers, tomatoes, and pitahaya. This shows that NeRFs are capa-
ble of effectively reconstructing plants with complex structures,
materials, and occlusions.

Other studies focused more on applying NeRF directly to phe-
notyping problems. PeanutNeRF [45] accomplished peanut pod
detection by creating a 3D implicit representation of the peanut
plant using a NeRFacto model and using a segmentation and
bounding box estimation pipeline to identify areas in the scene
that encapsulate each individual peanut pod. Another study de-
ployed a portable robot with an attached camera and scanner
in a greenhouse to reconstruct peppers [46]. A segmentation al-
gorithm was developed to identify these peppers from a trained
NeRF model and extract phenotypic traits, such as width and

height. These measurements could be accurately calculated since
the robot was calibrated in metric units. This study was able to
reconstruct the peppers with an high accuracy of 0.881 mm com-
pared to a scanned ground-truth point cloud. While NeRF models
are capable of high-quality reconstructions, replicating these re-
sults can be challenging, and captured datasets are either limited
or have not been made public.

3DGS [6] represents another approach to view synthesis, in
which the scene is populated with 3D Gaussian ellipsoids that
encode colour and density at different positions within an envi-
ronment. Gradient descent is used to optimise each of the Gaus-
sians in the scene to fit the environment correctly. Culling algo-
rithms are incorporated to ensure redundant Gaussians are re-
moved from the scene.

There have been several proposed improvements to 3DGS, such
as incorporating anchor points [47], improved pruning functions
[48], and SfM-free initialisation [49], but so far, the process is still
initsinfancy. NeRFStudio has released its own 3DGS model known
as Splatfacto, which can produce high-quality reconstructions.
Unlike NeRF, Gaussians are an explicit representation of the scene,
which makes them more flexible to handle, allowing 3DGS appli-
cations to perform real-time rendering. The differences between
these 2 methods are visualised in Fig. 2.

To our knowledge, there has been no previous application of
applying 3DGS to plant shoot reconstruction.

Plant imaging setups

Numerous plant image capture setups have been proposed for 3D
reconstruction, including those noted in the studies above. Some
involve gantry systems equipped with robotic arms designed to
capture views from various angles around a plant subject [50].
Simpler setups utilise a rotating board to reposition 2 cameras
around a plant subject [51], while other systems use a turntable to
rotate the plant subject rather than manoeuvring the cameras [32,
52-55]. Many existing installations are challenging to re-deploy
into new locations due to a lack of available configuration and
software. Others with limited range of movement are incapable
of capturing the full range of views required for effective 3D re-
construction using view synthesis models.

Here, we utilise two Universal Robots URS5 robotic arms, along
with a turntable, to capture the broad range of necessary views for
reconstruction of wheat plants. UR5 robotic arms have found ap-
plication in various phenotyping contexts, such as leaf scanning
[56], plant grasping/pruning [57, 58] and next-best view planning
[59], primarily due to ease of use and moderate reach.

Methods

Robotic imaging setup

View synthesis models, such as NeRF and 3DGS, benefit from a
large number of views of the scene. Ideal imaging setups would
capture images at equidistant intervals around an object being
imaged, with as much of the object as possible in view within each
frame. Our robot capture setup is designed with these features
in mind while remaining easily reconfigurable and adaptable to
other plant species or installation locations.

We experimented with a single UR5 using an Intel Realsense
D435i camera mounted at the tool centre point (TCP). However,
we found that a single robot failed to provide adequate reach to
obtain the majority of required views, particularly across the full
range of 360 degrees around the plant.
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Figure 2: A visual depiction of the basics of StM, MVS, NeRF, and 3DGS. In SfM, data are captured and a point cloud is generated using
photogrammetry. MVS takes the SfM point cloud and camera poses and calculates a much denser point cloud. It is important to note that MVS does
not always require an initial sparse point cloud, but it does for COLMAP, which is the framework that was employed for our experiments. Both NeRFs
and 3DGS begin with an empty scene and are trained on the captured images with associated camera poses. In NeRFs, ray marching is used to interact
with the scene at specific locations, and these queried points are optimised to reconstruct the plant correctly. 3DGS projects a set of initial Gaussian
ellipsoids into the scene, and over time, these Gaussians are optimised to better represent the shape and appearance of the plant in 3D space.

To address this limitation, we integrated a Zaber X-RST stepper
motor turntable, which offers a full 360° rotation range with 0.16°
unidirectional accuracy. The turntable’s ability to rotate to any an-
gle allowed us to focus only on viewpoints along the x- and z-axes,
with the y-axis being fixed. We set the turntable speed to precisely
3° per second to minimise plant micro-movements during rota-
tion while also maintaining efficient rotation time. The turntable
was centred at the origin (0,0,0) of our robot’s coordinate system,
allowing straightforward calculations of transform positions rel-
ative to the turntable.

Despite this, we found that some views, particularly those
above the plant, remained challenging to reach for a single robot.
We therefore employed a second URS robotic arm mounted on
a separate pedestal, elevated above the base of the other robot,
which increased our range of potential views. The base of the
first URS was positioned at coordinates (0.35 m, —0.45 m, 1.3 m),
while the base of the second UR5 was located at coordinates (0.85
m, 0.45 m, 0.85 m). Our coordinate system adhered to the stan-
dard ROS convention, where the positive z-axis points upward
and values are in metric units. Each URS base was mounted on
a customised pedestal, strategically positioned to provide access
to views ranging from 0.3 to 1.5 m from the turntable origin. Con-
sidering that the camera should be roughly 1.5x the distance from
the centre of the plant for effective reconstruction, this imaging
setup was capable of capturing wheat plants from 0.2 to 1.0 m
in height during our experiments. These choices ensured that our
setup could capture a wide range of views for a variety of different
plant sizes. Each iteration of our setup, along with a showcase of
reachable views, is depicted in Fig. 3.

To control the URS robotic arms, we installed ROS Noetic Nin-
jemys and developed a custom dual UR5 Movelt [60] package,
enabling parallel path planning for both arms. To facilitate this,
we created a custom Unified Robot Description Format (URDF)
file with joints extending from the turntable centre to each cam-
era’s optical centre. Utilising ROS ensured that all generated trans-
forms and robot positions were consistently in metric units. Addi-
tionally, we established distinct kinematic chains for each arm to
precisely align the plant’s centre with the middle of each captured
image, an important factor for accurate 3D reconstruction.

We utilised 2 RealSense D435i cameras for image capture,
mounted on the TCP of each UR5 robotic arm. The RealSense
cameras were chosen due to their small external dimensions and
straightforward integration onto the robot TCPs. These cameras

Robot 1: No Turntable Robot 2: No Turntable

Robot 1 + Robot 2:
No Tumntable

Robot 1 + Robot 2:
Turntable

Figure 3: Image showing the effectiveness of the different considered
setups. Blue points represent positions around the plant that could be
reached, while red points represent positions that were unreachable.
These points were generated for a plant with a height of 0.5 m and a
capture radius of 0.75 m . The different setups are as follows: (i) A setup
consisting of only 1 UR5 arm in position (0.35 m, —0.45 m, 1.3 m). (ii) A
setup consisting of only 1 URS arm in position (0.85 m, 0.45 m, 0.85 m).
(iii) A setup with 2 UR5 arms in positions (0.35 m, —0.45 m, 1.3 m) and
(0.85m, 0.45 m, 0.85 m). (iv) Our final setup with 2 UR5 arms in positions
(0.35m, —0.45 m, 1.3 m) and (0.85 m, 0.45 m, 0.85 m) and an
accompanying turntable.

allowed us to acquire precise depth information that could be in-
tegrated into the 3D reconstruction process if desired. The depth
channel represents an optional addition to any 3D reconstruction
pipeline. While higher-quality cameras could have been chosen,
producing high-quality reconstructions using standard HD cam-
eras shows the efficacy of view synthesis models for more afford-
able capture setups. Furthermore, the training time is directly re-
lated to the size of the input images, so lower resolutions offer
an extra advantage in this regard. We calculate the intrinsic pa-
rameters for each camera through a standard calibration process
utilising a chessboard pattern and OpenCV'’s camera calibration
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Figure 4: Overview of our entire process covering image capturing to 3D reconstruction. First, a set of images and transforms are captured using the
view capture framework. Next, the outputs are formatted. This includes operations such as refining transforms using bundle adjustment and
generating masks. Finally, the generated dataset is trained using NeRFStudios’ NeRF and 3DGS models.

[61] toolkit. These parameters can be combined with the camera
pose, provided by the positioning of each robot, to produce a full
mapping from 3D world coordinates into each image.

One of the key challenges associated with using a turntable is
that, although the plant subject can rotate to any desired angle,
the background remains consistent in each view. This is a chal-
lenge for view synthesis models, as the discrepancy between the
foreground and background introduces significant noise during
model training. To address this, we implemented a white back-
ground around the robots and turntable, where the lack of notable
features increased the quality of the final 3D reconstruction. We
also experiment with additional background removal.

Since extracting features from objects in front of a white back-
ground can be challenging, a red and blue checkerboard was po-
sitioned on the turntable. This assisted in the feature extraction
process that was employed in our camera pose refinement pro-
cess, as well as assisting the point cloud generation for our exper-
iments with both SfM and MVS.

We observe that in some views, the base of the second robot
appears in the images captured from the first robot, adding addi-
tional noise in the final reconstructions and causing the plant to
be rendered incorrectly. We resolved this issue by cropping each
image to have a square aspect ratio with a pixel size of 1,080
x 1,080, improving reconstruction quality and reducing training
time by half.

Two diffuse light sources were positioned either side of the
plant to ensure that lighting would appear uniform, with a min-
imum of cast shadows and specular reflections, when the plant
was 3D reconstructed.

Finally, apart from the turntable, we faithfully replicated our
system in a Gazebo simulation environment. This allows the sim-
ulation to be run with an associated view capture software pack-
age to generate view synthesis datasets on synthetic 3D models.
More information about how we calibrated our setup can be found
in section 1 of the supplementary material. All robot configura-
tion files and comprehensive documentation can be accessed in
our GitHub repository.

View capturing pipeline

We build upon our robotic platform and develop a highly cus-
tomisable view capture framework capable of generating view
synthesis datasets with any ROS-supported robot equipped with

a camera and an associated Movelt package. The framework is
designed to capture image datasets with known transforms that
can be used to train view synthesis models. This capture pipeline
is shown in Fig. 4.

A full capture run begins using an approximation of the dimen-
sions of the plant, as well as the optimal radius around the ob-
ject’s centre used for generating the camera positions. Exact di-
mensions of the plant are not necessary; during our experiments,
we typically chose a single value for all plants at the same growth
stage. We found that capturing views roughly 1.5x the height of
the plant resulted in the best reconstructions, since the major-
ity of the plant is in the camera frame while not being too dis-
tant to impact image quality. Using a simple sphere point genera-
tion algorithm, potential views are formed around the object, with
the turntable rotations being calculated as the angle between the
fixed x-axis and the generated points.

We then determined the closest robot to each specified point,
adding that point into the respective robot’s movement queue.
During execution, each robot attempts to reposition to the next
point in the queue in parallel. If this fails, each robot will then at-
tempt to move to each point sequentially. At every point, an RGB-D
image is captured alongside the current transform, which accu-
rately maps the camera in 3D space relative to the current angle
of the turntable. For each captured image, an associated mask is
generated that labels pixels that are part of the plant structure,
which can be used for segmenting out the background. A simple
pixel intensity threshold algorithm was used to remove pixels in
the white background. Erosion and dilation functions are included
to remove excess noise. Finally, a connected components process
was utilised to identify the largest component in the mask, which
we found was the plant in all cases, and other components are
removed from the image. This process produced masks that al-
most completely removed the white background but also occa-
sionally segmented out small stems of the wheat plant. While
both depth and segmentation information are useful inclusions to
the dataset, these are not essential for training of view synthesis
models. We experiment with including these data in the training
process.

In typical pipelines, SfM is required to determine the camera
poses at each image. Our approach utilising robotics ensures that
the camera poses are already known for each image, skipping the
SfM stage that could lead to additional errors or inaccuracies. This
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also provides 3D coordinates in metric units, which is helpful for
plant phenotyping problems, and forgoes the need to calibrate
camera poses for each plant.

We have found that NeRF models in particular are sensitive to
even very small inaccuracies in view position, such as errors in
camera position of ~1 mm. To address this issue, we incorporated
bundle adjustment to refine our camera poses once capture was
completed. The bundle adjustment process was initialised using
the camera poses produced by our system, after which feature
extraction, feature matching, and point triangulation across the
captured image set refined the position of each camera. Our gen-
erated masks were incorporated into the feature extraction pro-
cess, ensuring that background pixels were excluded during point
triangulation, improving the final accuracy of the bundle adjust-
ment step. While our masks do suffer from slight inaccuracies,
we found that the impact on the refinement process was negli-
gible, with the majority of the points correctly triangulated. The
refinement process was iterated 3 times to ensure accurate con-
vergence, with camera poses being rescaled between iterations to
avoid drift of the generated point cloud. Once the camera poses
had been optimised, each image was undistorted and a final point
cloud was generated, since 3DGS models require these data to
train correctly. This process was performed using COLMAP [62],
a popular SfM framework.

We have made all software, configuration files, and docu-
mentation required to run our image capture pipeline publicly
available.

Experiment
Data acquisition

To evaluate the efficiency of view synthesis models for plant re-
constructions, we captured a large dataset of wheat plant images
and associated transforms. Wheat plants were chosen due to their
agricultural significance and the challenges they present for 3D
reconstruction, such as occluded leaves and thin stem structures.

To ensure that a diverse dataset was captured, 20 individual
wheat plants, selected from 6 different genotypes (see below),
were imaged at 6 distinct time points. Image capturing began 6
weeks after the plants were sown, and we captured these plants
again at 7,9, 10, 11, and 15 weeks. The plants were divided into 3
batches, with each batch being imaged on different days to main-
tain consistency. Each batch was transported from the Univer-
sity of Nottingham (UoN) Sutton Bonnington campus, where they
were grown, to our imaging centre at the UoN Jubilee campus. On
week 7, only 12 of the 20 plants were captured due to a technical
issue with one of the URSs, delaying image capture for 1 week. We
include this week regardless as 12 valid instances were captured.
Plants were germinated in John Innes No. 2 compost and then ver-
nalised at 6°C with 18 hours light, 6 hours dark for 4 weeks. Af-
ter vernalisation, plants were potted into 2-L pots with John Innes
No. 3 compost and grown in glasshouse conditions. The cultivars
used in this study were provided by the UoN Wheat Research Cen-
tre and the John Innes Centre Germplasm Resource Unit; they are
as follows: Chinese Spring, Langdon, BC1(1051-1054), GRU-2B(2]),
GRU-2D(2]), and GRU-DA5]J.

Chinese Spring is an elite cultivar of hexaploid bread wheat,
Triticum aestivum (2n = 6x = 42 (AABBDD)). Langdon is an elite cul-
tivar of tetraploid durum wheat, Triticum turgidum (2n = 4x = 28
(AABB)). BC1 plants are from an original cross of Chinese Spring
x Aegilops mutica (2n = 2x = 14 (TT)), creating the first filial gen-
eration, and subsequently backcrossed to Chinese Spring, creat-

High-fidelity wheat plant reconstruction | 7

Table 1: The different combinations of input images, transforms.
and models used for the various training setups

Transform type Training images Model
1 Original RGB NeRFacto
2 Refined RGB NeRFacto
3 Refined Segmented RGB NeRFacto
4 Refined RGB + depth map Depth-NeRFacto
5 Refined Undistored Splatfacto
6 Refined Segmented undistored Splatfacto

ing a BC1 introgression line. GRU-2B(2]) and GRU-2D(2]) are T. aes-
tivum with a chromosome substitution from Thinopyrum bessara-
bicum (2n = 2x = (JJ)), and GRU-DAS5] are where a disomic addi-
tional chromosome of Th. bessarabicum is present.

These cultivars were selected based on their genetic variability.
Bread wheat, durum wheat, and wild relative substitution, addi-
tions, and introgression lines all express varying phenotypes. This
broad range of different wheat plant ensures that our dataset
is extensive and provides additional challenges for downstream
tasks.

To ensure consistent alignment, a crosshair icon was attached
to the pot of each plant. This enabled us to position the plantin a
similar pose and orientation for each capture session, potentially
facilitating growth tracking over time.

During capture, approximately 320 RGB-D images were taken
around each plant at equidistant intervals from the centre of
the main stem. This number was chosen to balance reconstruc-
tion quality and capture time. A 1:8 ratio was used for our train-
ing/evaluation images, which ensured that our evaluation results
correctly reflect the accuracy of the final reconstruction while also
ensuring that sufficient images were utilised in the training pro-
cess. The entire imaging process, including postcapture bundle
adjustment, took approximately 30 minutes for each plant.

On the 11th week, we captured a ground-truth scan of each
plant using an Einstar 3D Handheld Portable Scanner. This scan
provided a precise ground-truth 3D point cloud, allowing di-
rect comparisons between the scans and model reconstructions.
To validate the scanner’s capability in generating a consistent
ground-truth point cloud, we generated 5 scans of a metal plant
model and assessed the consistency of generated points between
the resulting point clouds. We found that the average distance be-
tween corresponding points across repeated scans was 0.76 mm,
demonstrating a high degree of repeatability. We also compared
each of the generated scan point clouds against a reference point
cloud produced by an X-ray microCT scanner (Model v|tome|x
L; GE Healthcare) with a spatial resolution of 150 um. The av-
eraged accuracy difference was 0.75 mm, suggesting that the
Einstar is suitable for providing accurate ground truth for our
experiments.

Training

For each plant, we trained several variations of our captured data,
as shown in Table 1. Our aim was to find the combination of im-
age, transform, and model that produced the best reconstruction
results for both NeRF and 3DGS.

We trained using both original transforms and those refined
via bundle adjustment. Next, models were trained using the stan-
dard RGB images with backgrounds, and others were trained us-
ing the segmented images with the background removed. Depth
maps were alsoincluded when training the NeRF model; currently,
this is not supported in the 3DGS model. The 3DGS models were
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trained on undistorted images following bundle adjustment, as
well as using the initial sparse point cloud produced by this pro-
cess.

Two variants of NeRF models were trained, NeRFacto and
Depth-NeRFacto, depending on whether an experiment utilised
the depth information provided with each image. Each NeRF
model was trained for 30,000 iterations, after which we observed
no further improvement in performance. All models were trained
using the Adam optimiser and a batch size of 4,096. We used an
initial learningrate of 1 x 102 reducing to 1 x 10~4 over the train-
ing process. After training each model, the final iteration was used
to evaluate testing performance. Each NeRF model was also con-
verted into a point cloud and mesh using NeRFStudio.

For Gaussian splatting, we utilised the Splatfacto model. Each
was trained with a minimum alpha threshold of 5 x 1073, a scale
threshold of 0.5 mm, and a spherical harmonic degree of 3. Gaus-
sians were initialised using the sparse point cloud generated using
COLMAP during camera refinement process. We used the default
learning rates for Splatfacto, which vary across the parameters
such as mean, scale, orientation, and spherical harmonic features.
At the time of writing, no standard techniques were available to
convert Gaussian splatting data into dense point clouds for anal-
ysis. Selecting only the centre positions of each Gaussian would
produce a point cloud that was too sparse for an effective com-
parison with the ground truth. We therefore developed a new ap-
proach for this task.

Our framework generates point clouds from Gaussian scenes
by fixing the total number of points required and distributing
these appropriately across all Gaussians in a scene based on their
relative size. Thus, larger Gaussians generated more points. All
points were sampled randomly from a Multivariate Normal dis-
tribution based on the 3D covariance matrix of each Gaussian.
Point colours were derived by rendering images across the dataset
for that scene and tracking the contribution of each Gaussian to
the final pixel colour at each camera location. Each Gaussian was
coloured based on the pixel across the rendered images to which
it contributed the most colour. This strategy prevents points with
low pixel colour contributions or high transparency being as-
signed erroneous colours that do not represent the final rendered
scene. Our implementation produces accurate results and offers
high customisation to support a variety of different scenes.

We incorporated several techniques for generating the point
clouds for both NeRF and 3DGS that ensured that the entire plant
structure was represented entirely. First, we cropped the gener-
ated point cloud using an axis-aligned bounding box to ensure
that the background was not included in the point generation pro-
cess. We set the bounding box size to 1 x 1 x 1.5 m and set the cen-
tre of this box to the origin of the scene. For 3DGS point clouds, we
set specific parameters during point generation to ensure that the
points best fit the reconstructed Gaussian. Points that had a Ma-
halanobis distance greater than 2.5 standard deviation (SD) from
their Gaussian centre were removed and regenerated. Gaussians
with an opacity less than 1% were culled, and Gaussians with a
volume in the top 2.5% of all Gaussian sizes were removed since
we observed these Gaussians were always part of the background.

Each reconstruction was cleaned using a set of common au-
tomatic operations. First, a statistical outlier removal algorithm
was implemented that grouped neighbouring points together, and
then any point that lay a distance further than 1 SD from the lo-
cal group was removed. Next, a noise filter was used that fit an
approximate surface across all points and removed points further
than 1 SD from the predicted surface. Points were then clustered,
and groups of points with fewer than 2,000 connected points were

rejected. Finally, we manually segmented out the points located
on the pot for both the ground-truth and reconstructed point
clouds, ensuring that our accuracy metrics only contained com-
ponents of the plant relevant for phenotyping. The majority of
these operations can be automated, such that most of the points
that were part of the true plant reconstruction were included in
generating our accuracy metrics.

All NeRFacto, Depth-Nerfacto, and Splatfacto models were
trained using a single Nvidia Geforce RTX 2080 Ti graphics card.
Alongside the trained models and exported point clouds, we also
rendered a set of evaluation images to provide visual comparisons
between the ground-truth images and the trained models. These
rendered images were used to generate the evaluation metrics for
each plant. When rendering the evaluation images for the Splat-
facto model, we added a near clip of 0.25 m into the rendering
pipeline, ensuring that Gaussians part of the background behind
the camera did not occlude the plant. For NeRF, we set near and
far ray clipping values of 0.01 m and 5.0 m, respectively, avoid-
ing reconstruction of spurious areas either very close or far from
camera positions.

Given that 3DGS models generate a set of Gaussians distributed
in 3D space, we are able to perform post-training editing of the
reconstructed scene. To remove the background Gaussians, we
culled Gausssians with a volume larger than 2.5 mm, and imple-
mented a bounding box with a size of 1 x 1 x 1.5 m to isolate the
foreground plant region. The bounding box process removed the
majority of background Gaussians.

We then employed a K-nearest neighbours approach to en-
hance the precision of background removal. For each Gaussian,
we calculated the distances toits 15 nearest neighbours and deter-
mined the average of these distances. Gaussians with an average
distance exceeding 3.5 cm were deemed to be outside the group
associated with the plant and were subsequently removed, since
Gaussians part of the plant structure are closely compact. Remov-
ing large Gaussians rarefied the remaining background, which as-
sisted in identifying outliers using this method.

This process proved to be fast and efficient, successfully elimi-
nating the majority of background Gaussians while preserving the
integrity of the plant’s structure.

Each of these view synthesis models can be executed via a
Python script available in our dataset repository. This supports
launching the models in NeRFStudio to view the reconstructed
plants in 3D, as well as training new datasets on these models. A
README file is also included that provides more information.

Results
Render quality

We evaluate the effectiveness of each reconstruction approach
using several metrics. Each metric compares the rendered evalua-
tion image to the ground-truth images but focuses on highlighting
different of types of inconsistencies between images.

NeRFStudio offers scripts that automatically generate the fol-
lowing metrics for the evaluation images:

(1) Peak Signal-to-Noise Ratio (PSNR): Measures the difference
in the intensity of corresponding pixel values using the
mean squared error formula. Higher PSNR values indicate
lower distortion, with approximately values of 40 db repre-
senting an image thatis identical to the ground truth. PSNR
values are logarithmic and thus represented using the deci-
bel scale (db).
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(2) Structural Similarity Index (SSIM): Compares local pat-
terns of pixel intensities normalised for factors such as
luminance and contrast. Values range from —1 to 1, with
1 representing 2 identical images.

(3) Learned Perceptual Image Patch Similarity (LPIPS): Calcu-
lates the perceptual similarities between 2 images by com-
paring the activations after passing through layers of a pre-
trained convolution neural network (CNN). Lower values in-
dicate higher perceptual similarities.

While these metrics are effective at measuring the similarity
between the rendered image and ground truth, they consider the
entire image, including the white background. This inclusion can
overestimate the quality of the final render, where the simple
background represents a high proportion of the image, and is com-
paratively simple to render.

We introduce a PSNR masked metric to avoid this problem.
This metric is based on the PSNR formula but only includes pixels
within the generated image mask. This approach provides a more
accurate assessment of the effectiveness of the reconstruction on
the plantitself. Itis important to note that this metric relies on the
accuracy of the input mask. This metric can be considered along-
side standard PSNR, which incorporates a measure of background
quality.

The following section is split into a set of experiments, each ex-
amining the effectiveness of each of our trained model types. Each
of these results are averaged over all 112 trained plant instances.
Our goal is to identify the training data configuration that pro-
duces the best results for both NeRF and 3DGS. The list of results
for all 112 plants can be found in section 3 of the supplementary
material. Figure 5 presents a comparison of rendered images for
each of the following training configurations.

The effect of bundle adjustment on camera accuracy

First, we evaluate the impact of bundle adjustment on the ac-
curacy of 3D reconstructions using RGB images. We compare the
original transforms generated via our robot setup to those refined
by the bundle adjustment process.

Table 2 shows that, as expected, the bundle adjustment process
improved the PSNR by approximately 2.5 db. This shows the im-
portance of extremely precise transform positions for these mod-
ern 3D reconstruction processes. As a result, we decided to utilise
the refined transforms for all subsequent models, since they pro-
duce stronger results compared to the original transforms. We
only conducted this comparison on NeRF models, as 3DGS models
require the sparse point cloud initialisation after bundle adjust-
ment.

The impact of depth on synthetic view quality

We examined the impact of including depth maps during model
training. We performed these experiments using the NeRF models,
as the 3DGS model does not currently support depth maps.
Perhaps counterintuitively, the inclusion of depth maps pro-
duced a slightly poorer final plant reconstruction, as highlighted
by the PSNR masked values in Table 3. The lower performance of
RGB-D is caused by lower render quality on thin individual leaf
tips. It is likely that the depth maps were not sufficiently accu-
rate to properly reconstruct the thin structures prevalent in plant
shoots. Furthermore, the depth map resolution of 720 x 720 is
lower than the RGB image resolution of 1,080 x 1,080, a typical
restriction of RGB-D cameras. An additional advantage of using
only RGB images is that future experiments based on our system
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are not required to include depth cameras. We therefore do not
consider RGB-D for any further experiments.

The effect of background removal on synthetic view quality

We explored the incorporation of background removal as a pre-
processing strategy to enhance render quality. NeRF and 3DGS
models are designed to reconstruct the entire scene, including el-
ements irrelevant to the target plant. Consequently, the final 3D
representation can generate a white sphere around the plant dur-
ing reconstruction. This obstructs views captured from outside
this sphere, obscuring the plant.

The NeRF training process was adapted to produce no density
or colour in areas of background. Similarly for 3DGS, the train-
ing process was restricted to only generate Gaussians that appear
in the mask foreground, preventing reconstruction of the back-
ground. This adapts the training process of 3DGS, but we also im-
plement our postprocessing Gaussian removal process to elimi-
nate the background Gaussians generated during training on un-
segmented images.

The results, shown in Table 4, were evaluated using the PSNR-
masked metric to focus the metric on foreground regions. It is im-
portant to note that this metric is not entirely accurate due to
the presence of noise in the masks themselves, which introduces
penalties that do not reflect the efficiency of the background re-
moval methods. Nevertheless, the metric offers improved insight
over whole-image PSNR.

Our findings indicate that models trained on segmented im-
ages generally produced less accurate reconstructions compared
to those trained on unsegmented images. In particular, NeRF often
failed to converge when trained using segmented images. These
techniques are already reliant on highly accurate camera posi-
tions; the addition of potentially imperfect segmentation masks
can compound this loss in accuracy. We experimented with var-
ious segmentation methods, including CNN-based approaches,
but none demonstrated sufficient accuracy to overcome this bar-
rier. These methods also added additional complexity to the re-
construction pipeline. The inclusion of masks did confine compu-
tation of the scene reconstruction to pixels relevant to the plant,
which reduced training time for both NeRF and 3DGS.

In contrast, the postprocessing Gaussian removal technique
proved more effective, with accurate elimination of the major-
ity of background Gaussians. This method was straightforward to
implement and integrate into the pipeline. Some small issues re-
main, such as compact groups of background Gaussians persist-
ing near the base of the turntable or around the top of the plant.
These limitations suggest that the process would benefit from
incorporating more advanced background removal algorithms in
the future.

A comparison of robot-derived and SfM calculated camera
poses

To compare our image capture setup to standard SfM, we trained
the models on transforms generated entirely using COLMAP’s SfM
functionality, which is a common approach to calibration and re-
construction across image datasets with unknown camera poses.
During the feature extraction process, our generated masks were
utilised to ensure that only points on the plant were extracted and
matched, facilitating accurate point cloud reconstruction.

For each set of SfM-generated transforms, we calculated an ab-
solute trajectory error (ATE) by aligning the world coordinate sys-
tems between our robot camera and SfM camera poses. We then
calculated the euclidean distance between corresponding cam-
era poses in each system. If the ATE was greater than 1.5 mm,
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Week 6 Week 15
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Figure 5: Visual comparison between the reconstruction results for plant bc1_1051 over 2 different time points. The top row of images are the ground
truth, not included in the training images, and the images below are the rendered images for each of the different training configurations. The NeRF
model with segmented data did not train and produce a valid 3D reconstruction in week 6, which is why there are no rendered images. Rendered
images for the rest of the weeks for this plant be found in section 2 of the supplementary material.
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Table 2: Evaluation results for NeRF models trained on origi-
nal transforms acquired from our setup and transforms calcu-
lated using bundle adjustment. Both models were trained on RGB
images.

PSNR
Training type PSNR ¢ SSIM 1 LPIPS | masked ¢
Original (NeRF) 21.28 0.80 0.28 15.29
Refined (NeRF) 23.90 0.86 0.22 19.49

Table 3: Evaluation results for NeRF models trained on RGB im-
ages and RGB images with depth maps.

PSNR
Training type PSNR 1 SSIM ¢ LPIPS | masked t
RGB (NeRF) 23.90 0.86 0.22 19.49
RGB-D (NeRF) 23.95 0.87 0.22 18.15

Table 4: Evaluation results for NeRF and 3DGS models using ei-
ther masked or full RGB images. The 3DGS results for post-training
background removal are also included.

Training type PSNR masked 1
RGB (NeRF) 19.49
Segmented (NeRF) 6.46
Undistorted (3DGS) 26.31
Segmented (3DGS) 13.75
Postprocessed (3DGS) 17.87

Table 5: Evaluation results for NeRF and 3DGS models. One set
was trained using our transforms acquired from the robot setup
and bundle adjustment. Another was trained using transforms
acquired from SfM. Only results trained on the generated SfM
camera poses with an average error less than 1.5 mm were in-
cluded. Both were trained using RGB images.

PSNR
Training type PSNR ¢t SSIM ¢ LPIPS | masked ¢
Ours (NeRF) 23.90 0.86 0.22 19.49
SIM (NeRF) 21.99 0.82 0.31 17.42
Ours (3DGS) 28.17 0.95 0.15 26.31
SIM (3DGS) 26.43 0.93 0.2 21.89

then it was determined that the SfM process failed to converge
correctly, with only 12 of 20 SfM reconstructions meeting this
criterion. To ensure a fair comparison between models trained on
the robot-derived transforms and SfM-generated transforms, we
only included results from SfM transforms that had an ATE less
than 1.5 mm, as other results were much less accurate.

As seen in Table 5, our pipeline achieves higher accuracy over
a traditional SfM approach. While SfM uses the same bundle ad-
justment process as our refinement step, SEM must determine the
initial camera poses during the sparse point cloud reconstruction
process, whereas our approach leverages accurately known robot
position data. Consequently, the SfM process often failed to cal-
culate correct positions across all images, only identifying cam-
era positions for an average of 265 of 320 images per plant scene.
This inconsistency directly affected the quality of reconstructions,
as failed images could not be incorporated into the reconstruction
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Table 6: Evaluation results for NeRF and 3DGS models. Both were
trained on the original RGB images and transforms calculated us-
ing bundle adjustment.

PSNR
Training type PSNR ¢ SSIM ¢ LPIPS | masked ¢
NeRF 23.90 0.86 0.22 19.49
3DGS 28.17 0.95 0.15 26.31

process. Furthermore, only 12 of 20 SfM reconstructions produced
camera poses within 1 mm of our robot-derived transforms, im-
plying that SfM may not be a reliable tool for calculating camera
poses for indoor plant capturing environments, such as ours.

Synthetic view quality of NeRF and 3DGS

We compare the performance of the 3DGS model to the NeRF
model for rendering new synthetic views of each plant, using our
complete robot-based turntable system and refined camera po-
sitions. The results in Table 6 show the 3DGS model produced
higher-quality synthetic views compared to the NeRF model. From
visual observations, there was reduced noise in the 3DGS recon-
struction, particularly with view points above the plant. We hy-
pothesise that this is due to 3DGS being more effective at resolving
inconsistent background appearance in top-down views, where
the robot pedestals are visible. It also seemed that the NeRF mod-
els struggled more when handling thin structures on the plant,
while the 3DGS models appear to reconstruct these features more
effectively. Gaussians on thin structures naturally elongate and
align along the direction of that object, potentially offering a more
appropriate representation of these shapes.

Reconstruction accuracy

Whilst rendering new images of the captured plant is useful, the
accuracy of the final plant reconstruction is crucial for extraction
of correct phenotypic traits in 3D. We compared point clouds cre-
ated from each model against our captured ground truths. We em-
ployed CloudCompare, an open-source project designed for han-
dling 3D point clouds, to calculate a final accuracy metric [63]. We
used the provided average point distance functionality to perform
this comparison. To provide a more comprehensive comparison,
we include average measures of distance from model points to the
ground truth and in the reverse direction from the ground truth to
the nearest model points. The first comparison aims to evaluate
the similarity of the entire ground-truth scan structure to the re-
constructed point cloud, while the other evaluates the accuracy of
each reconstructed point, regardless of the sparsity. The standard
deviation of each mean distance represents the consistency of the
accuracy for reconstructed points compared to the ground truth.
A larger standard deviation typically implies that more areas of
the reconstruction were underrepresented in the point cloud.

It should be noted that the ground-truth point cloud often
failed to capture the thin structures of the plant, which is why
the results have a higher inaccuracy value for comparison of the
model points to the ground truth.

We first generated a point cloud representation for the fi-
nal NeRF and 3DGS models. It is important to note that, since
both NeRF and 3DGS are dense data structures, there is no
limit to the number of points that can be generated by each
representation. We chose to generate exactly 10,000,000 points,
which ensured our point clouds were dense enough for an accu-
rate comparison against the ground truth. Each point cloud had
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Table 7: The accuracy (mean) and variability (SD) of each of the
3D reconstruction methods. The top section of the table is calcu-
lated as the average distance from each ground-truth point to the
nearest neighbouring point in the reconstructed point cloud. The
bottom section of the table shows the average distance from each
reconstructed point to the nearest point on the ground truth. A
low mean distance implies that the reconstruction was accurate,
while a lower standard deviation indicates that the accuracy was
consistent for different areas of the plant.

Table 8: Training and rendering results for the different recon-
struction models across the 20 tested reconstructed plants. The
file size results were the splat file for 3DGS, the weights of the Ner-
Facto neural network for NeRF, and the generated COLMAP files
for MVS and SfM. The compute time was rounded to the nearest
minute. The render times were calculated as the average FPS for
rendering new 2K images in the NeRFStudio real-time viewer.

Reconstruction ~ Compute time Rendering
Comparison method Mean distance (mm) SD (mm) type (minutes) time (FPS) File size (GB)
GT — NeRF 1.43 3.63 3DGS 15 15 0.049
GT — 3DGS 0.74 0.72 NeRF 22 0.2 0.172
GT — MVS 131 1.04 MVS 128 N/A 11.683
GT — SfM 6.77 4.34 SfM 11 N/A 0.048
NeRF — GT 4.75 7.42
3DGS — GT 4.99 9.56
MVS — GT 7.08 12.31
StM — GT 11.43 14.45 NeRF and 3DGS in the NeRFStudio real-time viewer. These results

approximately 7,500,000 points after performing the noise re-
moval operations.

Each reconstruction point cloud was registered and aligned
with the scanned ground-truth point cloud via the Iterative Clos-
est Point algorithm. Since the camera positions were captured
using our robot setup in metric units, all performance measure-
ments are calculated in millimetres.

To compare the accuracy against other reconstruction tech-
niques, we also generated a sparse point cloud using SfM and a
dense point cloud using MVS. We utilised COLMAP to generate
these point clouds using the same camera poses captured by our
robot setup after refinement. For feature extraction, our masks
were included to ensure that the background was not included
during feature matching.

We utilised the same noise removal process as described above
for MVS since the point cloud had a similar level of noise as the
generated 3DGS and NeRF point clouds. For the SfM point clouds,
we applied the same noise filter as with the 3DGS and NeRF point
clouds, but we then manually removed certain groups of points
part of the background. We found that automating the noise re-
moval on SfM points often degraded the quality of the model.

SfM generated an average of 16,760 number of points for all
plants that were compared with the ground truth, which were re-
duced to 16,150 number of points after noise removal. MVS gen-
erated an average of 1,650,000 number of points for all plants
that were compared with the ground truth, which were reduced
to 1,215,000 number of points after noise removal.

The final results are presented in Table 7.

Alongside numerical results, we also report the average train-
ing times for both NeRF and 3DGS models, as well as the time
taken for SfM and MVS to generate a completed point cloud. It is
important to note that times required for determining the camera
poses for MVS, NeRF, and 3DGS have been omitted. Typically, SfM
is required to determine the camera poses; in our case, we utilised
our robot setup to determine the camera poses alongside the im-
age capturing. The time taken to capture the images and optimise
camera poses is comparable to SfM.

We also determine the total file sizes generated by each of the
models, including the neural network for the NeRF representation,
the generated.ply file for 3DGS, and the generated COLMAP files
for SfM and MVS. Finally, we record the average frames per second
(FPS) achieved when generating new 2K resolution images for both

are shown in Table 8.

3DGS produced a more accurate ground-truth to point cloud
reconstruction accuracy when compared to NeRF. We believe that
this is because 3DGS is able to produce a larger set of points
around thin structures of the plant, such as the stems, most likely
due to the dense population of Gaussians in these areas. The
Gaussians can adapt shape and position to better fit different
plant structures. However, both methods produced similar results
when the point clouds were compared to the ground truth, imply-
ing that each method produces accurate points consistent with
the underlying 3D plant representation. NeRF typically produced
point clouds with reduced noise, and these point clouds may bet-
ter represent larger surfaces. This is visualised in Fig. 6, in which
3DGS had a higher accuracy around the thin stems of the plant
but struggled with larger areas, such as the pot. However, we ex-
cluded the pot when calculating the overall accuracy metrics. A
table of results with the pot included can be found in section 3 of
the supplementary material. When considering the entirety of the
scenes, we found that 3DGS had a higher average accuracy than
NeRF, suggesting that 3DGS is better for generating more precise
3D representations.

In addition to this, 3DGS offers several advantages over NeRF,
training approximately 1.5x faster while also producing rendering
results 75x times quicker. The file size of the 3DGS scene was less
than the size of the neural network used for encoding the NeRF
scene. However, it is important to note that the neural network
size is fixed regardless of the scene size or complexity, and so for
larger scenes, the neural network may be the better option if file
size is a concern. Despite some differences, both approaches are
suitable candidates for effective 3D reconstruction, offering simi-
larly effective representations.

Our 3DGS to point cloud approach, and NeRFStudio’s point
cloud generation algorithms, take different approaches to creat-
ing the final point cloud. Hence, using alternative point cloud gen-
eration algorithms for NeRF and 3DGS could produce different ac-
curacy results compared to the results in Table 7.

Compared to SfM and MVS, 3DGS produced more accurate
point cloud reconstructions, while NeRF produced more accurate
reconstructions only when the point cloud was compared against
the ground truth. We believe this is because NeRF struggles to pro-
duce a dense number of points around the thin stems of the plant,
which is when the standard deviation was high. However, the ac-
curacy of the points generated from NeRF was higher than the
3DGS, MVS, and SfM point clouds, implying that the points around
the thin structures were less prone to noise. The accuracy metrics
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Figure 6: Comparison between the distance error between the ground truth and each of the NeRF, 3DGS, MVS, and SfM produced point clouds for the
langdon_3 plant on week 11. On the right is the colour map key, with blue indicating a low distance error and red indicating a high distance error. The
displayed pot and turntable of the ground-truth point clouds were not included in the calculation of the reconstruction accuracy metrics in Table 7.
We include them here to highlight the effectiveness of how each each method handles different types of surface.

for NeRF were more comparable with that from 3DGS while sur-
passing MVS and SfM if the pot was included for all point clouds.

View synthesis models are particularly effective at representing
detailed structures on the plants, including complex leaf shape,
topology, and self-occlusion. Visualised results may be found in
Fig. 6. NeRFs and 3DGS can reconstruct scenes as they appear in
each camera view, including areas of low texture. SfM, in contrast,
must extract, match, and triangulate each point between images
accurately, which we find causes additional noise on narrow plant
structures that have low contrast and texture. SfM generated a
sparser point cloud than the other approaches, particularly on the
stems of the plant, negatively impacting the final reconstruction
accuracy. SfM has similar compute time and file sizes to 3DGS.
MVS produced more dense and accurate point clouds compared
to SfM. MVS builds upon the acquired camera poses provided to
it and applies more thorough reconstruction steps that aim to
extract and project points, for example, patch matching. How-
ever, while the reconstructions represent the original plant well,
the overall point cloud was slightly less accurate than NeRF and
much less accurate than 3DGS, taking into account both com-
parisons metrics. We believe this is because MVS projects only
as many pixels as are present in the image set that can be accu-
rately identified during feature extraction and then triangulated
onto the plant. Meanwhile, view synthesis methods offer repre-
sentations that are not constrained to matching pixels between
views.

While MVS reconstructed a denser point cloud than SfM, it re-
quired additional computational time to process. MVS took ap-
proximately 9x longer to complete than 3DGS. In addition, the
total file sizes of the generated MVS Colmap configuration were
over 230x larger than 3DGS. MVS applies the same processing per
image, meaning that the required compute time and file sizes in-
crease linearly with the number of supplied training images. In
contrast, 3DGS and NeRF use a set number of iterations, and so
training times will be quite consistent between scenes with vary-
ing numbers of images.

Discussion

Reconstruction of plant shoots in 3D has remained a substan-
tial challenge for many years. We have shown here that both
NeRF and 3DGS exhibit remarkable capabilities in reconstructing
plants with diverse physical characteristics and complex topology.
These approaches rival traditional standardised 3D reconstruc-
tion techniques and often provide higher accuracy over common
approaches such as SfM and MVS. When used for view synthe-
sis, these models can provide new high-quality synthetic images
of plants from views that have not been captured in the original
dataset, potentially driving new research in active phenotyping
using robotic manipulators and improving our ability to capture
phenotypic traits in the presence of substantial occlusion.

To date, there has been limited work using new view synthesis
methods on plants. Of those that exist, our results are compara-
ble to other captured plant view synthesis datasets. In [43], vari-
ous single indoor crop plants were reconstructed using NeRFacto.
It was found that the average PSNR for a set single indoor corn
scenes was 22.24 db, while the average PSNR for captured plant
instances was 23.93 db and 19.47 db for our masked PSNR metric.

In [46], a comparison was made against a ground-truth scan
of a series of pepper plants, with the error between each gen-
erated NeRF point cloud and the ground-truth scan ranging be-
tween 0.865 mm and 0.909 mm. This error is slightly lower than
our reported average accuracy of 1.43 mm. It may be challenging
to compare results presented on very different species and scenes.
However, these metrics still indicate that our results are similar to
other recent plant reconstructions and show that view synthesis
models have broad applicability across species and scene config-
urations.

NeRF and 3DGS models offer 2 different approaches that,
while superficially similar, are quite different. NeRF models train
a neural network to generate an implicit scene representation,
where ray-marching is then used to sample colour and density
from this space. This approach has some notable advantages:
models are continuous representations, allowing us to sample
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higher-resolution images by simply casting more rays into the
scene, at the cost of longer render times. The neural models pre-
dict not only colour but also the opacity of material in 3D space,
allowing them to be easily converted into volumetric representa-
tions such as voxel grids or 3D representations such as meshes.
Utilising a neural network means that an entire scene, regardless
of the number of images or scale, can be encoded with a con-
sistent file size of roughly 172 MB for a NeRFacto model, as de-
picted in Table 8. These allow NeRF to be used as part of phenotyp-
ing pipelines that leverage these representations, with potentially
higher accuracy than previous reconstruction methods.

3DGS instead represents the scene as a series of 3D coloured el-
lipsoids. This representation is closer to a traditional point cloud
representation, but where each point has additional parameters
governing shape and colour. Our results in Table 6 show that 3DGS
is capable of extremely high-quality view synthesis, often outper-
forming NeRF on this task. Since the representation is held as
discrete points, noise and background removal is comparatively
straightforward, which we have demonstrated. However, the num-
ber of Gaussians needed to reconstruct a scene can vary depend-
ing on the complexity of the training data, meaning that large and
complex scenes can produce a file size larger than 1 GB. Despite
this, 3DGS offers efficient rasterisation, generating new views al-
most instantly and comfortably at >60 FPS on a modern desk-
top PC for standard HD images. This is compared against a NeRF
model, where volumetric ray-marching will take approximately 2
seconds per image to render.

The training times for both NeRF and 3DGS are comparable,
with each plant instance requiring approximately 15 minutes for
3DGS and 22 minutes for NeRF. Variants of these models exist,
such as Instant-NGP [40] and InstantSplat [49], which reduce the
time required to train, but these often reduce render quality, and
we have focused here on the maximum quality possible as a
demonstration of the technology. Both NeRF and 3DGS are active
areas of research, and it is likely that some limitations of these
approaches will be addressed over the coming years. Our plant
dataset provides a new test environment in which to evaluate
new developments in these approaches, and improving NeRF and
3DGS for plants specifically, perhaps by targeting methods to im-
prove performance on thin structures or heavily occluded regions,
represents a promising area for future work.

Comparison of view synthesis models and
traditional 3D reconstruction techniques

View synthesis models such as 3DGS and NeRF present several
compelling advantages over traditional 3D reconstruction meth-
ods such as SfM and MVS. As detailed earlier, 3DGS and NeRF
produce 3D representations that surpass the accuracy of sparse
reconstruction methods such as SfM. While their performance
is more comparable to dense reconstruction methods like MVS,
3DGS and NeRF still produced more precise and detailed point
clouds in our experiments. Accuracy is an important considera-
tion in selecting the appropriate 3D reconstruction method, since
erroneous points may hinder the effectiveness of downstream
tasks that depend on precise plant geometry.

A key factor behind the accuracy of the NeRF and 3DGS point
clouds is their ability to sample much denser representations.
NeRF holds the scene in an implicit continuous representation,
permitting sampling of any number of points at any resolution.
In a similar way, 3DGS represents the scene using ellipsoids that
have quantifiable dimensions, from which any number of points
can be sampled. In addition to accuracy, 3DGS and NeRF offer effi-

ciency in terms of file size and computational demands. As shown
in Table 8, both methods produced smaller file sizes with faster
training times compared to MVS. Despite these promising results,
there still exist notable challenges associated with view synthesis
models. While Gaussian splats and neural network approaches
provide high-quality renderings, these representations are more
complex to handle and manipulate than traditional point clouds.
There is currently limited support for these representations in the
context of 3D phenotyping, where simpler point cloud-based ap-
proaches are more commonly used. We theorise that 3DGS will
be more useful for phenotyping problems such as segmentation
of different key structures of the plant, as part of phenotyping
pipelines that derive quantitative measurements. Meanwhile, we
predict that NeRF will be employed for situations where its contin-
uous nature can be leveraged, such as ray-casting, to predict light
interaction within a plant canopy [64]. We hope that our dataset
will assist in the development of tools better suited to using these
advanced representations in 3D phenotyping applications.

Currently, 3DGS relies on an initial point cloud for effective pop-
ulation of Gaussians in the scene, meaning that SfM remains a
common prerequisite for most 3DGS models. 3DGS and NeRF also
currently require extremely accurate initial camera poses to pro-
duce effective results. These camera poses are typically estimated
through SfM, and as we noted earlier, SfM may fail to provide suf-
ficiently accurate pose estimations, leading to errors in the recon-
struction. This limitation is shared by other methods, including
MVS, which also depend on accurate pose estimation for effec-
tive reconstruction. Nevertheless, it is important to note that us-
ing these methods repeatably may require an accurate system for
camera capture.

Automated dataset capture

A notable challenge of both approaches is their requirement for
highly accurate camera positions. As shown in Table 2, slight
errors in parameters can lead to lower-quality reconstructions.
These can be obtained using a pipeline such as ours, combined
with modern bundle adjustment algorithms, but we foresee these
pipelines becoming a requirement for successful phenotyping us-
ing these state-of-the-art approaches. Our robotic image capture
system and framework offer several advantages over static or lim-
ited capture setups. First, our system captures high-quality im-
ages around plants of various different sizes. By utilising robot
path planning, dynamic generation of positions allows for flexi-
ble image capture should requirements change. This framework
is highly customisable, ensuring repeatability across a variety
of bespoke ROS setups, with the versatility of each setup being
the main restriction in potential view capturing. Unlike uncon-
strained image capture setups (e.g., using a handheld camera),
our system is calibrated such that even after refinement using
bundle adjustment, all camera positions and reconstructions are
represented in metric units. This is a feature not commonly found
in other view synthesis datasets, and the use of ROS-compatible
hardware allows other researchers to utilise this setup.
Capturing high-quality data on living organisms such as plants
remains a challenge. Transporting each plant from the green-
house to the imaging setup occasionally resulted in damage, par-
ticularly to the spikes. With the larger wheat plants, stems oc-
casionally became entangled with the stand of the second robot,
causing discrepancies between views, resulting in floating arte-
facts in the reconstructions. These issues are shown in Fig. 7. We
anticipate that the most effective solutions will be based within
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Figure 7: Examples of some of the issues with our dataset. Left shows an
image of a damaged stem on plant bc1_1053_1 (16-04-24). Right image
shows an image of an erroneous stem being rendered using 3DGS for
plant bc1_1033_1 (06-03-24). This is due to a collision that stem had with
the robot 2 stand, which caused it to move incorrectly during capturing.

the growth environments themselves, and adapting our system to
in situ robotics is an area of potential future research.

While the turntable was a critical component in allowing full
range-of-view capturing in our setup, it did present several chal-
lenges. We suspect that rotating the plant sometimes caused
micro-movements, impacting the final quality of the reconstruc-
tions. Furthermore, the consistent background meant that un-
wanted artefacts were generated during reconstruction. We im-
plemented image segmentation prior to reconstruction to solve
this problem, but we found that this did not consistently improve
results and often led to poor reconstructions due to inaccuracies
and inconsistencies between masks at different views. When ren-
dering images outside of the capture radius, we noted that areas
of background might be rendered instead of the plant. This caused
particular issues when rendering the 3DGS images, as large Gaus-
sians representing the white background may obscure the plant
in some views. We recommend that utilising a turntable should
only be used if full range of motion is not available for a partic-
ular setup. We found that postprocesses to remove these Gaus-
sians were more effective than adapting the image capture or
3DGS training process. However, our method occasionally resulted
in groups of residual background Gaussians; this approach would
benefit from implementation of more robust background removal
algorithms.

Many modern phenotyping pipelines, particularly those that
make use of genomic techniques, require hundreds or even thou-
sands of plant samples. At the time of this publication, we think
that these remain out of reach of this technology, but a num-
ber of promising avenues could be explored by the community to
achieve this goal. These reconstruction techniques require many
images and accurately calibrated camera and scene parameters.
Automated greenhouses that utilise robotics, conveyor belts, or
a comparable delivery system [65] to autonomously transport
plants to the capture setup offer a potential solution to this. A
critical challenge with this approach lies in ensuring precise align-
ment and placement of the plants onto the turntable to maintain
consistency between imaged plants. It is also imperative to im-
plement measures that prevent potential collisions between the
robotic arms and the plants being captured, given the potential
variability in growth stages and morphological characteristics of
the subject plants. To address these complexities, incorporating
depth data from the cameras into the processing pipeline is a po-
tential solution. This would allow for real-time determination of
each plant’s spatial location and dimensions, ensuring accurate
and efficient capture. For the time being, this technology is con-

High-fidelity wheat plant reconstruction | 15

fined to controlled environments. In the future, improvements in
selective scene reconstruction, through the inclusion of other ma-
chine learning processes such as segmentation, may allow in-field
imaging to become possible.

Conclusion

We have presented a new dataset for multiview reconstruction
of plant shoots. By utilising a dual-robot image capture system
and a turntable, we capture full 360-degree views of each plant,
adapted to their size. This capture setup produces accurate cam-
era positions in metric units, with associated high-resolution im-
ages, and depth information. Using this dataset, we demonstrate
the strong performance of 2 recent approaches to view synthesis:
neural radiance fields and 3D Gaussian splatting. We demonstrate
state-of-the-art performance in both view synthesis and 3D model
reconstruction. On our test data captured using a handheld scan-
ner, the trained 3DGS and NeRF models had an average surface
accuracy of 0.74 mm and 1.43 mm, respectively, compared to 2.32
mm and 7.23 mm for popular MVS and SfM techniques. We argue
that both approaches will lead to a step-change in our ability to
capture 3D models of plants, which have historically proved very
challenging due to their complex shape, frequent occlusion, and
self-similarity. We release all configuration files and scripts asso-
ciated with our image capture system, which can be deployed on
any ROS-compatible hardware. We also release our dataset of 112
wheat plants captured approximately ~300 times each and as-
sociated camera position in metric units. Finally, we release all
training scripts and trained NeRF and 3DGS models, as well as 3D
reconstruction output across all plants. We hope that our study
will provide opportunities for researchers exploring new and im-
proved 3D phenotyping algorithms, 3D reconstruction and view
synthesis research, and active vision systems.

Availability of Source Code and
Requirements

Project name: 3D Plant View Synthesis:

® Project homepage: https://github.com/Lewis-Stuart-11/3D-
Plant-View-Synthesis [13]

® Operating system(s): Windows, Ubuntu

® Programming language: Python (>=3.8)

® License: Apache 2.0

® Any restrictions to use by nonacademics: None

Our code has also been archived in Software Heritage [66].
Functionality, such as Robotic View Capturing, 3DGS to Point
Cloud, and our URS5 Configs files, are stored on separate GitHub
repositories that can be accessed via the project README.

Additional Files

Supplementary Fig. S1. ROS visualisation of the dual robot setup
that needs optimising. Important transforms, and their links, are
displayed.

Supplementary Fig. S2. ROS visualisation of the TCP transform
and the predicted camera lens transform. The TCP transform is
positioned at the end of the robot, while the camera lens trans-
form is positioned left of the centre of the camera.
Supplementary Fig. S3. ROS visualisation of the transform tree
that maps the camera lens of the first robot to the centre of the
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turntable. The goal is to accurately determine the mapping be-
tween the robot 1 pedestal and the centre of the turntable.
Supplementary Fig. S4. ROS visualisation of the mapping of both
robot pedestals to the centre of the turntable. Transform from
robot 1 pedestal to the turntable has been optimised. Transform
from robot 2 pedestal to the turntable currently still needs to be
optimised.

Abbreviations

3DGS: 3D Gaussian splatting; ATE: absolute trajectory error; CNN:
convolutional neural network; FPS: frames per second; LiDAR:
Light detection and ranging; LPIPS: learned perceptual image
patch similarity; MVS: multiview stereo; NeRF: neural radiance
field; PSNR: peak signal-to-noise ratio; RGB: red, green, and blue;
ROS: robot operating system; SD: standard deviation; SfM: struc-
ture from motion; SSIM: structural similarity index measure; TCP:
tool center point; UoN: University of Nottingham; URDF: Unified
Robot Description Format.
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