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Abstract 

Backgr ound: The r econstruction of 3-dimensional (3D) plant models can offer adv anta ges ov er traditional 2-dimensional appr oaches 
by more accurately capturing the complex structure and c har acteristics of different crops. Conventional 3D reconstruction techniques 
often produce sparse or noisy r e pr esentations of plants using softw ar e or ar e expensi v e to captur e in hardw ar e. Recentl y, view syn- 
thesis models have been developed that can generate detailed 3D scenes, and even 3D models, from only RGB images and camera 
poses. These models offer unparalleled accuracy but are currently data hungry, requiring large numbers of views with very accurate 
camer a calibr ation. 
Results: In this study, we present a view synthesis dataset comprising 20 individual wheat plants captur ed acr oss 6 different time 
frames over a 15-week growth period. We develop a camera capture system using 2 robotic arms combined with a turntable, controlled 

by a r e-de ploya b le and flexib le ima ge captur e fr amew ork. We tr ained eac h plant instance using two recent view synthesis models: 
3D Gaussian splatting (3DGS) and neur al r adiance fields (NeRF). Our results show that both 3DGS and NeRF produce high-fidelity 
r econstructed ima ges of a plant subject fr om views not captur ed in the initial training sets. We also show that these approaches 
can be used to generate accurate 3D r e pr esentations of these plants as point clouds, with 0.74-mm and 1.43-mm av era ge accuracy 
compared with a handheld scanner for 3DGS and NeRF, respectively. 
Conclusion: We believe that these new methods will be transformati v e in the field of 3D plant phenotyping, plant reconstruction, and 

acti v e vision. To further this cause , w e r elease all r obot configuration and contr ol softw ar e, alongside our extensi v e m ulti view dataset. 
We also release all scripts necessary to train both 3DGS and NeRF, all trained models data, and final 3D point cloud r e pr esentations. 
Our dataset can be accessed via https://plantimages.nottingham.ac.uk/ or https://https://doi.org/10.5524/102661. Our softw ar e can be 
accessed via https://github.com/Lewis- Stuart- 11/3D- Plant- View- Synthesis. 

Ke yw or ds: 3D Gaussian splatting, 3DGS, neur al r adiance fields, NeRF, view synthesis, machine learning, 3D reconstruction, digital 
twin, robotics, phenotyping, imaging 
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Introduction 

In recent years, 3-dimensional (3D) reconstruction of plants has 
become an important tool in plant phenotyping pipelines. Gener- 
ating a 3D r epr esentation of a plant facilitates effective extraction 

of k e y tr aits and simplifies the anal ysis of complex plant structur e.
The ability to accur atel y ca ptur e these tr aits in 3D pr ovides v alu- 
able information for determining a plant’s gr owth r ate, health,
and stress factors [ 1 ]. Plant leaves (and the canopies they form) are 
inher entl y 3D structur es, and factors suc h as leaf curling, r olling,
and occlusion lead to inaccuracies when determining parameters 
fr om 2-dimensional (2D) ima ges [ 2 ]. Determining this information 

is critical in assessing the ov er all v alidity of the cr op and identi- 
fying potential alterations needed to improve yield. 

Reconstruction of plants in 3D has typically been solved 

through either har dw are or softw are approaches. Har dw are sys- 
tems based on light detection and ranging (LiDAR) use time-of- 
flight light measurement to accurately measure the distance be- 
tween the sensor and e v enl y spaced points within a scene . T hese 
de vices ar e ca pable of highl y accur ate r epr esentations of plants 
[ 3 ]. Ho w e v er, they ar e often expensiv e to acquir e and r equir e ex-
pertise to operate. Lo w er-cost softw are-based methods such as 
structur e fr om motion (SfM) oper ate by gener ating a point cloud 

from a series of 2D images of a plant [ 4 ]. Points are triangulated 
Recei v ed: August 16, 2024. Revised: December 19, 2024. Accepted: February 17, 2025
© The Author(s) 2025. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
cr oss vie ws to estimate their position in 3D space. Modern SfM
 ppr oac hes ar e efficient and r equir e little har dw are bey ond image
a ptur e de vices. Ho w e v er, these methods often pr oduce sparse
 epr esentations of a plant and may struggle to ca ptur e the fine
etail necessary for accurate phenotyping. Both LiDAR and SfM 

ener ate point r epr esentations of scenes r ather than continuous
urface r epr esentations, whic h may be r equir ed depending on the
henotyping task. 

Recent pr ogr ess in deep learning has led to the de v elopment
f view synthesis models, which offer exciting new opportunities 
or 3D plant phenotyping. These models are trained from 2D im-
ges of a scene and are commonly used to generate new views of
bjects not included in the initial training set. Ho w ever, they can
lso be used to extract volumetric representations of plants, point
louds, and contin uous re presentations, potentially enabling ste p
hange in 3D plant phenotyping. 

Neur al r adiance fields (NeRFs) [ 5 ], popularised in 2020, utilise a
eural network and volumetric rendering to generate a continu- 
us r epr esentation of a scene . T hree-dimensional Gaussian splat-
ing (3DGS) [ 6 ] projects a series of coloured ellipsoids into a scene
nd employs gradient descent to optimise their positions , shape ,
nd shading. These methods implicitly generate a 3D representa- 
ion of a scene, and while most liter atur e focuses on generating
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nseen views, these techniques can be utilised for 3D reconstruc-
ion of plants . T her e has been limited r esearc h on the use of view
ynthesis models for plant shoot r econstruction; these ar e emer g-
ng technologies, but primarily, there is finite availability of large
 ultivie w datasets r equir ed to exploit these methods. 
In this article, we introduce an extensive multiview dataset of

heat plants and demonstrate the state-of-the-art performance
f view synthesis models on both novel view synthesis and 3D
lant reconstruction. Our dataset comprises 20 wheat plants cap-
ur ed ov er 6 time fr ames. For eac h plant and at each time point, we
rain high-quality models using both NeRF and 3DGS a ppr oac hes,
hich we use for novel view synthesis and full 3D reconstruction
f each plant. Our dataset aims to serve as a baseline for evaluat-
ng different view synthesis models on plants and can also be used
o de v elop and test a large number of downstream tasks related
o 3D phenotyping, such as extraction of 3D traits, surface recon-
truction, canopy light modelling, and next-best-vie w pr oblems.
e pr ovide str aightforw ar d scripts and thorough documentation

o assist other r esearc hers in executing our trained view synthesis
odels locally. 
We utilise wheat plants in this article as these species are one of

he most widely produced crops worldwide, accounting for 20% of
uman calories as well as providing vital proteins , minerals , and
itamins for a healthy human diet [ 7 ]. The global av er a ge annual
ield increase of wheat is 0.9%, but the predicted increase in de-
and is 2.4% [ 8 ]. Wheat plants offer substantial challenges com-

ared to typical scenes used to evaluate view synthesis models.
hese include m ultilayer ed occlusions and narrow leaf structure,
aking them an a ppr opriate tar get for e v aluating the ca pabilities

f different 3D reconstruction methods. 
Each wheat plant was captured from multiple views using a

ual-r obot ima ging setup, enabling the ca ptur e of a wide r ange of
iews and good coverage of each plant. Our robot setup also facil-
tates logging of camera positions in metric units, ensuring that
he measur ements r ecorded on the reconstructed plants from ei-
her NeRF or 3DGS are equivalent to their real-life counterpart. We
se 2 robots to capture the widest possible range of views, but our
 ppr oac hes ar e compatible with single-r obot or other systems. 

We validate the accuracy of novel view synthesis by comparing
 ender ed ima ges a gainst unseen vie ws of the r eal plants. We find
hat both a ppr oac hes offer excellent render quality, with 3DGS of-
ering the best performance. Figure 1 shows r ender ed ima ges of a
heat plant that was reconstructed using both of these methods.
To validate the accuracy of the 3D reconstructions produced by

oth NeRF and 3DGS, we manuall y ca ptur e se v er al of the ima ged
lants using a handheld structured light scanner (Handheld 3D
canner; Einstar).We compare our model reconstructions against
his ground truth by converting these representations into point
louds and measuring the av er a ge distance between model and
orr esponding gr ound-truth points . We found that the a v er a ge er-
or between the reconstruction and ground-truth scan was only
.74 mm for 3DGS and 1.43 mm for NeRF. In contrast, point clouds
ener ated using m ultivie w ster eo (MVS) and SfM had an av er a ge
rror of 2.32 mm and 7.23 mm, respectively. 

We conclude by discussing the potential use cases and implica-
ions of these new technologies on the field of plant phenotyping.

e release the full dataset of 112 plant instances and over 35,000
DB-D ima ges, all tr ained models, camer a par ameters, computed
D r epr esentations, and gr ound-truth scans. We also r elease our
ma ge ca ptur e fr ame work, compatible with an y r obot that sup-
orts the robot operating system (ROS) [ 9 ]. This framework can
ener ate ne w datasets r eady for tr aining on an y standardised vie w
ynthesis model. We also provide our robot configuration files,
nabling convenient replication of the setup in any environment.
f r equir ed, this same setup can be deplo y ed virtually using the
azebo r obotics sim ulator libr ary [ 10 ], enabling the ca ptur e of
ynthetic plant models. 

In summary, our main contributions are: 

� A ne w vie w synthesis dataset of 112 wheat plant instances.
This dataset can be used to de v elop and tr ain ne w vie w
synthesis and 3D modelling a ppr oac hes that tar get complex
plant topology or to de v elop and e v aluate ne w 3D pheno-
typing a ppr oac hes . T his dataset can be accessed via https://
plantimages.nottingham.ac.uk [ 11 ] or https:// https:// doi.org/
10.5524/102661 [ 12 ]. 

� A dual-r obot ima ge ca ptur e setup a pplicable to a v ariety of
robot manipulators and image capture devices. Our system is
designed such that all 3D models exist in a metric coordinate
system, and so phenotyping measurements may be directly
mapped to the original plants. 

� Experiments demonstrating the benefits and dr awbac ks of
view synthesis models compared to standardised methods
for 3D plant reconstruction and a detailed comparison of the
strengths and weakness of both NeRF and 3DGS a ppr oac hes
for plant phenotyping. 

� All of our robot configuration files, view capture pipeline, and
3D Gaussian splatting to point cloud conversion codebase can
be found on our GitHub Repository via https://github.com/
Lewis- Stuart- 11/3D- Plant- View- Synthesis [ 13 ]. 

ac kgr ound 

D plant representations 

oint clouds r epr esent one of the mor e fundamental forms of 3D
 epr esentation, wher ein an object’s surface is encoded as a set of
oints with a 3D position and optionally an RGB colour value . T his
ata r epr esentation has become popular for downstr eam pheno-
yping tasks, such as leaf/stem segmentation [ 14 ], or estimating
r anc h angles [ 15 ]. Additionall y, se v er al softwar e pac ka ges hav e
een de v eloped to automaticall y extr act phenotypic tr aits, suc h
s plant height, projected leaf area, and convex hull volume, from
oint clouds of various species [ 16 , 17 ]. Consequently, many 3D
lant datasets have been developed that consist of point clouds
f plant structures that can be utilised for phenotyping [ 18 ]. De-
pite this, point clouds are often impacted by erroneous outliers,
r equentl y necessitating the application of postprocessing algo-
ithms to denoise the reconstructed data. In addition, point clouds
rovide no explicit surface representation. 

Voxel grids constitute another widely adopted representation
ethod, in which the 3D environment is divided into a grid of vox-

ls, each constituting distinct colour values in a predefined space.
his r epr esentation has demonstr ated its efficacy in various phe-
otyping tasks, including the assessment of holistic and compo-
ent c har acteristics [ 19 ], as well as the computation of leaf angles
 20 ]. While voxel grids offer good noise robustness, they often sac-
ifice fine-grained surface detail when compared to point clouds
ue to their fixed grid resolution. 

Meshes r epr esent an alternativ e 3D r epr esentation a ppr oac h
hat involves the reconstruction of plant surfaces through the
se of polygons. While meshes have occasionally been utilised

or phenotyping [ 21 ], their additional complexity often sees their
se in physical simulations rather than standardised phenotyping
ractices. 

A dr awbac k common across current 3D representations is that
he quality of the reconstruction is reliant on challenging data

https://plantimages.nottingham.ac.uk
https://doi.org/10.5524/102661
https://github.com/Lewis-Stuart-11/3D-Plant-View-Synthesis


High-fidelity wheat plant reconstruction | 3 

F igure 1: Sho wcase of some of the r ender ed ima ges for one of the plants in our vie w synthesis dataset (bc1_1054: 13-03-24). Left column displays the 
ca ptur ed gr ound-truth ima ges. Middle column contains ima ges r ender ed after tr aining with standard RGB ima ges, with tr ansforms calculated after 
bundle adjustment, on the nerfacto NeRF model. Right column displays images rendered after training with undistorted RGB images, with transforms 
calculated after bundle adjustment, on the splatfacto 3DGS model. 
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acquisition and 3D reconstruction methods. Image-based meth- 
ods often struggle to reconstruct the complex topology of plants,
and as such, these 3D structures are often sparse, inadequately 
capturing the intricacies of their real-life counterparts. 

Recent de v elopments in deep learning hav e led to se v er al ne w 

formats for r epr esenting 3D structur es. One important de v elop- 
ment has been the adoption of implicit r epr esentations, whic h 

model plants as a continuous structur e, r ather than at discrete 
positions such as points or voxels. Typically, this is ac hie v ed us- 
ing a deep neural network that is trained to represent the plant 
and sample from any position. These representations circumvent 
the limitations of tr aditional 3D structur es, as the accur acy of the 
r econstruction depends solel y on the r esolution of the input data 
and the complexity of the reconstructed model. While these mod- 
els offer potentially unlimited sampling resolution, in practice, 
they can be challenging to use to extract plant traits. All existing 
phenotyping pipelines assume a discrete representation in a form 

abo ve , and further research is required to explore the potential of 
these exiting new models. 

Another r ecent de v elopment has been in 3D Gaussian r epr e- 
sentations, whic h ar e conceptuall y similar to point clouds . T his 
r epr esentation is formed of a series of 3D Gaussian functions pro- 
jected into 3D space, with their shape and colour being optimised 

to effectiv el y model the plant. Intuitiv el y, these can be thought of 
as a coloured or semi-transparent ellipsoids. Many ellipsoids can 

be positioned and shaped to represent a dense reconstruction of 
the surfaces in the scene. 

Ov er all, these modern r epr esentations circumv ent the limita- 
tions of traditional 3D structures, as the accuracy of the recon- 
struction depends more on the resolution of the input data and 

the complexity of the r econstruction model. We r efer inter ested 

readers to [ 22 ] for a detailed discussion of 3D r epr esentations and 

r econstruction a ppr oac hes for plants and tr ees. 

3D reconstruction methods 

Reconstruction methods are typically split into 2 categories: ac- 
tiv e a ppr oac hes, in whic h light emitters ar e utilised to r etrie v e in-
formation about a 3D scene [ 23 ], and passiv e a ppr oac hes, in whic h 

equipment, typicall y RGB camer as, ar e emplo y ed to r eceiv e light 
that can be used to extract 3D information of an environment 
[ 24 ]. A common a ppr oac h to activ e 3D r econstruction involv es the 
tilisation of 3D laser scanners/LiDAR cameras . T hese devices de-
ermine distances from their optical centres by measuring the 
ime it takes for emitted light to r eac h a specific point on a sur-
ace within an envir onment. Costl y industrial-gr ade scanners ar e

a pable of gener ating highl y detailed 3D point clouds within a
efined ar ea [ 25 ]. Wher e cost is pr ohibitiv e, low-cost depth cam-
r as hav e also been utilised for effective plant reconstruction [ 26 ].
hile these technologies excel in rapid data acquisition, they do

a ve limitations , including restricted co verage and difficulty cap-
uring dense or topologically complex regions. As a result, these
canners are not optimally suited for capturing plants charac- 

erised by intricate detail (e.g., thin leaves, small br anc hes, spikes)
 27 ]. 

Two-vie w ster eo is one of the earl y forms of passiv e 3D r econ-
truction and r equir es onl y 2 RGB camer as . Con v ersion fr om 2D to
D involves triangulation of pixel data based on r egister ed camer a

ositions . T his process offers rapid and effective retrieval of plant
 har acteristics but typically yields sparse reconstructions of plant
odels [ 28 ]. 
MVS extends this a ppr oac h by intr oducing m ultiple camer as

nto the image acquisition process. Consequently, this approach 

an generate dense 3D point clouds with impressive high point-
osition accuracy. MVS has been shown to reconstruct plant 
anopies with high accuracy [ 29 , 30 ] and has become popular as

n initial step in phenotyping pipelines [ 31 , 32 ]. Ne v ertheless, this
 ppr oac h can incur a high computational cost compared to active
econstruction methods, and the accuracy of the 3D point cloud is
ir ectl y r eliant on the pr ecision of the r egister ed camer a’s position
nd rotation. 

MVS produces dense point clouds, but it does not compute
amera poses and so is typically preceded by a camera calibration

tep such as the use of a SfM algorithm. SfM produces sparse point
louds but can calculate camera poses that are not known prior
o image acquisition. SfM incorporates preliminary steps such as 
oint extr action, matc hing, and triangulation to accur atel y de-
ermine camera positions before proceeding to dense reconstruc- 

ion. SfM has been shown to work effectiv el y for reconstruction
f plant geometry [ 33 ] and trees [ 34 ]. Ho w e v er, this pr ocess r e-
uir es accur ate featur e matc hing, whic h is c hallenging on plants
her e textur e is often re petiti ve, and the y exhibit complex shape
nd self-occlusion. Furthermore, while the process of camera 
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alibration in SfM makes image acquisition more flexible, this
ommonl y r esults in 3D scenes that do not correspond to real
etric or known units . T his means that scenes must be manually

caled or otherwise r egister ed later by some additional process.
ithout such a registration, k e y phenotyping characteristics such

s plant height, leaf area, and convex hull would be inaccurate. 
Ultimatel y, the c hoice of 3D r econstruction tec hnique depends

n the specific plant being ca ptur ed, the av ailable ca ptur e equip-
ent, and the desir ed pr ocessing time [ 35 ]. Additional informa-

ion on various standardised 3D plant reconstruction methods
an be found in [ 36 ] and [ 37 ]. 

iew synthesis models 

iew synthesis is the process of generating novel images of an
nvir onment fr om a specific vie wpoint not included in the set of
rior ima ges. Although vie w synthesis models hav e seen limited
ptake for plant phenotyping so far, we foresee increased use in
he future, better enabling applications such as next best view and
xtr acting phenotypic tr aits fr om m ultiple vie ws. Vie w synthesis
odels onl y r equir e a set of 2D ima ges and a series of “trans-

orms,” which define the intrinsic and extrinsic camera param-
ters, similar to the r equir ements to gener ate a point cloud using
VS. 
NeRFs [ 5 ] are a proposed solution to view synthesis, producing

ov el vie ws that hav e been seen to far sur pass pr e vious meth-
ds, e v en on complex scenes. NeRF employs volumetric rendering
echniques that utilise a neural network to predict density and
olour at positions in the envir onment. Consequentl y, NeRFs ar e
 promising candidate for 3D reconstruction from images. 

Se v er al impr essiv e extensions hav e been pr oposed for NeRF,
uc h as impr ov ed r ay-casting in Mip-NeRF 360 [ 38 , 39 ] and hash-
ncoding in Instant-NGP [ 40 ]. NeRFStudio, a popular view synthe-
is fr ame work, intr oduced NeRF acto , whic h incor por ates success-
ul arc hitectur al impr ov ements fr om v arious NeRF models [ 41 ]. 

While NeRFs produce extremely impressive reconstruction re-
ults, utilising a neural network to encode the entire scene leads
o slow rendering times and challenges that arise with handling
mplicit data. 

At the time of writing, there has been limited r esearc h utilis-
ng NeRFs for 3D plant reconstruction. First, it has been shown
hat plants can be reconstructed in high accuracy by comparing
he NeRF r epr esentation to a ca ptur ed gr ound-truth scan, yielding
n impr essiv e r esult of onl y 10-mm err or for single indoor maize
lant [ 42 ]. Other studies have extended this by evaluating NeRF
n multiple indoor and outdoor plants [ 43 ], confirming similar re-
ults, with NeRF r epr esentations tr ained using NeRFacto pr oduc-
ng the most precise 3D representations. 

It has also been demonstrated that NeRF can reconstruct a va-
iety of different types of fruit with high accuracy [ 44 ], including
eppers , tomatoes , and pitaha ya. T his shows that NeRFs ar e ca pa-
le of effectiv el y r econstructing plants with complex structur es,
aterials , and occlusions . 
Other studies focused more on applying NeRF directly to phe-

otyping problems. PeanutNeRF [ 45 ] accomplished peanut pod
etection by creating a 3D implicit representation of the peanut
lant using a NeRFacto model and using a segmentation and
ounding box estimation pipeline to identify areas in the scene
hat enca psulate eac h indi vidual pean ut pod. Another stud y de-
lo y ed a portable robot with an attached camera and scanner

n a greenhouse to reconstruct peppers [ 46 ]. A segmentation al-
orithm was de v eloped to identify these peppers from a trained
eRF model and extract phenotypic traits, such as width and
eight. These measurements could be accurately calculated since
he robot was calibrated in metric units . T his study was able to
econstruct the peppers with an high accuracy of 0.881 mm com-
ared to a scanned ground-truth point cloud. While NeRF models
r e ca pable of high-quality r econstructions, r eplicating these r e-
ults can be challenging, and captured datasets are either limited
r have not been made public. 

3DGS [ 6 ] r epr esents another a ppr oac h to view synthesis, in
hich the scene is populated with 3D Gaussian ellipsoids that

ncode colour and density at different positions within an envi-
 onment. Gr adient descent is used to optimise each of the Gaus-
ians in the scene to fit the environment correctly. Culling algo-
ithms ar e incor por ated to ensur e r edundant Gaussians ar e r e-
ov ed fr om the scene. 
T here ha ve been several proposed improvements to 3DGS, such

s incor por ating anc hor points [ 47 ], impr ov ed pruning functions
 48 ], and SfM-free initialisation [ 49 ], but so far, the process is still
n its infancy. NeRFStudio has released its own 3DGS model known
s Splatfacto, which can produce high-quality reconstructions.
nlike NeRF, Gaussians are an explicit representation of the scene,
hich makes them more flexible to handle, allowing 3DGS appli-

ations to perform real-time rendering. The differences between
hese 2 methods are visualised in Fig. 2 . 

To our knowledge, there has been no pr e vious a pplication of
 ppl ying 3DGS to plant shoot reconstruction. 

lant imaging setups 

umerous plant image capture setups have been proposed for 3D
econstruction, including those noted in the studies abo ve . Some
nvolve gantry systems equipped with robotic arms designed to
a ptur e vie ws fr om v arious angles ar ound a plant subject [ 50 ].
impler setups utilise a rotating board to reposition 2 cameras
round a plant subject [ 51 ], while other systems use a turntable to
otate the plant subject rather than manoeuvring the cameras [ 32 ,
2–55 ]. Many existing installations are challenging to re-deploy
nto new locations due to a lack of available configuration and
oftware. Others with limited range of movement are incapable
f capturing the full range of views required for effective 3D re-
onstruction using view synthesis models. 

Here, w e utilise tw o Univ ersal Robots UR5 r obotic arms, along
ith a turntable, to ca ptur e the broad range of necessary views for

econstruction of wheat plants. UR5 robotic arms have found ap-
lication in various phenotyping contexts, such as leaf scanning
 56 ], plant grasping/pruning [ 57 , 58 ] and next-best view planning
 59 ], primarily due to ease of use and moderate reach. 

ethods 

obotic imaging setup 

iew synthesis models, such as NeRF and 3DGS, benefit from a
arge number of views of the scene. Ideal imaging setups would
a ptur e ima ges at equidistant interv als ar ound an object being
ma ged, with as m uc h of the object as possible in vie w within eac h
r ame. Our r obot ca ptur e setup is designed with these features
n mind while remaining easily reconfigurable and adaptable to
ther plant species or installation locations. 

We experimented with a single UR5 using an Intel Realsense
435i camera mounted at the tool centre point (TCP). Ho w ever,
e found that a single robot failed to provide adequate reach to
btain the majority of r equir ed vie ws, particularl y acr oss the full
ange of 360 degrees around the plant. 
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Figure 2: A visual depiction of the basics of SfM, MVS, NeRF, and 3DGS. In SfM, data ar e ca ptur ed and a point cloud is gener ated using 
photogrammetry. MVS takes the SfM point cloud and camera poses and calculates a much denser point cloud. It is important to note that MVS does 
not always require an initial sparse point cloud, but it does for COLMAP, which is the framework that was employed for our experiments. Both NeRFs 
and 3DGS begin with an empty scene and ar e tr ained on the ca ptur ed ima ges with associated camera poses . In NeRFs , ra y marching is used to interact 
with the scene at specific locations, and these queried points are optimised to reconstruct the plant correctly. 3DGS projects a set of initial Gaussian 
ellipsoids into the scene, and over time, these Gaussians are optimised to better represent the shape and appearance of the plant in 3D space. 

 

 

 

 

 

 

 

 

Figure 3: Image showing the effectiveness of the different considered 
setups. Blue points r epr esent positions around the plant that could be 
r eac hed, while r ed points r epr esent positions that wer e unr eac hable. 
These points were generated for a plant with a height of 0.5 m and a 
ca ptur e r adius of 0.75 m . The differ ent setups ar e as follows: (i) A setup 
consisting of only 1 UR5 arm in position (0.35 m, −0.45 m, 1.3 m). (ii) A 

setup consisting of only 1 UR5 arm in position (0.85 m, 0.45 m, 0.85 m). 
(iii) A setup with 2 UR5 arms in positions (0.35 m, −0.45 m, 1.3 m) and 
(0.85 m, 0.45 m, 0.85 m). (iv) Our final setup with 2 UR5 arms in positions 
(0.35 m, −0.45 m, 1.3 m) and (0.85 m, 0.45 m, 0.85 m) and an 
accompanying turntable. 
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To address this limitation, we integrated a Zaber X-RST stepper 
motor turntable, which offers a full 360 ◦ rotation range with 0.16 ◦

unidir ectional accur acy. The turntable’s ability to r otate to an y an- 
gle allo w ed us to focus onl y on vie wpoints along the x- and z-axes,
with the y-axis being fixed. We set the turntable speed to pr ecisel y 
3 ◦ per second to minimise plant micr o-mov ements during r ota- 
tion while also maintaining efficient rotation time . T he turntable 
was centred at the origin (0,0,0) of our robot’s coordinate system,
allo wing straightforw ar d calculations of tr ansform positions r el- 
ative to the turntable. 

Despite this, we found that some vie ws, particularl y those 
above the plant, remained challenging to reach for a single robot.
We ther efor e emplo y ed a second UR5 robotic arm mounted on 

a separ ate pedestal, ele v ated abov e the base of the other robot,
whic h incr eased our r ange of potential vie ws . T he base of the 
first UR5 was positioned at coordinates (0.35 m, −0.45 m, 1.3 m),
while the base of the second UR5 was located at coordinates (0.85 
m, 0.45 m, 0.85 m). Our coordinate system adhered to the stan- 
dar d R OS conv ention, wher e the positiv e z-axis points upw ar d 

and v alues ar e in metric units. Eac h UR5 base was mounted on 

a customised pedestal, str ategicall y positioned to provide access 
to vie ws r anging fr om 0.3 to 1.5 m from the turntable origin. Con- 
sidering that the camera should be r oughl y 1.5 × the distance from 

the centre of the plant for effective reconstruction, this imaging 
setup was capable of capturing wheat plants from 0.2 to 1.0 m 

in height during our experiments . T hese choices ensured that our 
setup could ca ptur e a wide range of views for a variety of different 
plant sizes. Each iteration of our setup, along with a showcase of 
r eac hable vie ws, is depicted in Fig. 3 . 

To control the UR5 robotic arms, we installed ROS Noetic Nin- 
jemys and de v eloped a custom dual UR5 Mov eIt [ 60 ] pac ka ge,
enabling parallel path planning for both arms. To facilitate this,
we created a custom Unified Robot Description Format (URDF) 
file with joints extending from the turntable centre to each cam- 
er a’s optical centr e. Utilising ROS ensur ed that all gener ated tr ans- 
forms and robot positions were consistently in metric units. Addi- 
tionally, we established distinct kinematic chains for each arm to 
pr ecisel y align the plant’s centre with the middle of each captured 

image, an important factor for accurate 3D reconstruction. 
We utilised 2 RealSense D435i cameras for image capture,

mounted on the TCP of each UR5 robotic arm. The RealSense 
camer as wer e c hosen due to their small external dimensions and 

straightforw ar d integration onto the robot TCPs . T hese cameras 
llo w ed us to acquire precise depth information that could be in-
egrated into the 3D reconstruction process if desired. The depth
 hannel r epr esents an optional addition to an y 3D r econstruction
ipeline. While higher-quality cameras could have been chosen,
roducing high-quality reconstructions using standard HD cam- 
ras shows the efficacy of view synthesis models for more afford-
ble ca ptur e setups. Furthermor e, the tr aining time is dir ectl y r e-
ated to the size of the input images, so lo w er resolutions offer
n extra advantage in this regard. We calculate the intrinsic pa-
ameters for each camera through a standard calibration process 
tilising a chessboard pattern and OpenCV’s camera calibration 
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Figure 4: Ov ervie w of our entir e pr ocess cov ering ima ge ca pturing to 3D r econstruction. First, a set of ima ges and tr ansforms ar e ca ptur ed using the 
vie w ca ptur e fr ame work. Next, the outputs are formatted. This includes oper ations suc h as r efining tr ansforms using bundle adjustment and 
gener ating masks. Finall y, the gener ated dataset is tr ained using NeRFStudios’ NeRF and 3DGS models. 
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 61 ] toolkit. These parameters can be combined with the camera
ose , pro vided by the positioning of eac h r obot, to pr oduce a full
a pping fr om 3D w orld coor dinates into eac h ima ge. 
One of the k e y challenges associated with using a turntable is

hat, although the plant subject can rotate to any desired angle,
he bac kgr ound r emains consistent in eac h vie w. This is a c hal-
enge for view synthesis models, as the discrepanc y betw een the
or egr ound and bac kgr ound intr oduces significant noise during

odel training. To address this, we implemented a white back-
r ound ar ound the r obots and turntable, wher e the lac k of notable
eatur es incr eased the quality of the final 3D reconstruction. We
lso experiment with additional bac kgr ound r emov al. 

Since extr acting featur es fr om objects in fr ont of a white bac k-
round can be challenging, a red and blue checkerboar d w as po-
itioned on the turntable . T his assisted in the feature extraction
rocess that was employed in our camera pose refinement pro-
ess, as well as assisting the point cloud generation for our exper-
ments with both SfM and MVS. 

We observe that in some views, the base of the second robot
ppears in the images captured from the first robot, adding addi-
ional noise in the final reconstructions and causing the plant to
e r ender ed incorr ectl y. We r esolv ed this issue by cr opping eac h

mage to have a square aspect ratio with a pixel size of 1,080
1,080, improving reconstruction quality and reducing training

ime by half. 
Two diffuse light sources were positioned either side of the

lant to ensure that lighting would appear uniform, with a min-
mum of cast shadows and specular reflections, when the plant
as 3D reconstructed. 
Finall y, a part fr om the turntable, we faithfull y r eplicated our

ystem in a Gazebo sim ulation envir onment. This allows the sim-
lation to be run with an associated vie w ca ptur e softwar e pac k-
 ge to gener ate vie w synthesis datasets on synthetic 3D models.
ore information about how we calibrated our setup can be found

n section 1 of the supplementary material. All robot configura-
ion files and compr ehensiv e documentation can be accessed in
ur GitHub repository. 

iew capturing pipeline 

e build upon our robotic platform and de v elop a highl y cus-
omisable view capture framework capable of generating view
ynthesis datasets with any ROS-supported robot equipped with
 camera and an associated MoveIt package . T he framework is
esigned to ca ptur e ima ge datasets with known transforms that
an be used to train view synthesis models . T his capture pipeline
s shown in Fig. 4 . 

A full ca ptur e run begins using an a ppr oximation of the dimen-

ions of the plant, as well as the optimal radius around the ob-
ect’s centre used for generating the camera positions. Exact di-

ensions of the plant are not necessary; during our experiments,
e typicall y c hose a single v alue for all plants at the same growth

tage. We found that capturing views roughly 1.5 × the height of
he plant resulted in the best reconstructions, since the major-
ty of the plant is in the camera frame while not being too dis-
ant to impact image quality. Using a simple sphere point genera-
ion algorithm, potential views are formed around the object, with

he turntable rotations being calculated as the angle between the
xed x-axis and the generated points. 

We then determined the closest robot to each specified point,
dding that point into the r espectiv e r obot’s mov ement queue.

uring execution, eac h r obot attempts to r eposition to the next
oint in the queue in parallel. If this fails, each robot will then at-
empt to move to each point sequentially. At every point, an RGB-D
mage is captured alongside the current transform, which accu-
 atel y ma ps the camer a in 3D space r elativ e to the curr ent angle

f the turntable. For eac h ca ptur ed ima ge, an associated mask is
enerated that labels pixels that are part of the plant structure,
hich can be used for segmenting out the bac kgr ound. A simple
ixel intensity threshold algorithm was used to r emov e pixels in
he white bac kgr ound. Er osion and dilation functions are included
o r emov e excess noise. Finall y, a connected components pr ocess
as utilised to identify the largest component in the mask, which
e found was the plant in all cases, and other components are
 emov ed fr om the ima ge . T his pr ocess pr oduced masks that al-
ost completely removed the white background but also occa-

ionally segmented out small stems of the wheat plant. While
oth depth and segmentation information are useful inclusions to
he dataset, these are not essential for training of view synthesis

odels. We experiment with including these data in the training
rocess. 

In typical pipelines, SfM is r equir ed to determine the camera
oses at each image. Our approach utilising robotics ensures that
he camera poses are already known for each image, skipping the
fM stage that could lead to additional errors or inaccuracies . T his
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Table 1: The different combinations of input ima ges, tr ansforms. 
and models used for the various training setups 

Transform type Training images Model 

1 Original RGB NeRFacto 
2 Refined RGB NeRFacto 
3 Refined Segmented RGB NeRFacto 
4 Refined RGB + depth map Depth-NeRFacto 
5 Refined Undistored Splatfacto 
6 Refined Segmented undistored Splatfacto 
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also provides 3D coordinates in metric units, which is helpful for 
plant phenotyping problems, and forgoes the need to calibrate 
camera poses for each plant. 

We have found that NeRF models in particular ar e sensitiv e to 
e v en v ery small inaccur acies in vie w position, suc h as err ors in 

camera position of ∼1 mm. To address this issue, we incorporated 

bundle adjustment to refine our camera poses once ca ptur e was 
completed. The bundle adjustment process was initialised using 
the camera poses produced by our system, after which feature 
extr action, featur e matc hing, and point triangulation acr oss the 
ca ptur ed ima ge set r efined the position of eac h camer a. Our gen- 
er ated masks wer e incor por ated into the featur e extr action pr o- 
cess, ensuring that bac kgr ound pixels were excluded during point 
triangulation, improving the final accuracy of the bundle adjust- 
ment step. While our masks do suffer from slight inaccuracies,
we found that the impact on the refinement process was negli- 
gible, with the majority of the points corr ectl y triangulated. The 
r efinement pr ocess was iter ated 3 times to ensur e accur ate con- 
v er gence, with camer a poses being r escaled between iter ations to 
avoid drift of the generated point cloud. Once the camera poses 
had been optimised, each image was undistorted and a final point 
cloud was generated, since 3DGS models require these data to 
tr ain corr ectl y. This pr ocess was performed using COLMAP [ 62 ],
a popular SfM fr ame work. 

We have made all software, configuration files, and docu- 
mentation r equir ed to run our image capture pipeline publicly 
a vailable . 

Experiment 
Data acquisition 

To e v aluate the efficiency of vie w synthesis models for plant r e- 
constructions, we ca ptur ed a lar ge dataset of wheat plant ima ges 
and associated transforms. Wheat plants were chosen due to their 
a gricultur al significance and the challenges they present for 3D 

r econstruction, suc h as occluded leaves and thin stem structures.
To ensure that a diverse dataset was ca ptur ed, 20 individual 

wheat plants, selected from 6 different genotypes (see below),
wer e ima ged at 6 distinct time points. Ima ge ca pturing began 6 
weeks after the plants were sown, and we ca ptur ed these plants 
again at 7, 9, 10, 11, and 15 weeks . T he plants were divided into 3 
batc hes, with eac h batc h being ima ged on differ ent days to main- 
tain consistency. Each batch was transported from the Univer- 
sity of Nottingham (UoN) Sutton Bonnington campus, where they 
wer e gr own, to our ima ging centr e at the UoN J ubilee campus . On 

week 7, only 12 of the 20 plants were captured due to a technical 
issue with one of the UR5s , dela ying ima ge ca ptur e for 1 week. We 
include this week regardless as 12 valid instances were captured.
Plants were germinated in John Innes No. 2 compost and then ver- 
nalised at 6 ◦C with 18 hours light, 6 hours dark for 4 weeks. Af- 
ter vernalisation, plants were potted into 2-L pots with John Innes 
No. 3 compost and grown in glasshouse conditions . T he cultivars 
used in this study were provided by the UoN Wheat Research Cen- 
tre and the John Innes Centre Germplasm Resource Unit; they are 
as follows: Chinese Spring, Langdon, BC1(1051-1054), GRU-2B(2J), 
GR U-2D(2J), and GR U-DA5J. 

Chinese Spring is an elite cultivar of hexaploid bread wheat,
Triticum aestivum (2n = 6x = 42 (AABBDD)). Langdon is an elite cul- 
tivar of tetraploid durum wheat, Triticum turgidum (2n = 4x = 28 
(AABB)). BC1 plants are from an original cross of Chinese Spring 
× Aegilops mutica (2n = 2x = 14 (TT)), creating the first filial gen- 
er ation, and subsequentl y bac kcr ossed to Chinese Spring, cr eat- 
ng a BC1 intr ogr ession line . GR U-2B(2J) and GR U-2D(2J) are T. aes-
ivum with a c hr omosome substitution fr om Thinopyrum bessara-
icum (2n = 2x = (JJ)), and GRU-DA5J are where a disomic addi-
ional c hr omosome of Th. bessarabicum is pr esent. 

These cultiv ars wer e selected based on their genetic variability.
read wheat, durum wheat, and wild r elativ e substitution, addi-
ions, and intr ogr ession lines all expr ess v arying phenotypes . T his
r oad r ange of differ ent wheat plant ensur es that our dataset

s extensive and provides additional challenges for downstream 

asks. 
To ensure consistent alignment, a crosshair icon was attached 

o the pot of each plant. This enabled us to position the plant in a
imilar pose and orientation for each capture session, potentially 
acilitating growth tracking over time. 

During ca ptur e, a ppr oximatel y 320 RGB-D ima ges wer e taken
r ound eac h plant at equidistant interv als fr om the centr e of
he main stem. This number was chosen to balance reconstruc-
ion quality and ca ptur e time. A 1:8 r atio was used for our train-
ng/e v aluation ima ges, whic h ensur ed that our e v aluation r esults
orr ectl y r eflect the accur acy of the final r econstruction while also
nsuring that sufficient images were utilised in the training pro-
ess . T he entir e ima ging pr ocess, including postca ptur e bundle
djustment, took a ppr oximatel y 30 minutes for eac h plant. 

On the 11th w eek, w e ca ptur ed a ground-truth scan of each
lant using an Einstar 3D Handheld Portable Scanner. This scan
r ovided a pr ecise gr ound-truth 3D point cloud, allowing di-
ect comparisons between the scans and model reconstructions.
o validate the scanner’s capability in generating a consistent 
round-truth point cloud, we generated 5 scans of a metal plant
odel and assessed the consistency of generated points between 

he resulting point clouds. We found that the av er a ge distance be-
ween corresponding points across repeated scans was 0.76 mm,
emonstrating a high degree of repeatability. We also compared 

ach of the generated scan point clouds against a r efer ence point
loud produced by an X-ray microCT scanner (Model v | tome | x
; GE Healthcare) with a spatial resolution of 150 μm. The av-
r a ged accur acy differ ence was 0.75 mm, suggesting that the
instar is suitable for providing accurate ground truth for our
xperiments. 

raining 

or each plant, we trained several variations of our captured data,
s shown in Table 1 . Our aim was to find the combination of im-
 ge, tr ansform, and model that produced the best reconstruction
esults for both NeRF and 3DGS. 

We trained using both original transforms and those refined 

ia bundle adjustment. Next, models were trained using the stan-
ard RGB images with backgrounds, and others were trained us-

ng the segmented images with the bac kgr ound r emov ed. Depth
a ps wer e also included when training the NeRF model; curr entl y,

his is not supported in the 3DGS model. The 3DGS models were
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rained on undistorted images following bundle adjustment, as
ell as using the initial sparse point cloud produced by this pro-

ess. 
Two variants of NeRF models were trained, NeRFacto and

epth-NeRF acto , depending on whether an experiment utilised
he depth information provided with each image. Each NeRF

odel was trained for 30,000 iterations, after which we observed
o further impr ov ement in performance. All models were trained
sing the Adam optimiser and a batch size of 4,096. We used an

nitial learning rate of 1 × 10 −2 reducing to 1 × 10 −4 over the train-
ng pr ocess. After tr aining eac h model, the final iteration was used
o e v aluate testing performance. Eac h NeRF model was also con-
erted into a point cloud and mesh using NeRFStudio. 

For Gaussian splatting, we utilised the Splatfacto model. Each
as trained with a minimum alpha threshold of 5 × 10 −3 , a scale

hreshold of 0.5 mm, and a spherical harmonic degree of 3. Gaus-
ians were initialised using the sparse point cloud generated using
OLMAP during camera refinement process. We used the default

earning rates for Splatfacto, which vary across the parameters
uch as mean, scale, orientation, and spherical harmonic features.
t the time of writing, no standard techniques were available to
onvert Gaussian splatting data into dense point clouds for anal-
sis. Selecting only the centre positions of each Gaussian would
roduce a point cloud that was too sparse for an effective com-
arison with the ground truth. We therefore developed a new ap-
r oac h for this task. 

Our fr ame work gener ates point clouds fr om Gaussian scenes
y fixing the total number of points r equir ed and distributing
hese a ppr opriatel y acr oss all Gaussians in a scene based on their
 elativ e size . T hus , lar ger Gaussians gener ated mor e points. All
oints were sampled randomly from a Multivariate Normal dis-
ribution based on the 3D covariance matrix of each Gaussian.
oint colours wer e deriv ed by rendering images across the dataset
or that scene and tr ac king the contribution of each Gaussian to
he final pixel colour at each camera location. Each Gaussian was
oloured based on the pixel across the rendered images to which
t contributed the most colour. This strategy prevents points with
ow pixel colour contributions or high tr anspar ency being as-
igned erroneous colours that do not represent the final rendered
cene. Our implementation produces accurate results and offers
igh customisation to support a variety of different scenes. 

We incor por ated se v er al tec hniques for gener ating the point
louds for both NeRF and 3DGS that ensured that the entire plant
tructur e was r epr esented entir el y. First, we cr opped the gener-
ted point cloud using an axis-aligned bounding box to ensure
hat the bac kgr ound was not included in the point generation pro-
ess. We set the bounding box size to 1 × 1 × 1.5 m and set the cen-
re of this box to the origin of the scene. For 3DGS point clouds, we
et specific parameters during point generation to ensure that the
oints best fit the reconstructed Gaussian. Points that had a Ma-
alanobis distance greater than 2.5 standard deviation (SD) from
heir Gaussian centr e wer e r emov ed and r egener ated. Gaussians
ith an opacity less than 1% were culled, and Gaussians with a

olume in the top 2.5% of all Gaussian sizes were removed since
e observed these Gaussians were always part of the background.
Eac h r econstruction was cleaned using a set of common au-

omatic operations. First, a statistical outlier removal algorithm
as implemented that grouped neighbouring points together, and

hen any point that lay a distance further than 1 SD from the lo-
al group was removed. Next, a noise filter was used that fit an
 ppr oximate surface across all points and removed points further
han 1 SD from the predicted surface . P oints were then clustered,
nd groups of points with fewer than 2,000 connected points were
 ejected. Finall y, we manuall y segmented out the points located
n the pot for both the ground-truth and reconstructed point
louds, ensuring that our accuracy metrics only contained com-
onents of the plant r ele v ant for phenotyping. The majority of
hese operations can be automated, such that most of the points
hat were part of the true plant r econstruction wer e included in
enerating our accuracy metrics. 

All NeRF acto , Depth-Nerfacto , and Splatfacto models were
rained using a single Nvidia Geforce RTX 2080 Ti gr a phics card.
longside the trained models and exported point clouds, we also
 ender ed a set of e v aluation ima ges to provide visual comparisons
etween the ground-truth images and the trained models . T hese
 ender ed ima ges wer e used to gener ate the e v aluation metrics for
ach plant. When rendering the evaluation images for the Splat-
acto model, we added a near clip of 0.25 m into the rendering
ipeline, ensuring that Gaussians part of the bac kgr ound behind
he camera did not occlude the plant. For NeRF, we set near and
ar ray clipping values of 0.01 m and 5.0 m, r espectiv el y, avoid-
ng reconstruction of spurious areas either very close or far from
amera positions. 

Given that 3DGS models generate a set of Gaussians distributed
n 3D space, we are able to perform post-training editing of the
econstructed scene. To remove the background Gaussians, we
ulled Gausssians with a volume larger than 2.5 mm, and imple-
ented a bounding box with a size of 1 × 1 × 1.5 m to isolate the

or egr ound plant r egion. The bounding box pr ocess r emov ed the
ajority of bac kgr ound Gaussians. 
We then emplo y ed a K-near est neighbours a ppr oac h to en-

ance the precision of bac kgr ound r emov al. For eac h Gaussian,
e calculated the distances to its 15 nearest neighbours and deter-
ined the av er a ge of these distances. Gaussians with an av er a ge

istance exceeding 3.5 cm were deemed to be outside the group
ssociated with the plant and were subsequently removed, since
aussians part of the plant structur e ar e closel y compact. Remov-

ng large Gaussians rarefied the remaining background, which as-
isted in identifying outliers using this method. 

This process proved to be fast and efficient, successfully elimi-
ating the majority of bac kgr ound Gaussians while preserving the

ntegrity of the plant’s structure. 
Each of these view synthesis models can be executed via a

ython script available in our dataset repository. This supports
aunching the models in NeRFStudio to view the reconstructed
lants in 3D, as well as tr aining ne w datasets on these models. A
EADME file is also included that provides more information. 

esults 

ender quality 

e e v aluate the effectiv eness of eac h r econstruction a ppr oac h
sing se v er al metrics. Eac h metric compar es the r ender ed e v alua-
ion image to the ground-truth images but focuses on highlighting
ifferent of types of inconsistencies between images. 

NeRFStudio offers scripts that automatically generate the fol-
owing metrics for the e v aluation ima ges: 

(1) Peak Signal-to-Noise Ratio (PSNR) : Measures the difference
in the intensity of corresponding pixel values using the
mean squared error formula. Higher PSNR values indicate
lo w er distortion, with a ppr oximatel y v alues of 40 db r epr e-
senting an image that is identical to the ground truth. PSNR
v alues ar e logarithmic and thus r epr esented using the deci-
bel scale (db). 
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(2) Structural Similarity Index (SSIM) : Compares local pat- 
terns of pixel intensities normalised for factors such as 
luminance and contrast. Values range from −1 to 1, with 

1 r epr esenting 2 identical ima ges. 
(3) Learned Perceptual Image Patch Similarity (LPIPS) : Calcu- 

lates the perceptual similarities between 2 images by com- 
paring the activations after passing through layers of a pre- 
tr ained convolution neur al netw ork (CNN). Lo w er values in- 
dicate higher perceptual similarities. 

While these metrics are effective at measuring the similarity 
between the r ender ed ima ge and ground truth, they consider the 
entir e ima ge, including the white bac kgr ound. This inclusion can 

ov er estimate the quality of the final r ender, wher e the simple 
bac kgr ound r epr esents a high proportion of the image, and is com- 
par ativ el y simple to render. 

We introduce a PSNR masked metric to avoid this problem.
This metric is based on the PSNR formula but only includes pixels 
within the generated image mask. This approach provides a more 
accurate assessment of the effectiveness of the reconstruction on 

the plant itself. It is important to note that this metric relies on the 
accuracy of the input mask. This metric can be considered along- 
side standard PSNR, which incorporates a measure of background 

quality. 
The following section is split into a set of experiments, each ex- 

amining the effectiveness of each of our trained model types. Each 

of these r esults ar e av er a ged ov er all 112 tr ained plant instances.
Our goal is to identify the training data configuration that pro- 
duces the best results for both NeRF and 3DGS. The list of results 
for all 112 plants can be found in section 3 of the supplementary 
material. Figure 5 presents a comparison of rendered images for 
each of the following training configurations. 

The effect of bundle adjustment on camera accuracy 

First, we e v aluate the impact of bundle adjustment on the ac- 
cur acy of 3D r econstructions using RGB ima ges. We compar e the 
original transforms generated via our robot setup to those refined 

by the bundle adjustment process. 
Table 2 shows that, as expected, the bundle adjustment process 

impr ov ed the PSNR by a ppr oximatel y 2.5 db. This shows the im- 
portance of extr emel y pr ecise tr ansform positions for these mod- 
ern 3D reconstruction processes. As a result, we decided to utilise 
the refined transforms for all subsequent models, since they pro- 
duce stronger results compared to the original transforms. We 
only conducted this comparison on NeRF models, as 3DGS models 
r equir e the sparse point cloud initialisation after bundle adjust- 
ment. 

The impact of depth on synthetic view quality 

We examined the impact of including depth maps during model 
training. We performed these experiments using the NeRF models,
as the 3DGS model does not curr entl y support depth maps. 

Perha ps counterintuitiv el y, the inclusion of depth ma ps pr o- 
duced a slightl y poor er final plant reconstruction, as highlighted 

by the PSNR masked values in Table 3 . The lo w er performance of 
RGB-D is caused by lower render quality on thin individual leaf 
tips. It is likely that the depth maps were not sufficiently accu- 
rate to properly reconstruct the thin structures prevalent in plant 
shoots . Furthermore , the depth map resolution of 720 × 720 is 
lo w er than the RGB image resolution of 1,080 × 1,080, a typical 
restriction of RGB-D cameras. An additional adv anta ge of using 
onl y RGB ima ges is that futur e experiments based on our system 
re not required to include depth cameras. We therefore do not
onsider RGB-D for any further experiments. 

he effect of background removal on synthetic view quality 

e explored the incorporation of background removal as a pre-
r ocessing str ategy to enhance r ender quality. NeRF and 3DGS
odels are designed to reconstruct the entire scene, including el-

ments irr ele v ant to the tar get plant. Consequentl y, the final 3D
 epr esentation can gener ate a white spher e ar ound the plant dur-
ng reconstruction. This obstructs views captured from outside 
his sphere, obscuring the plant. 

The NeRF training process was adapted to produce no density
r colour in areas of background. Similarly for 3DGS, the train-
ng process was restricted to only generate Gaussians that appear
n the mask for egr ound, pr e v enting r econstruction of the back-
r ound. This ada pts the tr aining pr ocess of 3DGS, but we also im-
lement our postprocessing Gaussian r emov al pr ocess to elimi-
ate the bac kgr ound Gaussians generated during training on un-
egmented images. 

T he results , shown in Table 4 , wer e e v aluated using the PSNR-
asked metric to focus the metric on for egr ound r egions. It is im-

ortant to note that this metric is not entir el y accur ate due to
he presence of noise in the masks themselv es, whic h intr oduces
enalties that do not reflect the efficiency of the background re-
o val methods . Nevertheless , the metric offers improved insight

v er whole-ima ge PSNR. 
Our findings indicate that models trained on segmented im- 

 ges gener all y pr oduced less accur ate r econstructions compar ed
o those trained on unsegmented images. In particular, NeRF often
ailed to conv er ge when tr ained using segmented ima ges . T hese
ec hniques ar e alr eady r eliant on highl y accur ate camer a posi-
ions; the addition of potentially imperfect segmentation masks 
an compound this loss in accuracy. We experimented with var-
ous segmentation methods, including CNN-based a ppr oac hes,
ut none demonstrated sufficient accuracy to overcome this bar- 
ier. These methods also added additional complexity to the re-
onstruction pipeline . T he inclusion of masks did confine compu-
ation of the scene reconstruction to pixels relevant to the plant,
hic h r educed tr aining time for both NeRF and 3DGS. 
In contrast, the postprocessing Gaussian removal technique 

r ov ed mor e effectiv e, with accur ate elimination of the major-
ty of bac kgr ound Gaussians . T his method w as straightforw ar d to
mplement and integrate into the pipeline. Some small issues re-

ain, such as compact groups of background Gaussians persist- 
ng near the base of the turntable or around the top of the plant.
hese limitations suggest that the process would benefit from 

ncor por ating mor e adv anced bac kgr ound r emov al algorithms in
he future. 

 comparison of robot-derived and SfM calculated camera 

oses 
o compare our image capture setup to standard SfM, we trained
he models on transforms generated entirely using COLMAP’s SfM 

unctionality, which is a common approach to calibration and re-
onstruction across image datasets with unknown camera poses.
uring the featur e extr action pr ocess, our gener ated masks were
tilised to ensure that only points on the plant were extracted and
atc hed, facilitating accur ate point cloud r econstruction. 
For each set of SfM-generated transforms, we calculated an ab-

olute trajectory error (ATE) by aligning the world coordinate sys-
ems between our robot camera and SfM camera poses. We then
alculated the euclidean distance between corresponding cam- 
ra poses in each system. If the ATE was greater than 1.5 mm,
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Figure 5: Visual comparison between the reconstruction results for plant bc1_1051 over 2 different time points . T he top row of images are the ground 
truth, not included in the training images, and the images below are the rendered images for each of the different training configurations . T he NeRF 
model with segmented data did not train and produce a valid 3D reconstruction in week 6, which is why there are no rendered images. Rendered 
images for the rest of the weeks for this plant be found in section 2 of the supplementary material. 
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Table 2: Ev aluation r esults for NeRF models tr ained on origi- 
nal tr ansforms acquir ed fr om our setup and transforms calcu- 
lated using bundle adjustment. Both models were trained on RGB 

images. 

Training type PSNR ↑ SSIM ↑ LPIPS ↓
PSNR 

masked ↑

Original (NeRF) 21.28 0.80 0.28 15.29 
Refined (NeRF) 23.90 0.86 0.22 19.49 

Table 3: Ev aluation r esults for NeRF models trained on RGB im- 
ages and RGB images with depth maps. 

Training type PSNR ↑ SSIM ↑ LPIPS ↓
PSNR 

masked ↑

RGB (NeRF) 23.90 0.86 0.22 19.49 
RGB-D (NeRF) 23.95 0.87 0.22 18.15 

Table 4: Ev aluation r esults for NeRF and 3DGS models using ei- 
ther masked or full RGB images . T he 3DGS results for post-training 
bac kgr ound r emov al ar e also included. 

Training type PSNR masked ↑

RGB (NeRF) 19.49 
Segmented (NeRF) 6.46 
Undistorted (3DGS) 26.31 
Segmented (3DGS) 13.75 
Postprocessed (3DGS) 17.87 

Table 5: Ev aluation r esults for NeRF and 3DGS models. One set 
was trained using our transforms acquired from the robot setup 

and bundle adjustment. Another was trained using transforms 
acquir ed fr om SfM. Onl y r esults tr ained on the gener ated SfM 

camera poses with an average error less than 1.5 mm were in- 
cluded. Both were trained using RGB images. 

Training type PSNR ↑ SSIM ↑ LPIPS ↓
PSNR 

masked ↑

Ours (NeRF) 23.90 0.86 0.22 19.49 
SfM (NeRF) 21.99 0.82 0.31 17.42 
Ours (3DGS) 28.17 0.95 0.15 26.31 
SfM (3DGS) 26.43 0.93 0.2 21.89 

 

 

 

Table 6: Ev aluation r esults for NeRF and 3DGS models. Both were 
trained on the original RGB images and transforms calculated us- 
ing bundle adjustment. 

Training type PSNR ↑ SSIM ↑ LPIPS ↓
PSNR 

masked ↑

NeRF 23.90 0.86 0.22 19.49 
3DGS 28.17 0.95 0.15 26.31 
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then it was determined that the SfM process failed to converge 
corr ectl y, with onl y 12 of 20 SfM reconstructions meeting this 
criterion. To ensure a fair comparison between models trained on 

the r obot-deriv ed tr ansforms and SfM-gener ated tr ansforms, we 
only included results from SfM transforms that had an ATE less 
than 1.5 mm, as other results were much less accurate. 

As seen in Table 5 , our pipeline ac hie v es higher accur acy ov er 
a traditional SfM approach. While SfM uses the same bundle ad- 
justment process as our refinement step, SfM must determine the 
initial camera poses during the sparse point cloud reconstruction 

pr ocess, wher eas our a ppr oac h le v er a ges accur atel y known r obot
position data. Consequently, the SfM process often failed to cal- 
culate correct positions across all images, only identifying cam- 
era positions for an average of 265 of 320 images per plant scene.
This inconsistency dir ectl y affected the quality of reconstructions,
as failed images could not be incor por ated into the reconstruction 
r ocess. Furthermor e, onl y 12 of 20 SfM reconstructions produced
amera poses within 1 mm of our robot-derived transforms, im-
lying that SfM may not be a reliable tool for calculating camera
oses for indoor plant capturing en vironments , such as ours. 

ynthetic view quality of NeRF and 3DGS 

e compare the performance of the 3DGS model to the NeRF
odel for rendering new synthetic views of each plant, using our

omplete robot-based turntable system and refined camera po- 
itions . T he results in Table 6 show the 3DGS model produced
igher-quality synthetic views compared to the NeRF model. From 

isual observ ations, ther e was r educed noise in the 3DGS r econ-
truction, particularl y with vie w points abov e the plant. We hy-
othesise that this is due to 3DGS being more effective at resolving

nconsistent bac kgr ound a ppear ance in top-down vie ws, wher e
he robot pedestals are visible. It also seemed that the NeRF mod-
ls struggled more when handling thin structures on the plant,
hile the 3DGS models appear to reconstruct these featur es mor e

ffectiv el y. Gaussians on thin structures naturally elongate and
lign along the direction of that object, potentially offering a more
 ppr opriate r epr esentation of these sha pes. 

econstruction accuracy 

hilst r endering ne w ima ges of the ca ptur ed plant is useful, the
ccuracy of the final plant reconstruction is crucial for extraction
f correct phenotypic traits in 3D. We compared point clouds cre-
ted from each model against our captured ground truths. We em-
lo y ed CloudCompare, an open-source project designed for han-
ling 3D point clouds, to calculate a final accuracy metric [ 63 ]. We
sed the provided av er a ge point distance functionality to perform
his comparison. To provide a more comprehensive comparison,
e include av er a ge measur es of distance fr om model points to the
round truth and in the r e v erse dir ection fr om the ground truth to
he nearest model points . T he first comparison aims to evaluate
he similarity of the entire ground-truth scan structure to the re-
onstructed point cloud, while the other e v aluates the accur acy of
ac h r econstructed point, r egar dless of the sparsity. The standar d
eviation of each mean distance represents the consistency of the
ccur acy for r econstructed points compar ed to the gr ound truth.
 lar ger standard de viation typicall y implies that mor e ar eas of

he reconstruction were underrepresented in the point cloud. 
It should be noted that the ground-truth point cloud often

ailed to ca ptur e the thin structures of the plant, which is why
he results have a higher inaccuracy value for comparison of the

odel points to the ground truth. 
We first generated a point cloud r epr esentation for the fi-

al NeRF and 3DGS models. It is important to note that, since
oth NeRF and 3DGS are dense data structures, there is no
imit to the number of points that can be generated by each
 epr esentation. We c hose to gener ate exactl y 10,000,000 points,
hic h ensur ed our point clouds were dense enough for an accu-

ate comparison against the ground truth. Each point cloud had
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Ta ble 7: The accurac y (mean) and v ariability (SD) of eac h of the 
3D reconstruction methods . T he top section of the table is calcu- 
lated as the av er a ge distance fr om eac h gr ound-truth point to the 
nearest neighbouring point in the reconstructed point cloud. The 
bottom section of the table shows the av er a ge distance fr om eac h 

reconstructed point to the nearest point on the ground truth. A 

low mean distance implies that the reconstruction was accurate, 
while a lo w er standar d deviation indicates that the accuracy was 
consistent for different areas of the plant. 

Comparison method Mean distance (mm) SD (mm) 

GT → NeRF 1.43 3.63 
GT → 3DGS 0.74 0.72 
GT → MVS 1.31 1.04 
GT → SfM 6.77 4.34 

NeRF → GT 4.75 7.42 
3DGS → GT 4.99 9.56 
MVS → GT 7.08 12.31 
SfM → GT 11.43 14.45 
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Table 8: Training and rendering results for the different recon- 
struction models across the 20 tested reconstructed plants . T he 
file size results were the splat file for 3DGS, the weights of the Ner- 
Facto neural network for NeRF, and the generated COLMAP files 
for MVS and SfM. The compute time was rounded to the nearest 
minute . T he render times were calculated as the average FPS for 
r endering ne w 2K ima ges in the NeRFStudio r eal-time vie wer. 

Reconstruction 
type 

Compute time 
(minutes) 

Rendering 
time (FPS) File size (GB) 

3DGS 15 15 0.049 
NeRF 22 0.2 0.172 
MVS 128 N/A 11.683 
SfM 11 N/A 0.048 
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 ppr oximatel y 7,500,000 points after performing the noise re-
ov al oper ations. 
Eac h r econstruction point cloud was r egister ed and aligned

ith the scanned ground-truth point cloud via the Iter ativ e Clos-
st Point algorithm. Since the camera positions were captured
sing our robot setup in metric units, all performance measure-
ents are calculated in millimetres. 
To compare the accuracy against other reconstruction tech-

iques, we also generated a sparse point cloud using SfM and a
ense point cloud using MVS. We utilised COLMAP to generate
hese point clouds using the same camera poses ca ptur ed by our
obot setup after refinement. For feature extraction, our masks
ere included to ensure that the background was not included
uring feature matching. 

We utilised the same noise r emov al pr ocess as described abov e
or MVS since the point cloud had a similar le v el of noise as the
enerated 3DGS and NeRF point clouds. For the SfM point clouds,
e applied the same noise filter as with the 3DGS and NeRF point

louds, but we then manually removed certain groups of points
art of the bac kgr ound. We found that automating the noise re-
oval on SfM points often degraded the quality of the model. 
SfM generated an average of 16,760 number of points for all

lants that were compared with the ground truth, which were re-
uced to 16,150 number of points after noise r emov al. MVS gen-
r ated an av er a ge of 1,650,000 number of points for all plants
hat were compared with the ground truth, which were reduced
o 1,215,000 number of points after noise r emov al. 

The final results are presented in Table 7 . 
Alongside numerical results, we also report the av er a ge tr ain-

ng times for both NeRF and 3DGS models, as well as the time
aken for SfM and MVS to generate a completed point cloud. It is
mportant to note that times r equir ed for determining the camera
oses for MVS, NeRF, and 3DGS have been omitted. Typically, SfM

s r equir ed to determine the camer a poses; in our case, we utilised
ur robot setup to determine the camera poses alongside the im-
 ge ca pturing. The time taken to ca ptur e the ima ges and optimise
amera poses is comparable to SfM. 

We also determine the total file sizes generated by each of the
odels, including the neural network for the NeRF r epr esentation,

he gener ated.pl y file for 3DGS, and the generated COLMAP files
or SfM and MVS. Finally, we record the average frames per second
FPS) ac hie v ed when gener ating ne w 2K r esolution ima ges for both
eRF and 3DGS in the NeRFStudio r eal-time vie wer. These r esults
re shown in Table 8 . 

3DGS produced a more accurate ground-truth to point cloud
 econstruction accur acy when compar ed to NeRF. We belie v e that
his is because 3DGS is able to produce a larger set of points
round thin structures of the plant, such as the stems, most likely
ue to the dense population of Gaussians in these areas . T he
aussians can adapt shape and position to better fit different
lant structures. Ho w ever, both methods produced similar results
hen the point clouds wer e compar ed to the ground truth, imply-

ng that each method produces accurate points consistent with
he underlying 3D plant representation. NeRF typically produced
oint clouds with reduced noise, and these point clouds may bet-
er r epr esent lar ger surfaces . T his is visualised in Fig. 6 , in which
DGS had a higher accuracy around the thin stems of the plant
ut struggled with larger areas, such as the pot. Ho w ever, w e ex-
luded the pot when calculating the ov er all accur acy metrics. A
able of results with the pot included can be found in section 3 of
he supplementary material. When considering the entirety of the
cenes, we found that 3DGS had a higher av er a ge accur acy than
eRF, suggesting that 3DGS is better for generating more precise
D r epr esentations. 

In addition to this, 3DGS offers se v er al adv anta ges ov er NeRF,
r aining a ppr oximatel y 1.5 × faster while also pr oducing r endering
esults 75 × times quicker. The file size of the 3DGS scene was less
han the size of the neural network used for encoding the NeRF
cene. Ho w e v er, it is important to note that the neural network
ize is fixed regardless of the scene size or complexity, and so for
arger scenes, the neural network may be the better option if file
ize is a concern. Despite some differences, both approaches are
uitable candidates for effective 3D reconstruction, offering simi-
arl y effectiv e r epr esentations. 

Our 3DGS to point cloud a ppr oac h, and NeRFStudio’s point
loud generation algorithms, take different approaches to creat-
ng the final point cloud. Hence, using alternative point cloud gen-
ration algorithms for NeRF and 3DGS could pr oduce differ ent ac-
ur acy r esults compar ed to the r esults in Table 7 . 

Compared to SfM and MVS, 3DGS pr oduced mor e accur ate
oint cloud reconstructions, while NeRF produced more accurate
 econstructions onl y when the point cloud was compar ed a gainst
he ground truth. We believe this is because NeRF struggles to pro-
uce a dense number of points around the thin stems of the plant,
hich is when the standard deviation was high. Howe v er, the ac-

uracy of the points generated from NeRF was higher than the
DGS , MVS , and SfM point clouds, implying that the points around
he thin structur es wer e less prone to noise . T he accuracy metrics
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Figure 6: Comparison between the distance error between the ground truth and each of the NeRF, 3DGS, MVS, and SfM produced point clouds for the 
langdon_3 plant on week 11. On the right is the colour map k e y, with blue indicating a low distance error and red indicating a high distance error. The 
displayed pot and turntable of the ground-truth point clouds were not included in the calculation of the reconstruction accuracy metrics in Table 7 . 
We include them here to highlight the effectiveness of how each each method handles different types of surface. 
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for NeRF wer e mor e compar able with that fr om 3DGS while sur- 
passing MVS and SfM if the pot was included for all point clouds. 

View synthesis models are particularly effective at representing 

detailed structures on the plants, including complex leaf shape,
topology, and self-occlusion. Visualised results may be found in 

Fig. 6 . NeRFs and 3DGS can reconstruct scenes as they appear in 

eac h camer a vie w, including ar eas of low textur e. SfM, in contr ast,
m ust extr act, matc h, and triangulate each point between images 

accur atel y, whic h we find causes additional noise on narrow plant 
structur es that hav e low contr ast and textur e. SfM gener ated a 
sparser point cloud than the other a ppr oac hes, particularl y on the 
stems of the plant, negativ el y impacting the final reconstruction 

accuracy. SfM has similar compute time and file sizes to 3DGS.

MVS pr oduced mor e dense and accurate point clouds compared 

to SfM. MVS builds upon the acquir ed camer a poses pr ovided to 
it and applies more thorough reconstruction steps that aim to 
extr act and pr oject points , for example , patc h matc hing. How- 
e v er, while the reconstructions represent the original plant well,

the ov er all point cloud was slightly less accurate than NeRF and 

m uc h less accur ate than 3DGS, taking into account both com- 
parisons metrics. We belie v e this is because MVS projects only 
as many pixels as are present in the image set that can be accu- 
r atel y identified during feature extraction and then triangulated 

onto the plant. Meanwhile, view synthesis methods offer r epr e- 
sentations that are not constrained to matching pixels between 

views. 
While MVS reconstructed a denser point cloud than SfM, it re- 

quired additional computational time to process. MVS took ap- 
pr oximatel y 9 × longer to complete than 3DGS. In addition, the 
total file sizes of the gener ated MVS Colma p configur ation wer e 
over 230 × larger than 3DGS. MVS applies the same processing per 
image, meaning that the required compute time and file sizes in- 
cr ease linearl y with the number of supplied tr aining ima ges. In 

contrast, 3DGS and NeRF use a set number of iterations, and so 
training times will be quite consistent between scenes with vary- 
ing numbers of images. 
iscussion 

econstruction of plant shoots in 3D has remained a substan-
ial challenge for many years. We have shown here that both
eRF and 3DGS exhibit r emarkable ca pabilities in r econstructing
lants with diverse physical characteristics and complex topology.
hese a ppr oac hes riv al tr aditional standardised 3D r econstruc-
ion techniques and often provide higher accuracy over common 

 ppr oac hes suc h as SfM and MVS. When used for view synthe-
is, these models can pr ovide ne w high-quality synthetic images
f plants from views that have not been captured in the original
ataset, potentially driving new research in active phenotyping 
sing robotic manipulators and improving our ability to ca ptur e
henotypic traits in the presence of substantial occlusion. 

To date, there has been limited work using new view synthesis
ethods on plants. Of those that exist, our results are compara-

le to other ca ptur ed plant view synthesis datasets. In [ 43 ], vari-
us single indoor crop plants were reconstructed using NeRF acto .
t was found that the av er a ge PSNR for a set single indoor corn
cenes was 22.24 db, while the av er a ge PSNR for ca ptur ed plant
nstances was 23.93 db and 19.47 db for our masked PSNR metric.

In [ 46 ], a comparison was made against a ground-truth scan
f a series of pepper plants, with the error between each gen-
rated NeRF point cloud and the ground-truth scan ranging be-
ween 0.865 mm and 0.909 mm. This error is slightly lo w er than
ur r eported av er a ge accur acy of 1.43 mm. It may be challenging
o compare results presented on very different species and scenes.
o w e v er, these metrics still indicate that our r esults ar e similar to
ther recent plant reconstructions and show that view synthesis 
odels hav e br oad a pplicability acr oss species and scene config-

rations. 
NeRF and 3DGS models offer 2 differ ent a ppr oac hes that,

hile superficiall y similar, ar e quite differ ent. NeRF models tr ain
 neural network to generate an implicit scene r epr esentation,
her e r ay-marc hing is then used to sample colour and density

rom this space . T his a ppr oac h has some notable adv anta ges:
odels are continuous representations, allowing us to sample 
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igher-r esolution ima ges by simpl y casting mor e r ays into the
cene, at the cost of longer render times . T he neural models pre-
ict not only colour but also the opacity of material in 3D space,
llowing them to be easily converted into volumetric representa-
ions such as voxel grids or 3D r epr esentations suc h as meshes.
tilising a neural network means that an entire scene, regardless
f the number of images or scale, can be encoded with a con-
istent file size of r oughl y 172 MB for a NeRFacto model, as de-
icted in Table 8 . These allow NeRF to be used as part of phenotyp-

ng pipelines that le v er a ge these r epr esentations, with potentiall y
igher accuracy than previous reconstruction methods. 

3DGS instead r epr esents the scene as a series of 3D coloured el-
ipsoids . T his r epr esentation is closer to a tr aditional point cloud
 epr esentation, but wher e eac h point has additional par ameters
ov erning sha pe and colour. Our results in Table 6 show that 3DGS
s capable of extremely high-quality view synthesis, often outper-
orming NeRF on this task. Since the r epr esentation is held as
iscrete points, noise and background removal is comparatively
traightforw ar d, which w e have demonstrated. Ho w ever, the num-
er of Gaussians needed to reconstruct a scene can vary depend-

ng on the complexity of the training data, meaning that large and
omplex scenes can produce a file size larger than 1 GB. Despite
his, 3DGS offers efficient r asterisation, gener ating ne w vie ws al-

ost instantly and comfortably at > 60 FPS on a modern desk-
op PC for standard HD images . T his is compared against a NeRF

odel, wher e volumetric r ay-marc hing will take a ppr oximatel y 2
econds per image to render. 

The training times for both NeRF and 3DGS ar e compar able,
ith each plant instance requiring approximately 15 minutes for
DGS and 22 minutes for NeRF. Variants of these models exist,
uch as Instant-NGP [ 40 ] and InstantSplat [ 49 ], whic h r educe the
ime r equir ed to tr ain, but these often r educe r ender quality, and
e have focused here on the maximum quality possible as a
emonstration of the technology. Both NeRF and 3DGS are active
reas of research, and it is likely that some limitations of these
 ppr oac hes will be addressed over the coming years. Our plant
ataset provides a new test environment in which to evaluate
e w de v elopments in these a ppr oac hes, and impr oving NeRF and
DGS for plants specificall y, perha ps by tar geting methods to im-
r ov e performance on thin structures or heavily occluded regions,
 epr esents a promising area for future work. 

omparison of view synthesis models and 

raditional 3D reconstruction techniques 

iew synthesis models such as 3DGS and NeRF present several
ompelling adv anta ges ov er tr aditional 3D r econstruction meth-
ds such as SfM and MVS. As detailed earlier, 3DGS and NeRF
r oduce 3D r epr esentations that sur pass the accur acy of sparse
 econstruction methods suc h as SfM. While their performance
s more comparable to dense reconstruction methods like MVS,
DGS and NeRF still pr oduced mor e pr ecise and detailed point
louds in our experiments. Accuracy is an important considera-
ion in selecting the a ppr opriate 3D r econstruction method, since
rroneous points may hinder the effectiveness of downstream
asks that depend on precise plant geometry. 

A k e y factor behind the accuracy of the NeRF and 3DGS point
louds is their ability to sample m uc h denser r epr esentations.
eRF holds the scene in an implicit continuous r epr esentation,
ermitting sampling of any number of points at any resolution.
n a similar way, 3DGS r epr esents the scene using ellipsoids that
ave quantifiable dimensions, from which any number of points
an be sampled. In addition to accuracy, 3DGS and NeRF offer effi-
iency in terms of file size and computational demands. As shown
n Table 8 , both methods produced smaller file sizes with faster
raining times compared to MVS. Despite these promising results,
here still exist notable challenges associated with view synthesis

odels. While Gaussian splats and neural network a ppr oac hes
rovide high-quality renderings, these representations are more
omplex to handle and manipulate than traditional point clouds.
here is currently limited support for these representations in the
ontext of 3D phenotyping, where simpler point cloud-based ap-
r oac hes ar e mor e commonl y used. We theorise that 3DGS will
e more useful for phenotyping problems such as segmentation
f different k e y structures of the plant, as part of phenotyping
ipelines that derive quantitative measurements . Meanwhile , we
redict that NeRF will be emplo y ed for situations where its contin-
ous nature can be le v er a ged, suc h as r ay-casting, to pr edict light

nteraction within a plant canopy [ 64 ]. We hope that our dataset
ill assist in the de v elopment of tools better suited to using these
dv anced r epr esentations in 3D phenotyping applications. 

Curr entl y, 3DGS r elies on an initial point cloud for effective pop-
lation of Gaussians in the scene, meaning that SfM remains a
ommon pr er equisite for most 3DGS models. 3DGS and NeRF also
urr entl y r equir e extr emel y accur ate initial camer a poses to pr o-
uce effectiv e r esults . T hese camer a poses ar e typicall y estimated
hrough SfM, and as we noted earlier, SfM may fail to provide suf-
cientl y accur ate pose estimations, leading to err ors in the r econ-
truction. This limitation is shared by other methods, including
VS, which also depend on accurate pose estimation for effec-

iv e r econstruction. Ne v ertheless, it is important to note that us-
ng these methods r epeatabl y may r equir e an accur ate system for
amer a ca ptur e. 

utoma ted da taset capture 

 notable challenge of both approaches is their requirement for
ighl y accur ate camer a positions. As shown in Table 2 , slight
rrors in parameters can lead to lo w er-quality reconstructions.
hese can be obtained using a pipeline such as ours, combined
ith modern bundle adjustment algorithms, but we foresee these
ipelines becoming a r equir ement for successful phenotyping us-

ng these state-of-the-art a ppr oac hes. Our r obotic ima ge ca ptur e
ystem and fr ame work offer se v er al adv anta ges ov er static or lim-
ted ca ptur e setups. First, our system ca ptur es high-quality im-
 ges ar ound plants of v arious differ ent sizes. By utilising r obot
ath planning, dynamic generation of positions allows for flexi-
le ima ge ca ptur e should r equir ements c hange . T his fr ame work

s highly customisable, ensuring repeatability across a variety
f bespoke ROS setups, with the versatility of each setup being
he main restriction in potential view capturing. Unlike uncon-
tr ained ima ge ca ptur e setups (e.g., using a handheld camera),
ur system is calibr ated suc h that e v en after r efinement using
undle adjustment, all camera positions and reconstructions are
 epr esented in metric units . T his is a feature not commonly found
n other view synthesis datasets, and the use of ROS-compatible
ar dw are allo ws other resear chers to utilise this setup. 

Capturing high-quality data on living organisms such as plants
 emains a c hallenge. Tr ansporting eac h plant fr om the gr een-
ouse to the imaging setup occasionally resulted in damage, par-
icularly to the spikes. With the larger wheat plants, stems oc-
asionally became entangled with the stand of the second robot,
ausing discrepancies between views, resulting in floating arte-
acts in the reconstructions . T hese issues are shown in Fig. 7 . We
nticipate that the most effective solutions will be based within
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Figure 7: Examples of some of the issues with our dataset. Left shows an 
image of a damaged stem on plant bc1_1053_1 (16-04-24). Right image 
shows an image of an erroneous stem being rendered using 3DGS for 
plant bc1_1033_1 (06-03-24). This is due to a collision that stem had with 
the robot 2 stand, which caused it to move incorrectly during capturing. 
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the growth environments themselves, and adapting our system to 
in situ robotics is an area of potential future research. 

While the turntable was a critical component in allowing full 
r ange-of-vie w ca pturing in our setup, it did pr esent se v er al c hal- 
lenges. We suspect that rotating the plant sometimes caused 

micr o-mov ements, impacting the final quality of the reconstruc- 
tions . Furthermore , the consistent background meant that un- 
wanted artefacts wer e gener ated during reconstruction. We im- 
plemented image segmentation prior to reconstruction to solve 
this problem, but we found that this did not consistently improve 
results and often led to poor reconstructions due to inaccuracies 
and inconsistencies between masks at different views. When ren- 
dering images outside of the capture radius, we noted that areas 
of bac kgr ound might be r ender ed instead of the plant. This caused 

particular issues when rendering the 3DGS images, as large Gaus- 
sians r epr esenting the white bac kgr ound may obscur e the plant 
in some views. We recommend that utilising a turntable should 

only be used if full range of motion is not available for a partic- 
ular setup. We found that postprocesses to r emov e these Gaus- 
sians were more effective than adapting the image capture or 
3DGS tr aining pr ocess. Ho w e v er, our method occasionall y r esulted 

in groups of residual background Gaussians; this approach would 

benefit from implementation of more robust background removal 
algorithms. 

Many modern phenotyping pipelines, particularly those that 
make use of genomic tec hniques, r equir e hundr eds or e v en thou- 
sands of plant samples. At the time of this publication, we think 
that these remain out of reach of this technology, but a num- 
ber of promising avenues could be explored by the community to 
ac hie v e this goal. These r econstruction tec hniques r equir e man y 
images and accurately calibrated camera and scene parameters. 
Automated greenhouses that utilise robotics , con veyor belts , or 
a compar able deliv ery system [ 65 ] to autonomousl y tr ansport 
plants to the ca ptur e setup offer a potential solution to this. A 

critical challenge with this approach lies in ensuring precise align- 
ment and placement of the plants onto the turntable to maintain 

consistenc y betw een ima ged plants. It is also imper ativ e to im- 
plement measures that prevent potential collisions between the 
robotic arms and the plants being ca ptur ed, giv en the potential 
v ariability in gr owth sta ges and mor phological c har acteristics of 
the subject plants. To address these complexities, incor por ating 
depth data from the cameras into the processing pipeline is a po- 
tential solution. This would allow for real-time determination of 
each plant’s spatial location and dimensions, ensuring accurate 
and efficient ca ptur e. For the time being, this tec hnology is con- 
ned to contr olled envir onments. In the futur e, impr ov ements in
elective scene reconstruction, through the inclusion of other ma- 
hine learning processes such as segmentation, may allow in-field 

maging to become possible. 

onclusion 

e hav e pr esented a ne w dataset for m ultivie w r econstruction
f plant shoots. By utilising a dual-robot image capture system
nd a turntable, we ca ptur e full 360-degree views of each plant,
dapted to their size . T his capture setup produces accurate cam-
ra positions in metric units, with associated high-resolution im- 
ges, and depth information. Using this dataset, we demonstrate 
he strong performance of 2 recent approaches to view synthesis:
eur al r adiance fields and 3D Gaussian splatting. We demonstr ate
tate-of-the-art performance in both view synthesis and 3D model 
econstruction. On our test data captured using a handheld scan-
er, the trained 3DGS and NeRF models had an av er a ge surface
ccuracy of 0.74 mm and 1.43 mm, r espectiv el y, compar ed to 2.32
m and 7.23 mm for popular MVS and SfM techniques. We argue

hat both a ppr oac hes will lead to a step-c hange in our ability to
a ptur e 3D models of plants, which have historically proved very
hallenging due to their complex sha pe, fr equent occlusion, and
elf-similarity. We release all configuration files and scripts asso- 
iated with our image capture system, which can be deplo y ed on
ny ROS-compatible hardware. We also release our dataset of 112
heat plants ca ptur ed a ppr oximatel y ∼300 times each and as-

ociated camera position in metric units. Finally, we release all
raining scripts and trained NeRF and 3DGS models, as well as 3D
 econstruction output acr oss all plants. We hope that our study
ill provide opportunities for r esearc hers exploring ne w and im-
r ov ed 3D phenotyping algorithms, 3D r econstruction and view
ynthesis r esearc h, and activ e vision systems. 

vailability of Source Code and 

equirements 

roject name: 3D Plant View Synthesis: 

� Pr oject homepa ge: https:// github.com/ Lewis- Stuart- 11/3D- 
Plant- View- Synthesis [ 13 ] 

� Operating system(s): Windows, Ubuntu 

� Pr ogr amming langua ge: Python ( > = 3.8) 
� License: Apache 2.0 
� An y r estrictions to use by nonacademics: None 

Our code has also been arc hiv ed in Softwar e Herita ge [ 66 ].
unctionality, such as Robotic View Capturing, 3DGS to Point 
loud, and our UR5 Configs files, are stored on separate GitHub
epositories that can be accessed via the project README. 

dditional Files 

upplementary Fig. S1. ROS visualisation of the dual robot setup
hat needs optimising. Important transforms, and their links, are 
isplayed. 
upplementary Fig. S2. ROS visualisation of the TCP transform 

nd the predicted camera lens transform. The TCP transform is
ositioned at the end of the robot, while the camera lens trans-
orm is positioned left of the centre of the camera. 
upplementary Fig. S3. ROS visualisation of the transform tree 
hat maps the camera lens of the first robot to the centre of the

https://github.com/Lewis-Stuart-11/3D-Plant-View-Synthesis
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urntable . T he goal is to accur atel y determine the mapping be-
ween the robot 1 pedestal and the centre of the turntable. 
upplementary Fig. S4. ROS visualisation of the mapping of both
obot pedestals to the centre of the turntable. Transform from
obot 1 pedestal to the turntable has been optimised. Transform
r om r obot 2 pedestal to the turntable curr entl y still needs to be
ptimised. 

bbreviations 

DGS: 3D Gaussian splatting; ATE: absolute trajectory error; CNN:
onvolutional neural network; FPS: frames per second; LiDAR:
ight detection and ranging; LPIPS: learned perceptual image
atch similarity; MVS: multiview stereo; NeRF: neural radiance
eld; PSNR: peak signal-to-noise ratio; RGB: red, green, and blue;
OS: robot operating system; SD: standard deviation; SfM: struc-
ur e fr om motion; SSIM: structur al similarity index measur e; TCP:
ool center point; UoN: University of Nottingham; URDF: Unified
obot Description Format. 
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