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ABSTRACT: Removable tridentate directing groups inspired by 

pincer ligands have been designed to stabilize otherwise kinetically 

and thermodynamically disfavored 6-membered alkyl palladacycle 

intermediates. This family of directing groups enables regioselec-

tive remote hydrocarbofunctionalization of several synthetically 

useful alkene-containing substrate classes, including 4-pentenoic 

acids, allylic alcohols, homoallyl amines, and bis-homoallyla-

mines, under Pd(II) catalysis. In conjunction with previous find-

ings, we demonstrate regiodivergent hydrofunctionalization of 

3-butenoic acid derivatives to afford either Markovnikov or anti-

Markovnikov addition products depending on directing group 

choice. Preliminary mechanistic and computational data are pre-

sented to support the proposed catalytic cycle.  

Substrate directivity is a powerful and well-established approach 

in organic synthesis and transition-metal catalysis.[1] In coordina-

tion-controlled reactions, the kinetics and thermodynamics of 

metallacycle formation dictate stereo- and regioselectivity. In the 

context of Pd(II) catalysis, directed functionalization of C–H bonds 

and C–C π-bonds, including hydrofunctionalization of alkenes,[2] 

has received significant attention. With reactions involving alkyl 

palladacycles, there is a strong preference for formation of a 5-

membered ring, which has limited such reactions to substrates con-

taining functional groups in close proximity to the reaction site. Re-

mote functionalization involving larger alkyl palladacycles is a less 

well-established approach. For instance, 6-membered palladacy-

cles have only been implicated when the 5-membered intermediate 

is sterically disfavored.[3–4] Overcoming innate reactivity prefer-

ences to achieve cyclometallation control through specifically tai-

lored directing groups or ligands remains a significant challenge. 

Figure 1. Development of tridentate directing groups to stabilize 

6-membered palladacycles. 

 

This limitation is illustrated by a recent report from our group. 

We described a method for Pd(II)-catalyzed hydrocarbofunctional-

ization of 3-butenoic acid derivatives bearing Daugulis’s 8-amino-

quinoline (AQ) directing group.[2b–c,5] The mechanism of this re-

action involves γ-selective addition to a Pd(II)-bound alkene to 

form a 5-membered palladacycle. When we attempted to extend 

this concept to 6-membered palladacycles, only 11% of the desired 

product 2 was formed, with the remainder of the starting material 

being consumed by pathways involving beta-hydride (β-H) elimi-

nation or alkene isomerization followed by functionalization (Fig. 

1A).[3] Since β-H elimination requires an open coordination site 

on the metal catalyst, we hypothesized that a tridentate directing 

group,[6] inspired by the well-known family of pincer ligands,[7] 

would suppress these undesired side-reactions and stabilize the 6-

membered palladacycle (Fig. 1B). At the outset, we realized that 

we would need to tune the steric and electronic properties of the 

third binding site to allow for nucleopalladation, while still ensur-

ing that binding to the metal catalyst was reversible.[8] 

We prepared a series of 4-pentenoic acid derivatives I bearing 

different tridentate directing groups, along with bidentate controls, 

and submitted these to Pd(II)-catalyzed hydrofunctionalization 

(Table 1). AQ-containing substrate IA afforded 13% of the desired 

product II along with substantial amounts of byproducts from β-H 

elimination (IV) and isomerization (III and IV). Shi’s bidentate 

PIP directing group B was similarly ineffective. When we exam-

ined tridentate amino-acid-derived directing groups C–F, we were 

encouraged by a slight increase in formation of II with complete 

suppression of β-H elimination, though isomerization remained 

problematic. We next examined an alternative tridentate scaffold in 

which coordinating heterocycles were introduced to the C2 position 

of AQ. While thiophene (G) and pyrimidine (H) were ineffective, 

we were pleased to see that a 2-pyridyl group (J) successfully min-

imized detrimental side-reactions, furnishing 97% of the desired 

product by 1H NMR. It was further possible to shorten the reaction 

time to 4 h without a significant drop in yield. Notably, this novel 

2-pyridyl-8-aminoquinoline (PAQ) auxiliary can be conveniently 

prepared on >5-gram scale and easily recycled (vide infra). 

With this optimized directing group in hand, we proceeded to 

investigate the substrate scope of this method (Scheme 2). 4-Hy-

droxycoumarin and cyclic 1,3-dicarbonyl compounds reacted read-

ily under conditions A (HOAc/MeCN), giving the corresponding 

products 4a–c in high yields. Meldrum’s acid was hydrolyzed in 

situ to give decarboxylated product 4d,[9] however under condi-

tions B (K2CO3/HFIP) the 1,3-dicarbonyl moiety remained intact 

(4e). Electron-rich aromatics were competent nucleophiles under 
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these conditions as well (4f–l). Electron-donating or -withdrawing 

groups on the arene did not affect the yields substantially (4g–h, 

4k), and the reaction tolerated heteroaromatic nucleophiles (4i, 4l). 

On the alkene side, α- and β-substituents on the carbon chain are 

well tolerated (4m–n). Gratifyingly, internal alkenes also show 

moderate reactivity (4o–p). Pleasingly, allyl alcohol—when 

masked as its corresponding PAQ carbamate—underwent hydro-

functionalization in moderate yields (4q). 

Table 1. Optimization of tridentate directing group structure 

 

NuH = 4-hydroxycoumarin. a1H NMR yields and ratios. bIn most 

reactions, V is a 0.75 : 0.25 mixture of the depicted compound and 

its conjugated isomer. 

Scheme 2. δ-Functionalization of carboxylic acid derivatives 

 

Conditions (0.1 mmol scale): A 1.5 equiv NuH, 10% Pd(OAc)2, 

0.5 equiv HOAc, MeCN, 85 °C, 4 h; B 1.5 equiv NuH, 10% 

Pd(OAc)2, 1.0 equiv K2CO3, HFIP, 85 °C, 24 h. All yields are of 

isolated products unless otherwise noted. aReaction conditions A. 
bReaction conditions B. c1H NMR yield. dNuH = Meldrum's acid. 

To demonstrate scalability, product 4a was synthesized on a 2 

mmol scale, affording 784 mg (84% yield). Removal of the direct-

ing group with 6 N HCl yielded 83% of carboxylic acid 5 and al-

lowed for recovery of the directing group in 96% yield (Scheme 1). 

Scheme 1. Directing group removal and recovery  

 

Next, we sought to extend this concept from carboxylic acids to 

amine substrates (Fig. 2). A brief optimization (see SI) revealed 

2,2’-bipyridylamide (PPA), a directing group that can be conven-

iently prepared on a 10-gram scale, to be most effective for this 

substrate class. Like PAQ, this directing group presents three nitro-

gen-based binding sites—one X-type and two L-type, forming a 

pincer-like ligand system around the metal center. Both PAQ and 

PPA are electron-donating and strongly coordinating, stabilizing 

the partially positively charged Pd during protodepalladation (vide 

infra). Under optimal conditions, the reaction afforded 82% of 

product 7a, consistent with a 6-membered palladacycle intermedi-

ate. The nucleophile scope for homoallylamine 6 was similar to that 

observed for carboxylic acid substrates 3. Interestingly, N-methyl 

indole, which was unreactive with 3, afforded 7f in moderate yield.  

Figure 2. Functionalization of amine derivatives 

 

Conditions (0.1 mmol scale): C 1.5 equiv NuH, 10% Pd(OAc)2, 

0.5 equiv HOAc, MeCN, 120 °C, 24 h; D 1.5 equiv NuH, 10% 

Pd(OAc)2, 1.0 equiv K2CO3, HFIP, 120 °C, 24 h; Yields are of iso-

lated products unless otherwise stated. a1H NMR yield. bNuH = 

Meldrum's acid. cReaction conditions C. dReaction conditions D. 
eketo/enol = 6.8. fenol/keto = 3.6. gReaction conditions A. 

By employing these two directing groups, we were able to hy-

drofunctionalize L-allylglycine in a regiodivergent manner 

(Scheme 3). Masking the carboxylic acid moiety with the PAQ di-

recting group allowed for anti-Markovnikov selectivity, providing 

hydrofunctionalized product 4q in 60% yield. Using the PPA di-

recting group to mask the amine moiety, on the other hand, we were 

able to obtain 88% of the Markovnikov product 7g without erosion 

of stereochemistry in the major diastereoisomer.[10] 

Scheme 3. Hydrofunctionalization of L-allylglycine derivatives 

 

Having established that tridentate directing groups are capable 

of stabilizing 6-membered palladacycles, we next questioned 
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whether they could override the regioselectivity preference of 3-

butenoic acid substrates for 5-membered nucleopalladation. As 

previously reported, substrate 11 bearing the bidentate AQ group 

affords anti-Markovnikov addition product 13.[2b] Under the same 

reaction conditions, the tridentate PAQ directing group instead af-

fords primarily Markovnikov product 14 (85:15 r.r.) (Scheme 4). 

Our working Our working hypothesis is that PAQ favors the six-

membered nucleopalladation pathway in this case due to strain re-

lease in the 5-5-6 square-planar palladatricycle compared to the al-

ternative 5-5-5 palladatricycle in the five-membered pathway. 

Broadly speaking, these results indicate that end-users could con-

trol the regiochemical course of their reactions through choice of 

directing group, without the need for other biasing factors in the 

starting material. 

Scheme 4. Directing-group-controlled regioselectivity of alkene 

hydrofunctionalization 

Conditions: 4-hydroxycoumarin (1.5 equiv), 10% Pd(OAc)2, 

HOAc, MeCN, 120 °C, 4 h. Yields are of isolated products. 

Given the unique reactivity enabled by these directing groups, it 

is vital to understand the mechanistic similarities and differences 

between these groups and bidentate variants in order to determine 

where and how such groups can be effectively exploited. To this 

end, several mechanistic and computational experiments were per-

formed (Fig. 3).[11] When we exposed alkene 6 to 1 equiv 

Pd(OAc)2 in MeCN at room temperature, complex 15 was formed 

in 86% yield (Fig. 3A), a process that was calculated to be highly 

exergonic by 17.1 kcal/mol (Fig. 3D). Notably, the corresponding 

processes involving bidentate directing groups are much less exer-

gonic.[12] In our previous results with AQ, e.g., the corresponding 

π-alkene complex is formed under analogous conditions.[2b]  

When complex 15 was treated with 4-hydroxycoumarin, we ex-

pected to observe the corresponding nucleopalladated alkylpalla-

dium(II) species 17.[2b] However, we were surprised to observe 

product-bound Pd(II) complex 18 instead (Fig. 3A). With the AQ 

directing group, nucleopalladation occurs at room temperature, but 

protodepalladation requires elevated temperatures.[2b] For PAA, 

both steps take place at room temperature which is consistent with 

a mechanism in which ligand exchange is slow—unsurprisingly, 

dissociation of the pincer-like tridentate directing group was calcu-

lated to be highly endergonic by 18.6 kcal/mol (Fig. 3D). Further-

more, no external acid is necessary, suggesting that the nucleo-

phile’s hydroxy group may play a role in the protodepalladation 

step. This hypothesis is supported computationally: intramolecular 

protodepalladation [8] via a 6-membered cyclic transition state 

(TS2) requires a relatively low activation energy and is highly ex-

ergonic.  

 

Figure 3. Proposed reaction mechanism 
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When complex 18 was used as a pre-catalyst with 1,3-cyclopen-

tanedione as the nucleophile, 79% hydrofunctionalized product 7c 

was isolated together with 7% 7a (Fig. 3A). This result establishes 

that 18 is catalytically competent and that ligand exchange takes 

place during the catalytic cycle. 

In Table 1 we showed that the tridentate PAQ directing group 

completely suppresses β-H elimination. We calculated the activa-

tion free energies of the competing intramolecular protodepallada-

tion (TS3, TS5) and β-H elimination (TS4, TS6) pathways from 

6-membered palladacycle intermediates bearing AQ and PAQ 

groups (Fig. 3B). With the PAQ group, TS3—which eventually 

leads to the experimentally observed hydrocarbofunctionalization 

product—is 7.1 kcal/mol more stable than the β-H elimination tran-

sition state TS4, which is destabilized due to dissociation of pyri-

dine to accommodate the hydride being transferred to Pd. In con-

trast, intramolecular protodepalladation (TS3) does not require par-

tial dissociation of the directing group. With AQ, the selectivity is 

reversed to favor β-H elimination (TS6). These computational re-

sults highlight the important role of the tridentate directing group 

in suppressing β-H elimination and promoting protodepalladation. 

Based on the data presented above, we propose the mechanism 

in Fig. 3C: Pd(II) coordinates to the substrate (15), acting as a π-

Lewis acid activator to the alkene (16), which undergoes nucleo-

palladation to form a 5-5-6 palladatricycle intermediate (17). Intra-

molecular protodepalladation (18), followed by dissociation of the 

Pd(II) catalyst from the directing group affords the hydrofunction-

alized product. This mechanism is supported by the DFT-computed 

reaction energy profile shown in Fig. 3D.  

In conclusion, we have demonstrated the use of pincer-like tri-

dentate directing groups for stabilization of elusive 6-membered 

palladacycles. We believe that this stabilization may result from 

strain release in going from a 5-5-5-tricyclic system around a 

square-planar, central Pd atom to a 5-5-6 system. These new direct-

ing groups enable remote alkene functionalization (e.g. -function-

alization of alkenyl carboxylic acid derivatives). This fundamental 

study of regioselectivity in alkene functionalization led to the de-

velopment of a new family of auxiliaries for controlling metallacy-

cle size that could find broad utility in synthesis and catalysis.  
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