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Abstract—Due to the trade-off between spatial and temporal 

resolutions commonly encountered in remote sensing, no single 

satellite sensor can provide fine spatial resolution land surface 

temperature (LST) products with frequent coverage. This 

situation greatly limits applications that require LST data with 

fine spatiotemporal resolution. Here, a deep learning based 

SpatioTemporal Temperature Fusion Network (STTFN) method 

for the generation of fine spatiotemporal resolution LST products 

is proposed. In STTFN, a multi-scale fusion convolutional neural 

network is employed to build the complex nonlinear relationship 

between input and output LSTs. Thus, unlike other LST 

spatiotemporal fusion approaches, STTFN is able to form the 

potentially complicated relationships through the use of training 

data without manually designed mathematical rules making it is 

more flexible and intelligent than other methods. Additionally, 

two target fine spatial resolution LST images are predicted and 

then integrated by a SpatioTemporal-Consistency 

(STC)-Weighting function to take advantage of spatiotemporal 

consistency of LST data. A set of analyses using two real LST data 

sets obtained from Landsat and Moderate Resolution Imaging 

Spectroradiometer (MODIS), were undertaken to evaluate the 

ability of STTFN to generate fine spatiotemporal resolution LST 

products. The results show that, compared to three classic fusion 

methods (the Enhanced Spatial and Temporal Adaptive 

Reflectance Fusion Model (ESTARFM), the Spatiotemporal 

Integrated Temperature Fusion Model (STITFM) and the 

Two-Stream Convolutional Neural Network for Spatiotemporal 

Image Fusion (StfNet)), the proposed network produced the most 

accurate outputs (Average RMSE<1.40˚C and average SSIM> 

0.971). 
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I. INTRODUCTION 

ATELLITE-derived land surface temperature (LST) is of 

considerable importance to a diverse array of studies 

including environmental and climatic change [1, 2], land and 

water energy exchange with the atmosphere [3, 4] and 

ecological processes [5, 6]. In such studies, LST products with 

fine spatiotemporal resolution are often desired [7]. For 

instance, as a key variable in studies of urban heat island (UHI), 

LST must be in consistent with simulated hourly energy 

consumption data from urban buildings to evaluate the UHI 

impact on energy use [8]. However, due to technological and 

budget limitations, currently available satellite LST products 

do not have both fine spatial and temporal resolutions. 

Specifically, LST products with fine spatial resolution 

inevitably have coarse temporal resolution, and vice versa [9]. 

This situation arises mainly from the trade-off between spatial 

and temporal resolutions of satellite sensors and has greatly 

limited the potential of satellite LST products in various 

applications. 

A variety of methods have been proposed for the generation 

of fine spatiotemporal resolution LST products [9-15]. Due to 

the advantages arising from the use of neighboring 

spatiotemporal change information concurrently, 

spatiotemporal fusion methods have been widely adopted [11, 

16, 17]. Spatiotemporal fusion methods were originally used 

for the generation of fine spatiotemporal resolution reflectance 

imagery using images acquired from different satellite sensors 

with complementary spatial and temporal characteristics 

[18-20]. Example methods include the Multisensor 

Multiresolution Technique (MMT) [21], the spatial and 

temporal adaptive reflectance fusion model (STARFM) [22], 

an Enhanced version of STARFM (ESTARFM) [23] and the 

Flexible Spatiotemporal DAta Fusion (FSDAF) [24]. Given 

that LST and reflectance are both continuous land surface 

variables, some research has adopted such spatiotemporal 

fusion methods to estimate fine spatiotemporal LST products 

directly. For example, Liu et al. [25] generated a series of 

ASTER-like LST products using STARFM for community 

health research and Ma et al. [26] fused MODIS and Landsat 

LST data using ESTARFM to generate a Landsat-like LST 

product, which was required to estimate surface evaporation. 

Nevertheless, some characteristics of LST are different to 

reflectance. For example, reflectance often varies slowly with 

time while LST can change rapidly [27]. Consequently, 
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spatiotemporal fusion methods appropriate for the generation 

of reflectance imagery may not always be appropriate for the 

generation of LST products . 

Various means have been proposed to enhance the ability of  

spatiotemporal fusion methods to generate fine spatial 

resolution LST products. They include considering the 

correlation between pixels in LST products, introducing 

temporal change models of LST into the analysis and 

increasing the number of satellite sensors. For example, Huang 

et al. [25] improved the weight function in STARFM with the 

aid of bilateral filtering to generate fine spatiotemporal 

resolution LST products of urban regions, and Wu et al. [29] 

used a variation-based constrained model to produce accurate 

Landsat-like LST products. By adding the annual temperature 

cycle (ATC) to the ESTARFM, Weng et al. [30] put forward 

the Spatio-temporal Adaptive Data Fusion Algorithm for 

Temperature mapping (SADFAT) to predict thermal radiance 

and LST data. To produce diurnal LST products at a 

Landsat-scale, Wu et al. [11] designed a Spatio-Temporal 

Integrated Temperature Fusion Model (STITFM) for the 

estimation of fine temporal and spatial resolution LST products, 

by integrating data from arbitrary satellite sensors including 

multi-scale polar-orbiting and geostationary satellites. Recently, 

several hybrid methods have been presented to take full 

advantage of different techniques and thus further enhance the 

spatiotemporal fusion. For instance, Quan et al. [16] designed a 

unified framework to BLEnd Spatiotemporal Temperatures 

(BLEST) derived from Landsat, MODIS, and geostationary 

satellites based on the integration of temporal interpolation, 

spatial downscaling and weight function-based fusion. 

Alternatively to enhance the spatial resolution of temporally 

dense LST data series, Xia et al. [17] proposed a weighted 

combination of kernel-driven and fusion-based methods 

(CKFM), which can inherit the advantages and overcome the 

shortcomings of each method simultaneously. 

Although great progress has been made, spatiotemporal LST 

fusion remains a challenge because the relations between input 

and output LST may not be appropriately specified. For 

example, in some conventional LST fusion techniques [11, 28, 

29], it is assumed that the output LST product could be 

expressed by a linear combination of inputs which may not be 

appropriate if there are nonlinear temporal changes of LST. 

Although some research has addressed the effect of temporal 

variations of LST and employed some mathematical or 

physical models [16, 30], these theoretical models are not 

always suitable because LST can be a highly changeable 

variable. For instance, in BLEST and SADFAT, ATC and 

diurnal temperature cycle (DTC) models based on prior 

knowledge are applied to describe the annual and diurnal 

change of LST. While the ATC and DTC models can to some 

extent reflect temporal variation of LSTs, they may perform 

poorly when abrupt changes in LST occur and when some 

latent relations between input and output LST products do not 

conform to the prior knowledge [31]. Furthermore, the methods 

are based on original low-level features such as image texture 

and location [32]. Therefore, they may not differentiate 

different objects and thus apply the same model parameters to 

various objects, while LST of these objects may change 

differently. 

Inspired by the powerful nonlinear representation ability of 

convolutional neural network (CNN) [33], several CNN-based 

spatiotemporal reflectance fusion methods have recently been 

proposed. A five-layer CNN was, for example, put forward by 

Song et al. [34] to express the nonlinear relationships between 

reflectances estimated from MODIS and Landsat data. 

Alternatively, Tan et al. [35] designed a Deep Convolutional 

Spatiotemporal Fusion Network (DCSTFN) to obtain high 

spatiotemporal resolution images directly. Additionally, Liu et 

al. [36] presented a Two-Stream Convolutional Neural 

Network for Spatiotemporal Image Fusion (StfNet) that 

accommodated temporal dependency. CNN-based fusion 

methods utilize end-to-end CNN to automatically form the 

nonlinear relationship between observed pairs of coarse and 

fine spatial resolution image and use this to predict the target 

fine spatial resolution image. Because high-level features (e.g., 

edges of objects and their mutual relations) [37] which contain 

abundant semantic information can be extracted from the input 

data through CNN, the established relations between input and 

output are more practical, thus more favorable results can be 

acquired. But there are also some limitations when they are 

adopted for the generation of LST products. For example, the 

five-layer CNN and DCSTFN both lose some significant fine 

spatial information in the prediction and StfNet is a shallow 

network that has limited ability to form the potentially complex 

nonlinear relationship between the input and output LSTs. 

Therefore, for the spatiotemporal fusion of LST products, a 

CNN with enhanced capacity for nonlinear representation 

would be of considerable value. 

This paper proposes a novel SpatioTemporal Temperature 

Fusion Network (STTFN) method for the accurate generation 

of fine spatiotemporal resolution LST products. For enhanced 

modelling of the potentially complex nonlinear relationships 

between input and output LSTs, STTFN uses a multi-scale 

fusion CNN. The multi-scale fusion CNN contains three parts: 

1) super-resolution of temporal change between the input target 

and neighboring coarse spatial resolution LST images, 2) 

high-level feature abstraction of neighboring fine spatial 

resolution data, and 3) integration of the extracted multi-scale 

features. Furthermore, to take advantage of the temporal 

consistency commonly observed in a series of LST images, the 

STTFN uses two fine-coarse spatial resolution LST image pairs 

observed before and after the target date to train two multi-scale 

fusion CNNs, and then combine their predictions using a 

Spatiotemporal-Consistency (STC)-Weighting function. 

Considering the special characteristic of temperature, there are 

four differences of STTFN compared with existing deep 

learning-based spatiotemporal fusion method: 1) in the 

super-resolution process, fine spatial resolution image was used 

to provide fine spatial texture information, 2) residual learning 

modules were applied to preserve lost features in the 

convolution and fuse features at different scales, 3) in the 

training process, Huber loss function was used for decreasing 

the negative influence of noises and outliers, and 4) in the 

combination, STC-weighting strategy which considers 

spatiotemporal consistency was employed to derive the final 

result. Experiment results showed that the proposed method 

was effective and performed better than the comparator 

methods in generating fine spatial resolution LSTs. 
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The rest of this paper is organized as follows. The proposed 

STTFN fusion method is presented in Section II. Then, the 

performance of the proposed method is validated in Section III, 

which is followed by a discussion in Section IV and the 

conclusion in Section V. 

II. METHODOLOGY 

Landsat and MODIS LST data were used as fine and coarse 

spatial resolution data, respectively. The Landsat LST data has 

a pixel size of 30 m, and that of MODIS LST data is 1000 m. 

The aim was to obtain a pair of fine and coarse LST images that 

pre-dating the target date, for which a coarse MODIS image 

was available, together with another pair of fine and coarse 

image that post-dating the target date. Then, from one MODIS 

LST image at the target date and two pairs of Landsat and 

MODIS LST images at the neighboring dates, a Landsat-like 

LST image was predicted. For simplicity, the target date is 

denoted as t2, and the dates pre- and post-dating t2 are denoted 

as t1 and t3, respectively. Accordingly, the MODIS LST image 

at t2 is denoted as M2, and the Landsat-MODIS LST image pairs 

at dates t1 and t3 are denoted as L1 and M1 and L3 and M3, 
respectively. As depicted in Fig.1, the proposed STTFN 

generates a fine spatial resolution LST image via a three-stage 

process: 1) forward and backward model training, 2) forward 

and backward prediction and 3) combination of predicted 

Landsat-like LST images to yield a final fine spatial resolution 

predicted image for t2.  

The input fine and coarse spatial resolution LST images are 

first pre-processed. Then, a forward multi-scale fusion CNN, 

which blends L1, M1, and M3 to predict 1 3

3L → , is gradually 

learned and optimized; the superscript 1→3 indicates forward 

modelling based on the image pairs at t1 and t3. Additionally, an 

optimally trained backward multi-scale fusion CNN can be 

obtained by using L3, M3 and M1 to predict 3 1

1L → , the superscript 

highlights backward modelling. In the prediction stage, two 

predicted fine spatial resolution LST images, which are 

expressed  as 1 2

2L →  and 3 2

2L → , are generated by the optimal 

forward and backward multi-scale fusion CNNs, respectively. 

Then 1 2

2L →  and 3 2

2L →  are combined via a STC-Weighting 

function. The following sub-sections explain the proposed 

STTFN more fully.  

 

 
Fig.1. Flowchart of the generation of fine spatial resolution LST image with STTFN. 

 

A. Layers used in the multi-scale fusion CNN 

The most commonly used layer in the multi-scale fusion 

CNN is a convolution layer, which is used to extract and fuse 

high level feature maps. The inputs to the i-th convolution layer 

are the feature maps (comprised by extracted latent features of 

input LSTs) Yi-1 from the previous layer. To realize the feature 

extraction and fusion tasks, a convolution layer applies k filters 
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of size r  r  c (where c is the number of channels) sliding 

through the input feature maps with a step size s, which is 

denoted here as “conv rr, k”. Zero values were padded at the 

edges of the feature maps to ensure that the output size equaled 

to that of the input. The output feature maps Yi were calculated 

as Yi=Wi * Yi-1 + bi, where Wi denotes the filter parameters and bi 

is the bias parameter. The parameters are updated and 

optimized in the training stage. To improve the speed and 

performance of the network, a batch normalization layer [38] 

can be added after each convolution layer. Finally, behind the 

batch normalization layer, a rectified linear unit (ReLU) 

activation layer (max (0, ·)) [39] was adopted to ensure that the 

output is a nonlinear combination of the inputs. Table Ⅰ lists 

the detailed composition of different layers of the multi-scale 

fusion CNN. 

 
TABLE Ⅰ  

THE COMPOSITION OF THE DIFFERENT LAYERS OF THE MULTI-SCALE FUSION CNN 

Extraction-Net  Super-Resolution-Net  Integration-Net 

level layer  level layer  level layer 

E1 
conv 3 × 3, 32, Batch 

Normalization, ReLU 

 
SR1 conv 3 × 3, 32 

 
F1 

conv 3 × 3, 32, Batch 

Normalization, ReLU 

E2 conv 3 × 3, 32 
 

SR2 
conv 1 × 1, 64, Batch 
Normalization, ReLU 

 
F2 

conv 3 × 3, 16, Batch 
Normalization, ReLU 

  

 
SR3 

conv 1 × 1, 25, Batch 

Normalization, ReLU 

 
F3 conv 3 × 3, 1 

  

 
SR4 

conv 1 × 1, 32, Batch 

Normalization, ReLU 

 

  

  

 
SR5 

conv 3 × 3, 32, Batch 
Normalization, ReLU 

 

  

  
 SR6 conv 3 × 3, 32  

  

 

 

B. Architecture of the multi-scale fusion CNN 

The architecture of multi-scale fusion CNN is illustrated 

using the prediction of 1 2

2L → from L1, M1 and M2 as example 

(Fig.2). The multi-scale fusion CNN is a fully convolution 

network, which enables an end-to-end mapping from three 

input LST images to an output LST image. It first extracts 

high-level features of L1 and super resolves the change LST 

image between M2 and M1 at the same time, then fuses and 

retrieves the extracted feature maps to the fine spatial resolution 

result. Therefore, the whole architecture of the multi-scale 

fusion CNN contains three major parts, termed here as the 

Extraction-Net, Super-Resolution-Net and Integration-Net. The 

first part of the multi-scale fusion CNN is the Extraction-Net, 

which is a two-layer convolution network and employed to 

extract the high-level features of L1. The derived high-level 

features can provide fine abundant spatial pattern information 

for the prediction. 

The second part is the Super-Resolution-Net. To obtain the 

high-level features with abundant spatial pattern information on 

the temporal changes between M2 and M1, the change image is 

first concatenated with L1 and then put into the super-resolution 

module (Fig.2). The focus in the fusion process is on locating of 

temporal change between the target and neighboring dates. 

Unlike DCSTFN [35], multi-scale fusion CNN acquires the 

change image first and then uses it as the input to 

Super-Resolution-Net. This makes the subsequent network pay 

more attention to the locations of change and simultaneously 

reduces its computational burden. By using a super-resolution 

module, the coarse spatial resolution pixels of the temporal 

change LST image are disaggregated into fine spatial resolution 

pixels, which can offer more spatial pattern information. Note 

that, concatenation of L1 in the super-resolution is of primary 

importance, since it provides fine scale information for the 

disaggregation [40]. To implement the super-resolution, a 

modified version of the state-of-the-art super-resolution model 

“Wide Activation for Efficient and Accurate Image 

Super-Resolution (WDSR)” was used [41], referred to here a 

slim-WDSR (Fig.2). The core of slim-WDSR are five 

convolution layers. Through these layers, the slim-WDSR can 

extract high-level features of the coarse spatial resolution LST 

image and map them to the features of the fine spatial resolution 

LST image. However, in the feature extraction and mapping 

process, some low-level features may be lost [42]. To address 

this deficiency, two local residual learnings were applied in the 

slim-WDSR since it can retain shallow features and prevent the 

problem of misconvergence by adding low-level features to the 

extracted high-level features [43]. 

The third part is the Integration-Net, which is made up of 

three stacked convolutional layers. The generated feature maps 

are integrated and used to estimate the target LST image 

gradually through the Integration-Net. Specifically, the feature 

maps from the Extraction-Net and Super-Resolution-Net are 

first blended: 

( ) ( ) ( )1 2

2 2 1 1Features Features FeaturesL M M L→ = − +    (1) 

The blended feature maps are composed of various layers of 

feature maps, in which different layers will contain different 

information crucial for estimating the fine spatial resolution 

LST image. For example, layer one may contain edge 

information of the involved objects, while layer two is likely to 

be made up of location information. Therefore, the 

Integration-Net is used to integrate the various types of 

information and convert the blended feature maps to the target 

fine LST image. As aforementioned, low-level features may 

partly disappear because of convolutions, thus the initial fused 

image is added to the end of the whole net, which is termed 

global residual learning. By using local and global residual 

learning, low- and high-level features at different scales of the 

input can be fully utilized. 
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Fig.2. The architecture of the multi-scale fusion CNN (showing the prediction of 1 2

2L →  from L1, M1 and M2 as an example, M1 and M2 were upsampled by bilinear 

interpolation).

 

C. Training and prediction  

Two multi-scale CNNs termed forward multi-scale CNN and 

backward multi-scale CNN are trained. In other studies 

[34-36], mean square error (MSE) was used as the loss function 

in the training. Here, to reduce the effects of noise and outliers, 

e.g., caused by unidentified cloud in input images, Huber Loss 

[44] was adopted as the loss function , which is more robust to 

outliers than MSE loss. The loss of pixel i is denoted as: 

( )
( ) ( )

( )

2

1 1 3 3 1 1 3 3

2

1 1 3 3

1
, , ; , , ;

2
1,2

1
, , ;

2

i i i t i i i i t i

t

i i i t i

F M L M w L F M L M w L

L w t

F M L M w L otherwise



 


− − 

= =
  − −


(2) 

where δ is a hyper-parameter to determine which formula to be 

used, here δ was empirically set to 1.0. F(∙) denotes the 

multi-scale fusion network, N is the number of pixels in the 

input LST imagery, and w1 and w2 denote the forward and 

backward network parameters to be updated during the training 

process, respectively. In the training stage, the two networks 

are optimized separately. 

For optimization, the weights of the proposed network were 

initialized to small random values, which were drawn from a 

Gaussian distribution with zero mean and standard deviation of 

1×10-3. The adaptive moment estimation (Adam) with standard 

back propagation [45] was applied to minimize the loss and 

update the network weights until convergence (losses of 

STTFN did not change significantly), a value of β1=0.9 and 

β2=0.999 were set for Adam. The learning rate α was initialized 

as 1×10-4 and is multiplied by a decaying factor 0.1 every 10 

epochs to shrink the searching range of the parameters. 

In the prediction stage, two fine spatial resolution images 
1 2

2L →  and 3 2

2L →  at the target date, t2, are produced from the two 

trained networks. 1 2

2L →  is generated from M1, L1 and M2 with 

the trained forward multi-scale fusion CNN (Fig.2), while 3 2

2L →  

is obtained from M3, L3, and M2 via the backward multi-scale 

fusion CNN. These predicted images are denoted as follows: 

( )

( )

1 2

2 1 1 2 1

3 2

2 3 3 2 2

, , ;

, , ;

L F M L M w

L F M L M w

→

→

 =


=

                   (3) 

Then, the two predicted fine spatial resolution LST images 

are combined to produce the final predicted LST image for the 

target date,
2L̂ : 

1 2 3 2

2 1 2 3 2
ˆ =L p L p L→ → +                (4) 

where p1 and p3 are the weighting parameters for 1 2

2L →  and 

3 2

2L → , respectively. To determine p1 and p3 in the combination, 

the spatial consistency between the two predicted fine spatial 

resolution images and the corresponding coarse spatial 

resolution LST image was considered and a novel weighting 

strategy termed here STC-Weighting was proposed. It was 

different from previous fusion methods [34, 36], in which the 

temporal change between the coarse spatial resolution images 

at the neighboring dates (M1 and M3) and target date (M2) was 

used to calculate the weights (termed here Temporal 

Consistency (TC)-Weighting), which can be denoted as: 

2

1 2 3 2

1

1,3
1 1

i

i

M M
p i

M M M M

−
= =

+
− −

                  (5) 

In STC-Weighting, weight magnitude depends on the 

difference between the predicted fine spatial resolution images 

and the coarse spatial resolution image at the target date, i.e., a 

smaller difference results in a higher weight. Specifically, the 

differences between M2 and 1 2

2L → , M2 and 3 2

2L →  are used to 

calculate the weighting parameters: 

2

2 2

1 2 3 2

2 2 2 2

1

1,3
1 1

i

i

L M
p i

L M L M

→

→ →

−
= =

+
− −

                  (6) 
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III. EXPERIMENTAL PARTS 

A. Study areas and data 

Two study areas were used here. The first study area was 

located in Évora, Portugal (Fig.3(a)). This was a large region of 

expansive plains covered mainly by Holm and Cork Oaks trees. 

The second study area was in the Shengjin Lake nature reserve, 

China (Fig.3(b)). The land cover mosaic in this study area was 

more complex than in Évora and, in addition, the lake’s water 

level fluctuated greatly between seasons and hence its extent 

was variable [46]. 

The MODIS/Terra LST and Emissivity Daily L3 Global 

1-km SIN Grid product (MOD11A1, Collection 6) were 

obtained from the website of The Level 1 and Atmosphere 

Archive and Distribution System Distributed Active Archive 

Center (https://ladsweb.modaps.eosdis.nasa.gov/), the RMSEs 

of the MOD11A1 product are within 2 ℃ for most landcovers 

[47, 48]. Landsat LST data were derived from imagery acquired 

in Landsat TM/ETM+ thermal bands provided at 30 m pixel 

size, which were downloaded from the United States 

Geological Survey (USGS) Earth Explorer 

(http://earthexplorer.usgs.gov/). Data gaps caused by the 

ETM+ SLC-off problem were filled by a linear interpolation 

algorithm. Landsat LSTs were estimated with a single channel 

algorithm, whose accuracy is reportedly within 1.5 ℃ [49]. 

For Évora, 18 cloud-free Landsat-MODIS LST image pairs 

between January 2010 and October 2011 were obtained (Table 

Ⅱ). These image pairs each covered an area of 39 km39 km 

and, hence, each Landsat LST products comprised 1300 pixels 

 1300 pixels while the MODIS LST product comprised 39 

pixels  39 pixels. The data acquisition dates included almost 

every month of the year and, therefore, captured phenological 

change. 

For the Shengjin Lake nature reserve study area, 5 cloud-free 

Landsat-MODIS LST image pairs, which covered an area of 24 

km  24 km, were acquired. The Landsat LST product 

comprised 800 pixels  800 pixels and the MODIS LST 

product comprised 24 pixels 24 pixels. The rise and fall of the 

lake water level during the period of study caused changes in 

the areal extent of the water body. 

In the training process, according to the structure of the 

multi-scale fusion CNN, the input coarse resolution images are 

not the original MODIS data but the interpolated image that 

match the size of Landsat data, and bilinear interpolation was 

used to interpolate the MODIS data. The original input Landsat 

and interpolated MODIS LST images were cropped into image 

patches of 40 pixels × 40 pixels. Considering the different 

image sizes and landcover types and via a series of experiments, 

the cropping strides were set to 20 and 15 for Évora and 

Shengjin Lake, respectively. Accordingly, a total of 4096 and 

2704 image patches from each original input LST image were 

used to train the network for Évora and Shengjin Lake, 

respectively. These image patches were randomly chose in the 

training to ensure convergence and generalization ability of 

network. 

 

 
Fig.3. Study areas. (a) The land cover map of Évora area; (b) the land cover 
map of Shengjin Lake nature reserve area. Both of them are derived from the 

MODIS yearly land cover product in 2011 and 2016 respectively under the 

International Geosphere–Biosphere program (IGBP) [50] . 
 

TABLE Ⅱ 

THE LST DATA USED FOR THE TWO STUDY AREAS  

Évora  Shengjin Lake nature reserve 

Pair 

Number 
Date 

Landsat 

sensor and 
overpass time 

MODIS 

overpass time 

 

Pair Number Date 

Landsat 

sensor and 
overpass time 

MODIS overpass 

time 

1 28 Jan 2010 TM, 10:59 10:40  1 6 Nov 2016 ETM+, 10:47 11:03 

2 13 Feb 2010 TM,10:59 10:57  2 8 Dec 2016 ETM+, 10:46 11:05 

3 9 Mar 2010 ETM+, 11:00 11:09  3 26 Feb 2017 ETM+, 10:46 11:09 
4 10 Apr 2010 ETM+, 11:00 11:08  4 14 Mar 2017 ETM+, 10:46 11:08 

5 20 May 2010 TM, 10:59 10:30  5 15 Apr 2017 ETM+, 10:46 11:09 

6 21 Jun 2010 TM, 10:59 10:31      
7 24 Aug 2010 TM, 10:59  10:30      
8 9 Sep 2010 TM,10:59 10:29      
9 11 Oct 2010 TM, 10:58 10:37      

10 4 Nov 2010 ETM+, 11:01 11:09      
11 20 Mar 2011 TM, 10:58 10:31      
12 5 Apr 2011 TM, 10:58 10:41      
13 15 May 2011 ETM+, 11:02 11:11      
14 24 Jun 2011 TM, 10:58 10:30      
15 26 Jul 2011 TM, 10:57 10:30      
16 27 Aug 2011 TM, 10:57 10:33      
17 12 Sep 2011 TM, 10:57 10:30      
18 6 Oct 2011 ETM+, 11:02 11:09      

 

https://ladsweb.modaps.eosdis.nasa.gov/
http://earthexplorer.usgs.gov/
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B. Comparator methods  

For an informative assessment, three traditional fusion 

methods were used for comparison, the ESTARFM [23] , the 

STITFM [11] and the StfNet [36]. These methods all assume 

images from different satellite sensors observed at the same 

date are comparable and correlated. ESTARFM is a widely 

adopted spatiotemporal fusion method which uses images from 

two satellite sensors as input [23], while STITFM is a modified 

version of ESTARFM accounting for input images from 

arbitrary satellite sensors [11]. Both methods obtain spatial 

variations from the input fine spatial resolution images and 

acquire temporal changes from the input fine temporal 

resolution images through linear weight functions [51]. StfNet 

applies a two-stream CNN to build the nonlinear relations 

between input and output images and predicts a fine 

spatiotemporal resolution image by incorporating temporal 

information to fine spatial resolution image series [36]. Here, 

the inputs of these methods are a coarse spatial resolution 

image at the target date and two pairs of coarse and fine images 

pre- and post-dating the target date. 
Regarding quantitative evaluation, the absolute error (AE), 

root mean square error (RMSE) and structural similarity 

(SSIM) were calculated using the real fine resolution image at 

the target date as reference. AE denotes the difference between 

pixels of the real and predicted images, RMSE represents the 

difference between the real and predicted images, while SSIM 

reflects the correlation of spatial details between the real and 

predicted images. The most accurate prediction will have a low 

AE and RMSE as well as a high SSIM. 

C. Validity of STC-Weighting and Huber Loss  

The performance of STC-Weighting and TC-Weighting 

based combination was compared (Fig.4). It shows that 

STC-Weighting and TC-Weighting yielded similar results in 

most dates, while TC-Weighting had a poor performance on 11 

October 2010. It may because that spatial consistency was not 

considered in TC-Weighting. Three subsets of Landsat LST 

images on 09 September 2010, 11 October 2010, and 4 

November 2010 were shown in Fig.5. We can see that, there 

were many anomalous values in the gap-filled Landsat ETM+ 

LC-off LST image on 4 November 2010, resulting in large 

difference of spatial patterns between Landsat LSTs on 11 

October 2010 and 4 November 2010. However, as indicated in 

Table Ⅲ, the difference of MODIS LSTs between the target 

date (11 October 2010) and the date post-dating the target date 

(4 November 2010) is smaller than that between the target date 

(11 October 2010) and the date pre-dating the target date (9 

September 2010). Therefore, in TC-Weighting based 

combination, the backward prediction based on the image pair 

on 4 November 2010 would obtain a higher weight due to the 

smaller difference of MODIS LSTs with the target date. While 

the error of the backward prediction is much larger than the 

forward prediction based on image pair from 9 September 2010 

(Fig.6) due to spatial inconsistency, and resulted in large errors 

of the TC-Weighting based combination. In contrast, the 

STC-Weighting based combination considered the 

spatiotemporal consistency between the predicted results and 

the actual MODIS data at the target date and, thus, yielded a 

more robust result. Additionally, final results from the 

combinations of forward and backward predictions through 

STC-Weighting are better than the forward and backward 

predictions (Fig.7) due to the consideration of spatiotemporal 

consistency. 

TABLE Ⅲ  
AVERAGE VALUE OF MODIS AND LANDSAT LSTS ON TARGET DATE (11 

OCTOBER 2010), NEIGHBORING DATES (09 SEPTEMBER 2010 AND 4 

NOVEMBER 2010)  

Date 09 Sep 2010 11 Oct 2010 4 Nov 2010 

MODIS 34.27 21.61 23.03 
Landsat 34.91 23.02 23.12 

 

 
Fig.4. Comparisons results of Spatiotemporal-Consistency (STC)-Weighting and Temporal-Consistency (TC)-Weighting. (a) Évora study area; (b) Shengjin Lake 

study area. 
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Fig.5. Subsets of Landsat LST images on 09 September 2010, 11 October 2010, and 4 November 2010. 

 
Fig.6. Forward and backward predictions compared with TC-Weighting and STC-Weighting based result and actual LST on 11 Oct 2010. (a) Forward prediction; 

(b) Backward prediction; (c) TC-Weighting based result; (d) STC-Weighting based result; (e) Actual Landsat LST. 

 
Fig.7. RMSEs of forward and backward predictions compared with STC-Weighting results on all dates 

 

Huber Loss was adopted as the loss function to optimize the 

network is of considerable importance for decreasing the 

negative influences of the abnormal values in the input LST 

images. The lower RMSEs of predictions in Évora area with 

Huber loss compared to MSE loss (Fig.8) indicates that more 

favorable results can be derived by Huber Loss. 

 
Fig.8. RMSEs of predictions by using MSE loss and Huber Loss. 

D. Evaluations Based on Actual Data 

In the prediction stage, all Landsat-MODIS pairs were 

arranged in numeric order as defined in Table Ⅱ. A Landsat-like 

LST image on the target date was predicted using the 

corresponding MODIS LST image and two Landsat-MODIS 

LST image pairs. The acquisition dates of the two 

Landsat-MODIS LST image pairs were those that immediately 

pre- and post-dated the target date. For example, the 

Landsat-MODIS LST image pair numbers 1 and 3, and the 

MODIS LST image number 2 are used to predict a Landsat-like 

LST image for the date of MODIS image number 2. Therefore, 

excluding the first and last LST image pairs, 16 Landsat-like 

LST images were predicted for Évora area and 3 Landsat-like 

LST images were predicted for Shengjin Lake reserve area. 

Because the multi-scale fusion CNN in the STTFN is a fully 

convolutional network, it can theoretically process images with 

arbitrary size. Therefore, original LST images without cropping 

were entered into the network to yield the predicted image. The 

accuracy of the prediction was assessed relative to the actual 

Landsat image for the target date. 

For the Évora study area, the quantitative evaluations for the 

fusion results of ESTARFM, STITFM, StfNet and STTFN are 

summarized in Table Ⅳ. It is evident that, the proposed 

STTFN produced the highest SSIMs on the prediction dates 

except for 9 March 2010 and 24 Aug 2010. Additionally, with 

the exception of three dates (9 March 2010, 21 June 2010, and 

20 Mar 2011), the RMSEs for the predictions from STTFN 

were all lower than those from ESTARFM, STITFM, and 

StfNet. Finally, the STTFN produced the most accurate 

predictions in terms of the average RMSE and SSIM. 
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TABLE Ⅳ  
QUANTITATIVE EVALUATION FOR THE ÉVORA STUDY AREA. (MOST ACCURATE RESULT HIGHLIGHTED IN BOLD) 

Date 
 ESTARFM  STITFM  StfNet  STTFN 
 RMSE(˚C) SSIM  RMSE(˚C) SSIM  RMSE(˚C) SSIM  RMSE(˚C) SSIM 

13 Feb 2010  2.06  0.932   1.98  0.931  1.30 0.980   0.57 0.987  

09 Mar 2010  0.95  0.967   1.37  0.950   1.95 0.956   0.97 0.966  

10 Apr 2010  2.14  0.944   2.86  0.903   1.49 0.945   1.31 0.949  

20 May 2010  1.90  0.963   3.68  0.887   2.44 0.957   1.88 0.966  

21 Jun 2010  4.37  0.945   2.63  0.936   4.03 0.950   4.03 0.962  

24 Aug 2010  2.69  0.968   5.33  0.913   1.82 0.976   1.46 0.973  

09 Sep 2010  1.31  0.977   3.14  0.958   1.59 0.974   1.21 0.978  

11 Oct 2010  2.79  0.955   2.82  0.915   1.07 0.980   0.94 0.983  

04 Nov 2010  1.15  0.970   1.90  0.950   1.07  0.970   1.07  0.971  

20 Mar 2011  1.14  0.977   1.38  0.946   1.22 0.979  1.15 0.981 

05 Apr 2011  1.15  0.980   1.88  0.948   1.33 0.977  1.03 0.983 

15 May 2011  1.65  0.929   2.46  0.895   1.72 0.927  1.52  0.931 

24 Jun 2011  2.59  0.955   2.75  0.872   2.98 0.953  1.55 0.967 

26 Jul 2011  1.80  0.978   2.65  0.933   2.31 0.982  1.53 0.985 

27 Aug 2011  1.23  0.980   2.45  0.942   1.77 0.978  1.00 0.982 

12 Sep 2011  1.53  0.962   2.94  0.937   2.31 0.969  1.29 0.972 

Average  1.90 0.961  2.64 0.927  1.90 0.966  1.40 0.971 

 

For 21 June 2010, the RMSE values computed for the 

prediction from ESTARFM, StfNet and STTFN were large (all 

> 4.0 ˚C), much larger than those on other dates, while the 

RMSE for STITFM was relatively small. This might because of 

the large discrepancy between MODIS and Landsat LST on 21 

June 2010 (Fig.9), and the overall differences between Landsat 

and MODIS images on 20 May 2010 and 24 August 2010 were 

much smaller than that on 21 June 2010. This caused the 

relationships formed in ESTARFM, StfNet and STTFN 

between neighboring dates to be inappropriate for predicting 

the fine spatial resolution image on the target date. For 

STITFM, the fine spatial resolution image prediction is based 

mainly on adding the differences between Landsat and MODIS 

images on neighboring dates to the MODIS image on the target 

date [11] rather than forming relations between the images and, 

thus, produced a relatively accurate result. 

Table Ⅴ summarises the quantitative assessment of the 

output from different algorithms applied to the Shengjin Lake 

area. Here, the predictions from STTFN had the highest SSIMs 

on all dates. The RMSEs of STTFN on 08 December 2016 and 

26 February 2017 are lower than for the other methods. The 

only date for which the prediction with STTFN did not yield the 

lowest RMSE was 14 Mar 2017 for which ESTARFM has a 

very slightly lower RMSE. The average results of the four 

methods also indicate the STTFN generally produced the most 

accurate predictions. 

 
Fig.9. Differences of aggregated Landsat (pixel size of 1000m) and MODIS 

LST images on (a) 20 May 2010, (b) 21 June 2010 and (c) 24 August 2010. 

TABLE Ⅴ  

QUANTITATIVE EVALUATION FOR THE SHENGJIN LAKE STUDY AREA. (MOST ACCURATE RESULT HIGHLIGHTED IN BOLD) 

Date 
 ESTARFM  STITFM  StfNet  STTFN 
 RMSE(˚C) SSIM  RMSE(˚C) SSIM  RMSE(˚C) SSIM  RMSE(˚C) SSIM 

08 Dec 2016  1.81  0.943  3.07 0.920  3.84 0.952  1.59 0.975 

26 Feb 2017  1.58  0.952  2.03 0.949  2.46 0.967  1.08 0.977  

14 Mar 2017  1.09  0.971  3.21 0.911  2.42 0.961  1.18 0.973 

Average  1.49 0.955  2.77 0.927  2.90 0.960  1.28 0.975 

The AE distribution of image pixels for the Évora study area 

(Fig.10 (a)) and Shengjin Lake study area (Fig.10 (b)) on all 

prediction dates also shows that STTFN has a better 

performance in both study areas (almost 60% AE < 1.0 ˚C). 

ESTARFM has a comparable AE distribution with STTFN for 

Shengjin Lake study area (Fig.10 (b)), while it performs not 

well in Évora study area (less than 40% AE < 1.0 ˚C) (Fig.10 

(a)). ESTARFM, STITFM and StfNet have similar distribution 

of AE in Évora study area, but they perform differently in 

Shengjin Lake area. 

 
Fig.10. AE distribution of the four methods. (a) Évora study area; (b) Shengjin Lake study area. 
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The results in Tables Ⅳ and Ⅴ indicate that the predictions of 

the proposed STTFN were closest to the actual data and 

retained the most structural similarities. Fig.10 shows that 

STTFN not only yielded the most accurate results but had the 

stablest performance. This is because the proposed STTFN 

established a realistic nonlinear relationship between input and 

output LSTs, whereas ESTARFM and STITFM are limited to 

linear relationships. Though StfNet builds the nonlinear 

relationship between input and output LSTs, it is a shallow 

network, which is unable to adequately represent complex 

nonlinear relationships. Additionally, CNN is able to extract 

the high-level features which contain abundant semantic 

information (e.g., edges of objects in images and their mutual 

relations), thus, the average SSIMs of STTFN and StfNet, 

which include CNN, in the two study areas are higher than the 

other two methods. To illustrate the quality of the spatial 

representation of LST in the various fusion results, predictions 

from the four methods and the actual Landsat LST images, and 

the error maps between four predictions and the corresponding 

actual  LST images on 24 Aug 2010 (Ta and da) and 24 Jun 2011 

(Tb and db) for Évora and on 26 February 2017 (Tc and dc) for 

Shengjin Lake reserve are depicted in Fig.11, respectively. It 

is evident that on 24 August 2010 and 24 June 2011 large parts 

of the predicted LST images obtained from STITFM and 

ESTARFM are higher than the actual values, especially for 

STITFM (Fig.11). The predictions from ESTARFM are 

visually close to the actual LST image for 26 February 2017, 

but there are some considerably higher values as well (red 

rectangle in Fig.11.) The predicted image from StfNet for 24 

August 2010 was visually good but too smooth, while that for 

24 June 2011 showed some over-prediction. The smoothness 

problem also occurred for the 26 February 2017, for which 

large areas show predicted values lower than the actual values. 

Overall, the predicted LST images generated by STTFN are 

most consistent with the actual LST images, which agrees with 

the SSIMs in Tables Ⅳ and Ⅴ. 

 
Fig.11. Examples of the fusion results and the actual Landsat LSTs and the error maps (da, db and dc) of the predictions on 24 Aug 2010 (Ta) and 24 Jun 2011(Tb) for 

Évora and on 26 February 2017 (Tc) for Shengjin Lake reserve. 

For ESTARFM and STITFM, each predicted pixel is a 

weighted combination of the inputs. Therefore, if there are any 

abnormal values in the input LST image, such as local 

inconsistency in the gap-filled Landsat ETM+ SLC-off images, 

the output of the fusion product will contain corresponding 

abnormal values. For example, Fig.12 shows the input LST 
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images and the corresponding results of the four methods for 13 

February 2010. Some values in the left-bottom bold rectangle 

part of the MODIS LST image (Fig.12 (f)) are clearly not 

consistent with the Landsat LST image on 9 March 2010 

(Fig.12 (c)). This resulted in the generation of several 

corresponding abnormal pixels in the predicted LST images of 

ESTARFM and STITFM, as shown in Fig.12 (g) and (h). With 

STTFN, the predicted image is the combination of the two 

predicted outcomes from the learned forward and backward 

multi-scale fusion CNNs. Therefore, if the abnormal values 

occur in only one pair of neighboring images, this pair will be 

given low weight in the abnormal regions and hence has little 

negative influence. The core procedure of StfNet is similar to 

STTFN, so it also has few abnormal values in the 

corresponding region. Similarly, when anomalous values occur 

in the gap-filled Landsat ETM+ SLC-off LST image, the results 

of ESTARFM and STITFM are impacted greatly, e.g., the road 

in the red bold box disappeared (Fig.13 (a) and (b)), while the 

effect on predictions from StfNet and STTFN is relatively small 

(Fig.13). 

 
Fig.12. Input LST images and predictions from the four methods for 13 February 2010. (a) Landsat LST image on 28 January 2010; (b) Landsat LST image on 13 

February 2010; (c) Landsat LST image on 9 March 2010; (d) MODIS LST image on 28 January 2010; (e) MODIS LST image on 13 February 2010; (f) MODIS 
LST imagery on 9 March 2010; (g) the predicted LST image from ESTARFM; (h) the predicted LST image from STITFM; (i) the predicted LST image from 

StfNet; (j) the predicted LST image from STTFN. 

 
Fig.13. Fusion results of the four methods when anomalous values exist in gap-filled Landsat LST image on 11 October 2010. (a) the predicted LST image from 

ESTARFM; (b) the predicted LST image from STITFM; (c) the predicted LST image from StfNet; (d) the predicted LST image from STTFN; (e) the actual Landsat 

LST image. Roads were not totally captured in (a) and (b) (in red box) due to anomalous values in the gap-filled Landsat ETM+ SLC-off LST image (In gray to 
highlight the spatial and structure information). 
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E.  Computation Efficiency  

Using a 1300 pixels 1300 pixels area extracted from the 

Landsat LST images as an example, the computational 

efficiency of the different fusion methods was compared. All 

experiments are carried out on the same computer equipped 

with an Intel Core i7-6700 processor with 3.4GHz and 24GB 

RAM, and a NVIDIA 1080Ti GPU with 11 GB of RAM. 

StfNet and STTFN were implemented using the TensorFlow 

framework with GPU acceleration, while ESTARFM and 

STITFM were tested under CPU mode. The comparison of 

computation efficiency for different methods is shown in Table 

Ⅵ. It is evident that ESTARFM was the most time-consuming 

method. The time cost of STTFN was close to STITFM and 

higher than for StfNet. For STTFN and StfNet, most 

computational time is spent on training, while StfNet is a 

shallow network with three layers, which requires less time for 

training. In general, CNN-based methods are more 

time-consuming than traditional methods because the training 

process is slow. However, STTFN employs the Adam 

algorithm is employed to update the parameters of the network, 

which has a much faster convergence speed than stochastic 

gradient descent (SGD) algorithm. Furthermore, batch 

normalization layers are used to overcome overfitting and 

speed up the training process. Thus, the total time of STTFN is 

less than that of ESTARFM and close to that of STITFM. 
TABLE Ⅵ  

COMPUTATION EFFICIENCY COMPARISON (IN SECONDS) 

Methods ESTARFM STITFM StfNet STTFN 

Training Time - - 78 170 

Predicting Time 718 155 6 8 

Total Time 718 155 84 178 

IV. DISCUSSIONS 

A SpatioTemporal Temperature Fusion Network (STTFN) 

was proposed to predict fine spatiotemporal resolution 

Landsat-like LST images from MODIS and Landsat 

observations. The effectiveness of the proposed network was 

assessed using data from two study areas: Évora, Portugal and 

Shengjin Lake reserve, China.  

The enhanced performance of STTFN relative to the other 

methods arises primarily from the ability to accommodate 

nonlinear relations between input and output LST data and a 

specific weight function-based combination. STTFN is a 

multi-scale fusion CNN based method that achieves high level 

feature extraction and fusion at different levels. The 

slim-WDSR super resolves the temporal change image between 

two input coarse spatial resolution LST images, and, to provide 

fine spatial detail, during the super resolution analysis the 

temporally neighboring fine spatial resolution LST image is 

concatenated with the change image. This allows to represent 

fine spatial resolution change information. Some low-level 

features may be lost in the convolution process of CNN. To 

solve this problem, STTFN uses two local and one global 

residual learning processes which can retain shallow features. 

Therefore, STTFN can derive high- and low-level features at 

the same time. Finally, a key component of STTFN is the use of 

the STC-Weighting function. In previous spatiotemporal fusion 

methods [34, 36], the temporal changes between the coarse 

spatial resolution LST images at the neighboring and target 

dates are employed to calculate weight parameters. However, 

the STC-Weighting function also accommodates spatial 

consistencies between the two predicted fine spatial resolution 

images and the corresponding coarse image. Note that, despite 

the performance of STTFN was validated in two study areas 

here, it can be applied globally if sufficient training data set is 

available. 

There are, however, some limitations to STTFN. First, the 

performance of STTFN greatly relies on the training samples, 

an inherent problem of CNN. Therefore, LST changes which 

are not contained in the training data may not necessarily be 

predicted accurately. The incorporation of additional inputs 

(e.g., in-situ LST) in combination with other models (e.g., 

radiation transfer model) may help to solve this problem. 

Second, since the overpass time of MODIS and Landsat is 

similar (as indicated in Table Ⅱ, time differences between them 

are all within half an hour), the data was not corrected for 

possible inconsistencies, but the results from combination of 

forward and backward predictions would not be ideal if the 

MODIS and Landsat LST did not match at the target date. At 

present, time normalization method has been applied to 

eliminated the time inconsistent of MODIS LST product [52], 

we will try to integrate the time normalization method into 

CNN in further study. Additionally, there may be large 

discrepancies between MODIS and Landsat LSTs for some 

image pairs because they were retrieved by different 

algorithms. These discrepancies would have large negative 

impacts on the fusion results (e.g., the result on 21 June 2010). 

Therefore, the accuracy of LST product is an important factor 

for the accuracy of STTFN as well. Third, two pairs of 

temporally close LST images are required to train the network 

and predict the result, which is sometimes difficult to obtain 

due to cloud cover. This problem would be reduced by use of 

methods to fill missing values in remotely-sensed LST series 

[53]. Finally, some customized parameters in STTFN (e.g., 

cropping size and stride of training image patches, learning rate 

and decay rates of Adam) should be set in advance, they were 

set via experience and a series of experiments. Final experiment 

showed STTFN were able to generate promising results for 

different date sets with these set values, but there may be 

several better values for these parameters which can derive 

more accurate results, how to acquire the best values of these 

parameters is a hot-topic in deep learning and needs further 

studies. 

V. CONCLUSION 

The proposed STTFN was used successfully to generate fine 

spatial resolution LST image. STTFN specified the nonlinear 

relations between input and output LST based on an integration 

of features extracted at different levels and fusion through a 

specially designed convolution neural network. The main 

novelty of STTFN is that: 1) it more fully uses low- and 

high-level features of the input LSTs through use of residual 

learning unit and super-resolution module, which enables 

spatial information at different scales to be obtained, and by its 

enhanced capacity to accommodate potentially complicated 

nonlinear relations between input and output data; 2) it uses 

Huber Loss as the loss function in training which is robust to 
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outliers and, hence, yields enhanced outputs; and 3) it preserves 

the spatiotemporal consistency of LST images through 

STC-Weighting, which considerably enhances output quality. 

The proposed method was tested on actual data for two study 

areas, and compared with three classic fusion methods 

(ESTARFM, STITFM, and StfNet). The results indicated that 

STTFN has the ability to produce accurate and stable fine 

spatiotemporal resolution LST image. Moreover, it also has a 

good performance in terms of computational efficiency. 

STTFN is designed to yield more accurate LST products with 

fine spatiotemporal resolution, and therefore to support 

monitoring diurnal land-surface and ecological dynamics. 

Future improvements may include developing strategies to 

tackle missing value problem, analyzing network parameters, 

and introducing some physical models. 
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