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Abstract—Coronavirus (Covid-19) is spreading fast, infecting
people through contact in various forms including droplets
from sneezing and coughing. Therefore, the detection of infected
subjects in an early, quick and cheap manner is urgent. Currently
available tests are scarce and limited to people in danger of
serious illness. The application of deep learning to chest X-
ray images for Covid-19 detection is an attractive approach.
However, this technology usually relies on the availability of large
labelled datasets, a requirement hard to meet in the context of
a virus outbreak. To overcome this challenge, a semi-supervised
deep learning model using both labelled and unlabelled data is
proposed. We develop and test a semi-supervised deep learning
framework based on the Mix Match architecture to classify
chest X-rays into Covid-19, pneumonia and healthy cases. The
presented approach was calibrated using two publicly available
datasets. The results show an accuracy increase of around 15%
under low labelled / unlabelled data ratio. This indicates that our
semi-supervised framework can help improve performance levels
towards Covid-19 detection when the amount of high-quality
labelled data is scarce. Also, we introduce a semi-supervised deep
learning boost coefficient which is meant to ease the scalability
of our approach and performance comparison.

Index Terms—Semi-supervised Deep Learning, Mix Match,
Chest X-Ray, Covid-19, Computer Aided Diagnosis.

I. INTRODUCTION

Coronavirus is a common type of virus which affects
mammals, reptiles and birds, causing what is referred to as
zoonotic infections [1]. The SARS-CoV2 virus belongs to
the family of the single stranded Ribonucleic Acid (RNA)
viruses known as coronaviridae [1]. Coronaviruses (COVs)
infect the respiratory and gastrointestinal tract in a wide range
of animal species. Even though most of the individual virus
species appear to be restricted to narrow host range comprising
single animal species, genome sequencing and phylogenetic
analysis testify that COVs have successfully migrated to new
host species [3].

Zoonotic infection outbreaks are explosive in nature, in-
fecting a high number of subjects in a short period of time.
An outbreak may cause the collapse of even state-of-the-
art healthcare systems in developed countries within a few
months. A recent example is the collapse of Italy’s healthcare
system due the Covid-19 infection [5]. Italy’s public healthcare
system is amongst one of the best world-wide [24].

It is important for global organizations such as the World
Health Organization (WHO) and governments to implement
cost-effective methods to reliably detect Covid-19 infection
spread. Alternative solutions include the use of Artificial
Intelligence (AI). AI based Computer Aided Diagnosis (CAD)
systems can help identifying infected subjects quickly. In
this work we implement a semi-supervised deep learning
framework for Covid-19 detection using chest X-ray images.
Semi-supervised learning makes use of unlabelled data, which
is cheaper and more widely available. Effectively using this
data can lead to quickly deploy cost-effective deep learning
solutions for Covid-19 detection or later mutations of the virus.
Making available AI solutions to deal with subject diagnosis
in a fast manner, might help to develop a quick and effective
response to rapidly evolving virus outbreaks.

A. Covid-19 diagnosis based on X-ray images

The Real-time Reverse Transcription Polymerase Chain Re-
action (RT-PCR) test is the gold standard for robust Covid-19
virus detection [13]. This molecular based testing of respira-
tory tract samples aims to detect the nucleic acid from SARS-
CoV-2 from upper and lower respiratory regions. However,
the overall cost of the facilities for RT-PCR is rather high. The
need for consumables and trained technicians increases further
the costs. This makes mass testing frequently unfeasible even
in developed countries [25].



Medical imaging is an alternative method for Covid-19
diagnosis. Computed Tomography (CT) of chest shows high
accuracy and sensitivity towards Covid-19 detection [17].
Medical imaging studies are becoming important for the early
detection and management of patients with Covid-19 [20].
In [6] the authors showed that the accuracy obtained using
CT scans was 97%, which was significantly higher than that
achieved with RT-PCR (75%). A database of 1014 patients
was used in this study. Fang et al. [20] reached similar
conclusions. However, CT machines are not widely available
in less industrialised countries like India [31].

X-ray chest imaging is a less expensive and more acces-
sible alternative than CT [31]. Nevertheless, X-ray can be
considered expensive when human resources are considered.
These include the availability of radiologists and medical
imaging technicians. In India, with a current population of
1.44 billion, currently there is approximately one radiologist
for every 100,000 people [10]. This makes X-ray based Covid-
19 diagnosis attractive.

In [8], authors developed a severity score based on chest
X-ray images. The study included 783 SARS-CoV-2 positive
patients. The severity score allowed to screen patients who
are likely to develop more severe symptoms. However, a
low sensitivity in a small number of cases with alterations
compatible with Covid-19 has been found by [34]. This draws
the need for an additional validation of labelled data trough
the diagnosis of multiple radiologists. With a high quality
labelled dataset, AI solutions can be developed for CAD mass
testing. However, building a large high quality dataset can be
expensive and slow.

B. Contributions

In this paper we propose the diagnosis of Covid-19 based
on X-ray images for early diagnosis and detection by us-
ing Mix Match, a novel semi-supervised learning technique
[12]. We highlight the difficulties to gather large high-quality
labeled datasets in the medical imaging domain, specially
in the context of a virus out-break. This makes the usage
of unlabelled data an attractive alternative to improve the
accuracy of deep learning architectures. To our knowledge,
this is the first work implementing semi-supervised learning
for Covid-19 detection.

The proposed model uses chest X-ray images for training
and detection. X-ray equipment is widely available, easing
the compilation of large unlabelled datasets, given the low
availability of trained technicians or radiologists to label the
data. It is vital to be able to quickly classify various types
of pneumonia based on digital X-ray images when a virus
outbreak occurs. Such outbreaks create very large volumes
of cases which have to be manually analysed by radiologist.
Early, fast, and cheap diagnosis of Covid-19 infection is key
to trace, isolate and control the disease out-break. We stress
that the use of semi-supervised deep learning can be a useful
approach when dealing with the current Covid-19 out-break
or the spread of similar viruses in future.

Finally, in this work we propose the usage of a normalized
metric, the semi-supervised learning boost coefficient, for
analyzing semi-supervised learning accuracy scalability under
different evaluation, labelled and unlabelled data settings. This
can be used as a more challenging and closer to real-world
evaluation of deep learning solutions for the detection of
Covid-19 infection.

II. RELATED WORK

A. Semi-supervised deep learning

Semi-supervised deep learning is an increasingly popular
approach to deal with scarcely labelled datasets. Typical deep
learning architectures require large labelled datasets to gen-
eralize well. This requirement frequently makes its practical
implementation in the medical domain hard, as high quality
labelled data is expensive and scarce.

Formally, in a semi-supervised setting, combination of la-
belled and unlabelled samples is used. The labelled observa-
tions Xl = {x1, . . . ,xnl

} include there corresponding labels
in the set Yl = {y1, . . . , ynl

}. The unlabelled set includes all
the observations with no labels Xu = {x1, . . . ,xnu

}.
We can categorize existing semi-supervised deep learning

architectures as follows: Pre-training [19], self-training or
pseudo-labelled [14] and regularization based. Regularization
techniques include generative based approaches, along consis-
tency loss term and graph based regularization [15].

Regularization based semi-supervised deep learning in-
cludes a regularization term using unlabelled data Su, L (S) =∑

(xi,yi)∈Sl
Ll (w,xi,yi)+γ

∑
−→x j∈Xu

Lu (w,xj), where w
corresponds to the weights of the model to estimate, Ll and
Lu correspond to the labelled and unlabelled loss terms, and
γ corresponds to the unsupervised term weight, and controls
the influence of the unlabelled data during training.

Different variations of the regularized approach have been
developed, namely graph based [42], [23], generative augmen-
tation based [35], [27], and consistency loss based [38], [37].
A deep review on semi-supervised deep learning, along key
assumptions of popular approaches, can be found in [39].

More recently, Mix Match [12] combined regularization and
pseudo-labelled based learning, with intensive data augmen-
tation. Mix Match out-performed other regularized, pseudo-
labelled and generative based semi-supervised deep learning
techniques as described in [12]. Given the recently state of the
art performance demonstrated by Mix Match, we chose it for
the developed solution in this work.

B. Semi-Supervised Deep Learning for Medical Imaging

Availability of labelled data for supervised learning is
cumbersome for narrow deep learning applications. In the
medical domain, automatic pathology diagnosis requires clin-
icians to provide a consistent ground-truth for thousands of
images. This is expensive and time consuming compared to
the generation of weak image-level labels, or unlabelled data.
Semi-supervised classification is an attractive alternative when
strong annotations are hard to come by, enabling the use of
unlabelled data to improve model accuracy.



A recent survey on semi-supervised, multi-instance and
transfer learning for medical image analysis was published
in [40]. Authors discussed several semi-supervised learning
methods such as self-training, graph-based, co-training, and
manifold regularization. Authors concluded that the usage of
transfer learning was more frequent, given the still precarious
advantage of using semi-supervised learning in real data.

However, recent successful implementations of semi-
supervised deep learning can be found. In [30], breast masses
were both localized and classified from ultrasound data using
weakly and semi-supervised learning, self-training and VGG-
16 network. Results obtained by training the method with
10 annotated images along with weakly annotated data were
comparable to the ones achieved from 800 strongly annotated
images. Additional weakly annotated data increased the per-
formance from 80% to 84.50%.

Similarly, a graph-based semi-supervised deep learning
scheme based on Convolutional Neural Network (CNN) co-
training pseudo-labeling, for breast cancer diagnosis is pre-
sented in [36]. Authors obtained an accuracy of 82.43%
using only 100 labelled observations and the rest of the
dataset as unlabelled observations. Authors also highlighted
how the fully-supervised model accuracy grows with the size
of labelled data, but the accuracy difference decreases as the
number of labelled observations becomes larger.

A self-ensembling CNN to leverage unlabelled data was
also used for histopathology image analysis in [32]. The model
reached an accuracy of 90.5% and 89.5% using only 20% of
the labels in breast and lung cancer datasets, respectively. This
performance was comparable to train with all labelled patients.

It is worth highlighting the lack of standardized test-
ing methodologies to compare accuracy scalability of semi-
supervised deep learning based solutions under different la-
belled and unlabelled data settings. This makes the comparison
of semi-supervised deep learning frameworks less straightfor-
ward.

C. Previous work on Chest X-ray image analysis for Covid-19

Covid-19 diagnosis using X-ray images is a new challenge
as previously discussed. Therefore, scarce work around this
can be found in the use of deep learning models for its
automatic detection. For this reason we include pre-published
work, in order to provide an overview of the work in progress.
We take pre-published work as a general guideline of the work
in progress, but not as a performance reference.

The work in [29] describes the implementation of a support
vector machine classifier fed with deep features. Popular deep
learning architectures were tested for feature extraction. The
dataset used in this work is composed of 25 observations
for COVID-19 positive cases, and 25 COVID-19 negative
cases. The positive observations were taken from the Github
repository made available by Dr. Joseph Cohen from the
University of Montreal [18], and the negative observations
were obtained from the Kaggle public repository on X-ray
images with pneumonia and no findings [22]. The model with
the highest accuracy reported was ResNet50 with the proposed

support vector machine as a top model, yielding a level of
accuracy of around 95 %. The 50 images dataset was split into
60% of the images for training, 20% for the error evaluation
during training and 20% for the model test. This makes up for
a labelled to evaluation sample ratio of 30/(10 + 30) = 0.75,
with 30 images for training and 10 for testing.

In [7] authors compared different machine learning algo-
rithms. They did a performance comparison between support
vector machine, random forest and CNN models. The results
showed a superior accuracy of the CNN model, with a test
accuracy of 95.2%. The authors did not report the percentage
of data used for the evaluation of the model.

The authors in [9] used a CNN along with transfer learning
for the automatic classification of pneumonia, Covid-19 and
normal cases. They achieved an overall average accuracy
of 97.82% in the detection of Covid-19. A 10-fold cross
validation was used, corresponding to a labelled to evaluation
sample ratio of 0.9. The authors highlighted some of the
limitations of deep learning including the need of very large
amounts of high quality labelled data, which might be scarce in
the case of a new virus out-break. The dataset is a compilation
of data gathered from [2], [18], [4].

Authors in [16] developed an automatic Covid-19 pneumo-
nia detection using deep learning. The proposed system clas-
sified between Covid-19+, viral and bacterial pneumonia. The
authors implemented data augmentation techniques (namely
rotation, translation and scaling) along transfer learning to
boost model accuracy. Popular CNN models were tested, using
a combination of the datasets found in [18]. The authors
concluded that the SqueezeNet model outperforms other CNN
networks with an accuracy of 98.3%. For evaluation, a 5-fold
validation was used, corresponding to a labelled to evaluation
ratio of 0.75.

With this brief state of the art overview we can easily
distinguish the need of a high amount of labelled data of the
proposed models. The data used in the studies remains to be
validated by multiple experts. Furthermore, the dataset [22],
frequently used in the previous work found, presents important
biases towards pediatric and Chinese patients.

Using semi-supervised learning can alleviate the need for
large high quality labelled datasets. Also, the evaluation under
more challenging data scenarios, such as a low labelled
to evaluation dataset size ratio, is still not covered in the
literature. This includes non-peer reviewed work. Performing
tests in more challenging data scenarios can help to distinguish
better architectures for the problem at hand.

III. PROPOSED METHOD

In this work, we propose the use of semi-supervised deep
learning to tackle the problem of scarcely high-quality labelled
data for Covid-19 detection. We aim to evaluate the feasibility
of a semi-supervised system with different proportions of
labelled to unlabelled data, and their influence on the accuracy
boost. It is conjectured that a semi-supervised model might
boost the accuracy of Covid-19 early diagnosis from chest X-
ray images, particularly when ground truth data is limited. Our



approach is formulated in a way that could be easily extended
to other virus outbreak pathologies.

A. Mix Match for Semi-supervised deep learning

Our semi-supervised deep learning approach is based on
Mix Match [12]. This technique estimates a set of pseudo-
labels and implements an unsupervised regularization term. In
Mix Match, the consistency loss term minimizes the distance
of the pseudo-labels and the model predictions over the
unlabelled dataset Xu. Pseudo-label estimation is performed
with the average model output of a transformed input xj :
ŷj = 1

K

∑K
η=1 f−→w (Ψη (xj)), where K corresponds to the

number of transformations Ψη applied. We used K = 2 as in
[12]. Additionally, authors argued that the estimated pseudo-
label ŷj usually presents a high entropy, leading to unconfident
estimations. To encourage confidence, the output array ŷ

was sharpened with a temperature T : s (ŷ, T )i =
ŷ
1/T
i∑
j ŷ

1/T
j

.

Similar to T → 0, the sharpened distribution ỹ = s (ŷ, T )
tends to become a Dirac function (assuming a one-hot vector
representation). The dataset with the estimated and sharpened
pseudo-labels was defined as S̃u =

(
Xu, Ỹ

)
, with Ỹ ={

ỹ1, ỹ2, . . . , ỹnu

}
.

Berthelot et al. [12] also found that data augmentation is
a key aspect in semi-supervised deep learning. To further
augment data using both labelled and unlabelled samples,
they implemented the Mix Up algorithm developed in [44]:(
S′l , S̃

′
u

)
= ΨMixUp

(
Sl, Ŝu, α

)
The Mix Up algorithm creates new observations from a lin-

ear interpolation of a mix of unlabelled (with its corresponding
pseudo-labels) and labelled data. More specifically, it takes two
labelled (or pseudo labelled) data pairs (xa, ya) and (xb, yb).
The Mix Up method generates a new observation and its label
(x′, y′) by following these steps:

1) Sample the Mix Up parameter λ from a Beta distribution
λ ∼ Beta (α, α).

2) Ensure that λ > 0.5 by making λ′ = max (λ, 1− λ)
3) Create a new observation with a lineal interpolation of

both observations: x′ = λ′xa + (1− λ′)xb.
4) Similarly, create the corresponding pseudo-label for such

observation y′ = λ′ya + (1− λ′) yb.

Using the augmented datasets
(
S′l , S̃

′
u

)
, the Mix

Match training of a model f−→w can be summarized as
minimizing L (S,w) =

∑
(xi,yi)∈S′

l
Ll (w,xi,yi) +

γ
∑

(xj ,ỹj)∈S̃′
u
Lu
(
w,xj , ỹj

)
. The supervised and

semi-supervised loss terms were defined as the entropy
Ll (w,xi,yi) = δentropy (yi, fw (xi)) and the Euclidean
distances Lu

(
w,xj , ỹj

)
=
∥∥ỹj − fw (xj)

∥∥, respectively.
The coefficient γ acts as a regularization weight, controlling
the direct influence on unlabelled data. The ramp coefficient
r(t) is a scalar that increases at each epoch, as the confidence
in unlabelled data naturally grows over training. We used a
ramp coefficient of r(t+ 1) = 1/3000 + r(t).

Note that unlabelled data also influences the labelled data
term Ll, as unlabelled data is used to artificially augment the
dataset through the Mix Up algorithm.

B. Semi-supervised deep learning scalability measurement

To assess the scalability of our semi-supervised method-
ology, we propose the usage of the semi-supervised accu-
racy boost coefficient, based on the evaluation/labelled and
labelled/unlabelled data ratios.

We define the labelled / evaluation data coefficient as
ρle = nv

nv+nl
, where nv and nl are the number of vali-

dation (evaluation), and labelled observations, respectively.
Similarly, the labelled/unlabelled coefficient is formulated as
ρlu = nl

nu+nl
, where nu stands for the number of unlabelled

observations.
For semi-supervised learning we propose the usage of the

semi-supervised boost coefficient based on the previously
defined labelled/unlabelled coefficient ρlu. This coefficient
summarizes the performance boost obtained with a specific
pair of ρlu and ρle. Its formulation is depicted in Equation 1.

∆ρ =
asemi-supervised − asupervised

(ρle + ρlu) ssemi-supervised
(1)

The coefficients asupervised and asemi-supervised correspond to
the reported sample mean accuracy of the supervised and
semi-supervised learning framework, respectively. The sample
standard deviation ssemi-supervised is also added, to account for
the results distribution. Lower ρle and ρlu increase the semi-
supervised boost coefficient, as this corresponds to a more
challenging data scenario. Reporting this coefficient can ease
the comparison of semi-supervised deep learning solutions,
which are very important in the medical domain.

IV. DATASET

In this work we implement a ternary classification of Covid-
19+, pneumonia (bacterial and viral), and no lung pathology
X-ray observations.

The observations for the Covid-19+ are gathered from
the publicly available github repository available in [18].
Dr. Joseph Cohen, from the University of Montreal was the
main author of such repository. A compilation from journal
websites like radiopaedia.org, the Italian Society of Medical
and Interventional Radiology and recent publications in the
matter [18] was gathered by the authors in [18]. The dataset
contains chest X-ray images from around 100 patients, with
ages ranging from 27 to 85 years old. The patients nationalities
include Iran, China, Italy, Taiwan, Australia, Spain and the
United Kingdom. Authors warned researchers to avoid claim-
ing diagnostic performance without a proper clinical study.
Therefore, in this work we focus on exploring the possibility
of using semi-supervised deep learning to improve diagnostic
accuracy with small datasets. The need for a proper clinical
study with more data to confirm the viability of computer
aided diagnosis system for Covid-19, argued in [18]. From
this dataset, we used only Covid-19+ images, discarding
observations of Middle East Respiratory Syndrome (MERS),

radiopaedia.org


Fig. 1. From left to right: chest x-Ray of Covid-19 Patient, chest X-Ray of
pneumonia Patient and normal chest X-Ray

Acute Respiratory Distress Syndrome (ARDS) and Severe
Acute Respiratory Syndrome (SARS). Therefore a subset of
102 front chest X-ray Covid-19+ observations were used.

For the pneumonia and normal observations, we used the
data availaible in [22]. From such dataset, we selected 5856
chest X-ray images all of them from individual children. The
images represent 4273 observations of pneumonia (including
viral and bacterial) and 1583 of normal patients. All the pe-
diatric patients in this study were Chinese [22]. The base-line
dataset used in this work comprises 5958 observations. This
includes 102 observations for Covid-19+, 4273 for pneumonia
and 1583 with no lung pathology.

The aforementioned dataset combination have been exten-
sively used in recent works [26], [45], [41], [21], [28], [9].
However, we warn about a practical short-coming of this
dataset; the very different populations sampled for Covid-19
with adults (with ages between 21 and 85 years old), while
for the normal and pneumonia cases, the images were sampled
from pediatric patients. Furthermore, the nationalities of the
sampled population are also widely skewed, as for the normal
and pneumonia cases Chinese subjects were sampled. We warn
for the need of a more balanced dataset, sampling different
sub-populations equally. Formally, the diagnostic procedure
does not change for pediatric patients, but this biased data
might harm its generalization for everyday clinical use.

To avoid a class bias, in most of this work we use an under
sampled dataset, containing 102 images for each class, ran-
domly sampling the over-represented classes. Figure 1 shows
sample observations from the dataset used in this work. As
pre-processing of the data, we standardized the observations
using the mean and standard deviation of the whole dataset

V. EXPERIMENTS

The most important hyper-parameter to tune in Mix Match
is the semi-supervised loss term coefficient γ, which weights
the importance of unlabelled data as stated in [12]. Our
implementation also includes a ramp coefficient to augment
the weight of the unsupervised signal. This was recommended
by Berthelot et al. [12], since pseudo-labels yj can be
misleading at the beginning of the training process. The
chosen and empirically optimized Mix Match parameters used
in our experiments are: K = 2 number of augmentations,
T = 0.5 sharpening temperature and the distribution parameter
α = 0.5.

Our empirical study shows an important regularization ef-
fect of the unsupervised loss term Lu. Figure 2 depicts the
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Fig. 2. Difference between both validation and training losses with: γ =
1 (continuos line, highest accuracy 74.6%), γ = 25 (dotted line, highest
accuracy 76.1), γ = 100 (the line with the largest dashes, highest accuracy
79.3%). The lower and less spiky the better.

subtraction of the training and validation losses for a specific
data partition. Lower values indicate better generalization.
Moreover, we employed the Wide-ResNet architecture [43] for
the calibration experiment. Wide-ResNet yielded around 96%
of accuracy when using the entire dataset with 25% of the
data for validation, as seen in Table I. Our experiments aim
to explore the effect of γ for semi-supervised classification
accuracy.

In the preliminar testing performed, we noted a strong
influence of labelled data balance. A very imbalanced labelled
dataset practically nullifies the advantage of using unlabelled
data. Thus, we used an under-sampled baseline dataset with
102 observations for Covid-19, pneumonia (including viral and
bacterial observations) and normal cases.

For our experiments we used different number of randomly
chosen labelled observations to train the fully supervised and
the Mix Match models, using Wide-resnet in both. To test
the fully and semi-supervised models with variable number of
labelled observations, we used the undersampled dataset with
102 observations for each of the three classes, comprising a
total of 306 observations. We used 25% of the dataset for
testing, choosing randomly 306 × 0.25 ≈ 78 observations
across all the tests performed in this section, regardless the
amount of labelled data.

Using different number of labelled observations for training
allows to explore the performance of the compared models
with different ρle and ρlu coefficients. The chosen amount of
labels and the data coefficients are depicted in Table I, in its
first column. The specific values for ρle and ρlu coefficients
are also described in the first column. We argue that most
of the evaluations done in the literature regarding Covid-19
detection use a fixed 25% to 30% of test or validation data
proportion. In a CAD system like the one at hand in this work,
this proportion might not be adequate for real-world settings,
given the likely intensive usage in a short time.

The hyper-parameters of the Wide-resnet model for both
the fully and semi-supervised modes are defined as follows:
an input image size of 100× 100, an Adam optimizer with a
1-cycle policy [33], with a weight decay of 0.0001, a learning
rate of 0.0001, a batch size of 12 and a cross entropy loss
function.



Fig. 3. From top to bottom: A three sample of the class activation maps for
the tested dataset. From left to right: the original image, the heatmap of the
usual supervised model, and the heatmap for the semi-supervised model. The
legend RL corresponds to the real label, PRED to the model prediction and
the array of two values is related to the output net values.

The computational hardware used in the experiments in-
cludes an NVIDIA [TITAN V] GPU memory of 12 GB, 32
GB of main system memory and an Intel(R) Xeon(R) CPU
E5-2620 0 @ 2.00GHz. Python programming language was
used for coding. The Pytorch/FastAI MixMatch implemen-
tation is based on the repository available at https://mc.ai/
a-fastai-pytorch-implementation-of-mixmatch/.

We also implemented transfer learning based on the image-
net weights and data augmentation with random flips and
rotations. For all the experiments, the model is trained for 50
epochs, with 10 replicas for each model configuration, with
randomly selected training and validation datasets.

As a preliminar qualitative experiment, we trained a binary
classification model based on the densenet201 architecture, to
discriminate between positive COVID-19 cases and normal
(no lung pathology) observations, to analyze the change in the
class activation heatmaps of both models. Figure 3 shows a
sample of the heatmaps obtained for the supervised and semi-
supervised models. Most of the heatmaps obtained reveal a
tendency on the heatmaps extracted from the semi-supervised
model to focus on more consistent features from the lung area.
As seen in Figure 3, the heatmaps of the supervised model
tend to focus on less semantically meaningful areas (namely
the corners). The semi-supervised and supervised model in
this case have been trained with 70 labels, and 68 unlabelled
observations for the semi-supervised model. We used transfer
learning (with imagenet weights), and flip and rotation data
augmentation. For the tested batch, the semi-supervised model
yielded an accuracy of 96.6% while the supervised model
91.6%, with balanced test dataset of 60 observations. We noted

in some images, that the shoulder joints present high activation
values, a feature often used to discriminate children and adult
samples. Also in Figure 3, the net raw outputs are depicted
for both semi-supervised and supervised models.

VI. RESULTS ANALYSIS

The yielded accuracy results for different γ values are
shown in Table I. To statistically compare the yielded results,
a Wilcoxon non-parametric test has been carried out, as 10
replicas comparing the results of the supervised model against
Mix Match with γ = 200, which yielded the highest sample
mean values.

As an initial observation, a rather low accuracy is reported
for an otherwise well performing model (that yielded around
96% percent when using the entire dataset, as seen in Table
I), with an evaluation/labelled data coefficients from ρle =
0.24 up to ρle = 0.39. As expected, the accuracy of the fully
supervised model increases while ρle increases.

The obtained results also show how with a lower ρlu, a
wider accuracy boost is obtained with the semi-supervised
model. The results reveal a strong and statistically significant
accuracy boost of any of the semi-supervised models tested
(with γ = 1, 100, 200) over the fully supervised model when
the labelled/unlabelled data coefficient ρlu is low. The highest
accuracy difference with statistical significance yielded comes
when γ = 200 and ρlu = 0.11, with an increase of almost 15%.
The last column in Table I describes the confidence obtained
when performing a Wilcoxon test comparing the results of
the semi-supervised model (with γ = 200) against the fully
supervised one. When p < 0.05, a statistically meaningful
accuracy boost is obtained when using the implemented semi-
supervised model. As seen in Table I, the Wilcoxon test
returned a p = 0.000236, confirming a statistically significant
accuracy boost of using the implemented semi-supervised
approach when ρlu = 0.1.

The difference of using different γ values becomes ap-
parently wider as ρlu is lower. However, by performing a
Wilcoxon test of comparing the case when γ = 1 and γ = 200
when ρlu = 0.11, we obtained p = 0.3182, making p > 0.05,
rejecting the hypothesis of significance difference between
them. With this we conclude that tweaking the γ value does not
have a statistically significant impact in our tests. This suggests
a stronger contribution from the mix up data augmentation
guided by the unlabelled observations, implemented in the first
term Ll of the loss function. The effect of the γ correlates with
the preliminary results plotted in Figure 2, demonstrating a
mild effect in the semi-supervised performance. Increasing the
value of γ marginally improves the results, by fully leveraging
the information in the unlabelled dataset.

As for the values of the proposed ∆ρ coefficient, it ap-
proaches zero when the benefit of the semi-supervised model
has no statistically significant advantage. From the executed
experiments, we can define a threshold of ∆ρ = 1.9 to achieve
a significant accuracy boost when using unlabelled data.

Figure 4 plots the ∆ρ for the tested models with γ =
1, 100, 200. The results for Mix Match using γ = 100 overall

https://mc.ai/a-fastai-pytorch-implementation-of-mixmatch/
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TABLE I
SEMI-SUPERVISED LEARNING ACCURACY (MEAN AND STD.) USING MIX MATCH (MM) FOR DIFFERENT UNSUPERVISED COEFFICIENTS VS. A FULLY

SUPERVISED MODEL (F.S). ALWAYS ρLU = 1 FOR THE FULLY SUPERVISED MODEL. THE SIXTH COLUMN DENOTES THE CONFIDENCE P-VALUE OF THE
ACCURACY DIFFERENCE BETWEEN MIX MATCH AND THE SUPERVISED MODEL.

Number of labels/coefficients Fully supervised γ = 1 γ = 100 γ = 200 F.S vs. MM (γ = 200) ∆ρ (γ = 200)
25 (ρle = 0.24,ρlu = 0.11) 0.683± 0.056 0.808± 0.053 0.816± 0.051 0.829± 0.057 p = 2.36e− 04 7.318
40 (ρle = 0.33,ρlu=0.17) 0.729± 0.048 0.828± 0.04 0.848± 0.048 0.846± 0.048 p = 0.0016 4.875
50 (ρle = 0.39,ρlu=0.21) 0.785± 0.046 0.834± 0.038 0.843± 0.047 0.843± 0.049 p = 0.0163 1.972
70(ρle = 0.47,ρlu=0.3) 0.808± 0.046 0.848± 0.053 0.864± 0.039 0.858± 0.041 p = 0.1155 1.5838

100 (ρle = 0.56,ρlu=0.43) 0.851± 0.049 0.853± 0.033 0.856± 0.051 0.854± 0.047 p = 0.5194 0.0648
All-undersampled (229) 0.896± 0.035
All-imbalanced (4468) 0.966± 0.003
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0
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Fig. 4. Scalability curves using ∆ρ against the ρlu. γ = 200 (triangle),
γ = 100 (circle) and γ = 1 (square).

scale slightly better. However, as previously mentioned, there
is no statistically significant difference when using different γ
values. This is reflected in how close the curves are. The series
of ∆ρ values summarize well the behaviour of the Mix Match
variations tested. To summarize semi-supervised scalability
behaviour in a scalar value, we advise the use of the area under
the curve ∆AUC. For this experiment ∆AUC,γ = 1 = 14.87,
∆AUC,γ = 100 = 16.43 and ∆AUC,γ = 200 = 15.81, confirming
a very slightly advantage of Mix Match with γ = 100 taking
into account all the data settings used.

VII. CONCLUSIONS

In this work we proposed and tested the use of a novel
semi-supervised learning framework based on the recently
proposed Mix Match technique. A virus outbreak like the
COVID-19 draws the need for quickly available and reliable
AI solutions for computer aided diagnosis. In the context of a
virus outbreak, a strong lack of high quality labelled data i.e.,
very low number of high quality labelled observations causes
severe limitations on the development of computer based
diagnosis systems. Semi-supervised deep learning makes use
of more widely available unlabelled data, which can help to
boost the accuracy of these systems.

As a contribution in this work, we proposed the usage of
the semi-supervised accuracy boost coefficient, to measure
model scalability under different proportions of evaluation
using labelled and unlabelled data. With the tested prototypical
dataset (which we warned about the fact that it is still not of
acceptable quality to be considered for real-world clinical use
given its age and race biases), a significant increase in accuracy
is achieved when the labelled/unlabelled data coefficient ρlu is
set to a low value.

We highlight how, in previous work, typical deep con-
volutional architectures yield high accuracy performances,
when using the typical 75%/25% training/evaluation data split.
We argue however that this evaluation setting might not be
accurate to estimate the real-world performance of a deep
learning CAD solution. This is specially the case for a CAD
system used in a virus out-break, where a large amount of
test data will be fed in a short-time before including new
high quality labelled data to re-train the model. For evaluating
the system scalability in different labelled/evaluation data
scenarios, we proposed the usage of the ∆ρ coefficient. As
expected, our tests revealed an important accuracy decrease
as ρel decreases, making the usage of semi-supervised deep
learning more attractive in such setting.

As future work, we plan to test semi-supervised learning
approaches with more data for Covid-19 detection. We are
building our own chest X-ray dataset from Costa Rican clinics.
We aim to extend the usage of the proposed metric ∆ρ

under different real-world settings as unbalanced labelled and
unlabelled datasets, and out of distribution unlabelled data.
We stress that scalability testing is important to estimate
the model performance under real-world operation settings.
Most of the test beds used so far in previous work can
be thought as saturated, since many of the CNN models
tested yield accuracies higher than 90% with typical testing
strategies. More extensive and demanding testing approaches
can be developed, to further assess the accuracy of the model
under different training and evaluation scenarios. This is of
special relevance given that the definition of high quality and
large enough data is still an open question for deep learning
solutions, as argued in [11].
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