
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2020) 34:47
https://doi.org/10.1007/s10458-020-09473-8

1 3

Specification testing of agent‑based simulation using
property‑based testing

Jonathan Thaler1,2 · Peer‑Olaf Siebers1

© The Author(s) 2020

Abstract
The importance of Agent-Based Simulation (ABS) as scientific method to generate data for
scientific models in general and for informed policy decisions in particular has been widely
recognised. However, the important technique of code testing of implementations like unit
testing has not generated much research interested so far. As a possible solution, in previ-
ous work we have explored the conceptual use of property-based testing. In this code test-
ing method, model specifications and invariants are expressed directly in code and tested
through automated and randomised test data generation. This paper expands on our previ-
ous work and explores how to use property-based testing on a technical level to encode and
test specifications of ABS. As use case the simple agent-based SIR model is used, where
it is shown how to test agent behaviour, transition probabilities and model invariants. The
outcome are specifications expressed directly in code, which relate whole classes of ran-
dom input to expected classes of output. During test execution, random test data is gener-
ated automatically, potentially covering the equivalent of thousands of unit tests, run within
seconds on modern hardware. This makes property-based testing in the context of ABS
strictly more powerful than unit testing, as it is a much more natural fit due to its stochastic
nature.

Keywords Agent-based simulation testing · Code testing · Test driven development ·
Model specification

1 Introduction

Since its inception in the early 1990s [17, 31, 36], Agent-Based Simulation (ABS) as a
third way of doing science [3, 5] has matured substantially and has found its way into the
mainstream of science [25]. Further, a number of ABS frameworks and tools like RePast,
AnyLogic and NetLogo as well as open databases of ABS models [16] have been devel-
oped, allowing for quick and robust prototyping and development of models.

 * Jonathan Thaler
 jonathan.thaler@nottingham.ac.uk; jonathan.thaler@fhv.at

1 School Of Computer Science, University of Nottingham, 7301 Wollaton Rd, Nottingham, UK
2 Department of Computer Science, FH Vorarlberg, Hochschulstrasse 1, 6850 Dornbirn, Austria

http://orcid.org/0000-0001-8736-0479
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-020-09473-8&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

 47 Page 2 of 22

However, despite the broad acceptance and adoption of ABS as methodology and gen-
erative way of doing science, there have been struggles as reported by Axelrod [4]. He
discusses the vulnerability of ABS to misunderstanding: due to informal specifications of
models and change requests amongst members of a research team, bugs are very likely to
be introduced. Further, he reports how difficult it was to reproduce other work [2], which
took the team four months, due to inconsistencies between the original code and the pub-
lished paper. The consequence is that counter-intuitive simulation results can lead to weeks
of checking whether the code matches the model and is bug-free [3].

The same problem was reported by researchers [7], which tried to reproduce the work of
Gintis [19]. In his work, Gintis claimed to have found a mechanism in bilateral decentral-
ized exchange, which resulted in Walrasian General Equilibrium without the neo-classi-
cal approach of a tatonement process through a central auctioneer [14]. This was a major
breakthrough for economics as the theory of Walrasian General Equilibrium is non-con-
structive. It postulates the properties and existence of the equilibrium but does not explain
the process and dynamics through which this equilibrium can be reached or constructed.
Gintis seemed to have found a model for this process.

The authors [7] failed to reproduce the results and were only able to solve the prob-
lem by directly contacting Gintis, which provided the code, the definitive formal reference.
It was found that there was a bug in the code leading to unexpected results, which were
seriously damaged through this error. They also reported ambiguity between the informal
model description in Gintis’ paper and the actual implementation. This discovery lead to
research in a functional framework for agent-based models of exchange [8], which tried to
give a very formal functional specification of the model, coming very close to an imple-
mentation in Haskell. The failure of Gintis was investigated in more depth also by other
researchers [18] who got access to Gintis’ code through his website [20]. They found that
the code in Object Pascal did not follow good object-oriented design principles (all of it
was public, code duplication) and discovered a number of bugs serious enough to damage
the results.

These issues show that due to the fact that ABS is primarily used for scientific research,
often producing break-through scientific results, besides on converging both on stand-
ards for testing the robustness of implementations and on its tools, ABS more importantly
needs to be free of bugs, verified against their specification, validated against hypotheses
and ultimately be reproducible [4]. Further, a special issue with ABS is that the emergent
behaviour of the system is generally not known in advance and researchers look for some
unique emergent pattern in the dynamics. Whether the emergent pattern is then truly due
to the system working correctly, or a bug in disguise is often not obvious and becomes
increasingly difficult to assess with increasing system complexity.

These facts are also underlined in summaries of various ABS development methods [28]
which all put fundamental emphasis on the verification and validation process for ABS.
Although there exist methods and research of verification and validation in ABS, unfortu-
nately, as Sect. 2 shows, there does not exist much research on the issue of code testing an
ABS implementation. In software engineering, this task has been traditionally achieved by
unit testing, as introduced by Beck in the seminal work on Test-Driven Development [6].
Unit tests are code pieces which test a given unit of functionality of some given feature.
Generally, this results in hundreds or sometimes thousands of unit tests as all execution
paths of the whole software should be covered.

We hypothesise that the reason why unit testing is not very present in the field of ABS
verification and validation research, is a conceptual mismatch between unit testings’ deter-
ministic and ABS’ rather stochastic nature. The fact that a unit test needs to be written for

Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

Page 3 of 22 47

each edge case makes it difficult to scale up to the stochastic nature of ABS, where the
agent and model behaviour in general is often characterised by probabilistic distributions
instead of deterministic rules. As a possible solution to this issue, our work [34] was the
first to propose property-based testing as an alternative to unit testing for code testing ABS
implementations. The main idea of property-based testing is to express model specifica-
tions and invariants directly in code and test them through automated and randomised test
data generation. In our paper [34] we presented various ways to conceptually use property-
based testing to code test ABS implementations. However, we did not discuss technical
details and sequential statistical hypothesis testing and left the exact workings of property-
based testing for ABS open as it was beyond the focus of that paper.

In this paper we pick up our conceptual work [34] and put it into a more technical per-
spective and demonstrate additional techniques of property-based testing in the context
of ABS, which were not covered in the conceptual paper. More specifically, in this paper
we additionally show how to encode agent specifications and model invariants into prop-
erty tests, using an agent-based SIR model [24] as use case. Following an event-driven
approach [27], we demonstrate how to express an agent specification in code by relating
random input events to specific output events. Further, additionally using specific property-
based testing features, which allow expressing expected coverage of data distributions, we
show how transition probabilities can be tested. Finally, we also express model invariants
by encoding them into property tests. By doing this, we demonstrate how property-based
testing works on a technical level, how specifications and invariants can be put into code
and how probabilities can be expressed and tested using statistically robust verification.
This in-depth technical investigation was beyond the focus of our original, conceptual work
[34] but the results of this paper gives additional evidence to its conclusion, that property-
based testing maps naturally to ABS. Further, this work shows that in the context of ABS,
property-based testing does scale up better than unit testing as it allows to run thousands
of test cases automatically instead of constructing each manually and, more importantly,
property-based testing is able to encode probabilities, something unit testing is not capable
of in general.

The paper is structured as follows: Sect. 2 presents related work. In Sect. 3 property-
based testing is introduced on a technical level. In Sect. 4 the agent-based SIR model is
introduced, together with its informal event-driven specification. Sections 5 and 6 contain
the main contribution of the paper, where it is shown how to encode agent specifications,
transition probabilities and model invariants with property-based testing. Section 7 dis-
cusses the approach and concludes and Sect. 8 identifies further research.

2 Related work

Research on code testing of ABS is quite new with few publications so far. Our own work
[34] is the first paper to introduce property-based testing to ABS. In it we show on a con-
ceptual level that property-based testing allows to do both verification and validation of an
implementation. However, we do not go into technical details of actual implementations,
nor how to use property-based testing on a technical level, nor do we introduce the sequen-
tial statistical hypothesis testing of the QuickCheck library to express probabilities.

The use of unit testing in the context of ABS was first discussed by Collier et al. [15].
The authors introduce Test-Driven Development to ABS and use RePast to show how to

 Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

 47 Page 4 of 22

verify the correctness of an implementation with unit tests. A similar approach has been
discussed for Discrete Event Simulation in the AnyLogic software toolkit [1].

Unit tests to verify an ABS implementation of maritime search operations was men-
tioned in [29]. The authors validate their model against an analytical solution from the-
ory by running the simulation with unit tests and then performing a statistical comparison
against the formal specification.

Property-based testing has also connections to data generators [21] and load generators
and random testing [11] with the important benefit that property-based testing allows to
express them directly in code.

The authors of [21] provide a case study of an agent-based simulation of synaptic con-
nectivity, for demonstrating their generic testing framework in RePast and MASON, which
rely on JUnit to run automated tests.

As most of these works are using unit testing, we provide a comparison between our
proposed approach and unit testing in the following section.

3 Property‑based testing

In property-based testing functional specifications, also called properties, are formulated
in code and tried to falsify using a property-based testing library. In general, to falsify a
functional specification, the property-based testing library runs automated test cases by
automatically generating test data. When a test case fails, the functional specification was
falsified by finding a counter example. For better analysis, the library then reduces the test
data to its simplest form for which the test still fails, like shrinking of a list or pruning of a
tree. On the other hand, if no counter example could be found for the functional specifica-
tion, it is deemed valid and the test succeeds.

Property-based testing has its origins in the QuickCheck library [12, 13] of the pure
functional programming language Haskell. QuickCheck tries to falsify the specifications
by randomly sampling the test space. This library has been successfully used for testing
Haskell code in the industry for years, underlining its maturity and real world relevance in
general and of property-based testing in particular [22].

To give an understanding of how property-based testing works with QuickCheck, we
give a practical example of how to implement a property of lists. Such a property is directly
expressed as a function in Haskell, with the return type of Bool. This indicates whether
the property holds for the given random inputs or not. In general, a QuickCheck property
can take arbitrary inputs, with random data generated automatically by QuickCheck during
testing. The example property we want to encode is that reversing a reversed list results
again in the original list:

-- Reversing of a reversed list is the original list
prop_reverse_reverse :: [Int] -> Bool
prop_reverse_reverse xs = reverse (reverse xs) == xs

Testing the property with QuickCheck is simply done using the function
quickCheck:

Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

Page 5 of 22 47

> quickCheck prop_reverse_reverse
+++ OK, passed 100 tests.

QuickCheck generates 100 test cases by default and requires all of them to pass.
Indeed, all 100 test cases of prop_reverse_reverse pass and therefore the prop-
erty as a whole passes the test. Note that we do not provide any data for the input argu-
ment [Int], a list of Integers, because QuickCheck is doing this automatically for us.
For the standard types of Haskell, QuickCheck provides existing data generators.

To give an example of what happens in case of failure due to a wrong property, we
look at a wrong implementation of the property, that reverse distributes over the list
append operator (++ in Haskell):

-- reverse is distributive over list append (++)
-- This is a wrong implementation for explanatory reasons!
-- For a correct property, swap xs and ys on the right hand side.
prop_reverse_distributive :: [Int] -> [Int] -> Bool
prop_reverse_distributive xs ys

= reverse (xs ++ ys) == reverse xs ++ reverse ys

> quickCheck prop_reverse_distributive
*** Failed! Falsifiable (after 4 tests and 5 shrinks):
[0]
[1]

As expected, the property test fails because QuickCheck found a counter example to
the property after 4 test cases. Also, we see that QuickCheck applied 5 shrinks to find
the minimal failing counter example xs = [0] and ys = [1]. The reason for the
failure is a wrong implementation of the prop_reverse_distributive property:
to correct it, xs and ys need to be swapped on the right hand side of the equation. Note
that when run repeatedly, QuickCheck might find the counter example earlier and might
apply fewer shrinks due to a different random-number generator seed, resulting in differ-
ent random data to start with.

3.1 Generators

QuickCheck comes with a lot of data generators for existing types like String,
Int, Double, [] (List), but in case one wants to randomize custom data types,
one has to write custom data generators. There are two ways to do this. The first one is
to fix them at compile time by writing an Arbitrary type class instance. A type class
can be understood as an interface definition, and an instance as a concrete implementa-
tion of such an interface for a specific type. The advantage of having an Arbitrary
instance is that the custom data type can be used as random argument to a function as in
the examples above. The second way to write custom data generators is to implement a
run-time generator in the Gen context.

Here we implement a custom data generator for both cases, using a simple color rep-
resentation as example. We start with the run-time option, running in the Gen context:

 Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

 47 Page 6 of 22

-- enumeration of colors
data Color = Red | Green | Blue

genColor :: Gen Color
genColor = elements [Red, Green, Blue]

This implementation makes use of the elements :: [a] → Gen a function,
which picks a random element from a non-empty list with uniform probability. If a skewed
distribution is needed, one can use the frequency :: [(Int, Gen a)] → Gen
a function, where a frequency can be specified for each element. Generating on average
80% Red, 15% Green and 5% Blue can be achieved using this function:

genColor :: Gen Color
genColor = frequency [(80, Red), (15, Green), (5, Blue)]

Implementing an Arbitrary instance is straightforward, one only needs to implement
the arbitrary :: Gen a method:

instance Arbitrary Color where
arbitrary = genColor

When we have a random Double as input to a function, but want to restrict its random
range to (0,1) because it reflects a probability, we can do this easily with newtype and
implementing an Arbitrary instance:

newtype Probability = P Double

instance Arbitrary Probability where
arbitrary = P <$> choose (0, 1)

3.2 Distributions

QuickCheck provides functions to measure the coverage of test cases. This can be done
using the label :: String → prop → Property function. It takes a String
as first argument and a testable property and constructs a Property. QuickCheck collects
all the generated labels, counts their occurrences and reports their distribution. For exam-
ple, it can be used to get an idea of the length of the random lists created in the reverse_
reverse property shown above:

reverse_reverse_label :: [Int] -> Property
reverse_reverse_label xs

= label ("length of random-list is " ++ show (length xs))
(reverse (reverse xs) == xs)

When running the test, we get the following output:
+++ OK, passed 100 tests:
5% length of random-list is 27
5% length of random-list is 0
4% length of random-list is 19
...

Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

Page 7 of 22 47

3.3 Coverage

QuickCheck provides two additional functions to work with test-case distributions: cover
and checkCoverage. The function cover :: Double → Bool → String
→ prop → Property allows to explicitly specify that a given percentage of success-
ful test cases belongs to a given class. The first argument is the expected percentage, the
second argument is a Bool indicating whether the current test case belongs to the class or
not, the third argument is a label for the coverage, and the fourth argument is the property
which needs to hold for the test case to succeed.

Here we look at an example where we use cover to express that we expect 15% of all
test cases to have a random list with at least 50 elements:

reverse_reverse_cover :: [Int] -> Property
reverse_reverse_cover xs

= cover 15 (length xs >= 50) "Length of random list at least 50"
(reverse (reverse xs) == xs)

When running the twice, we get the following output:

+++ OK, passed 100 tests (10% length of random list at least 50).
Only 10% Length of random-list at least 50, but expected 15%.
+++ OK, passed 100 tests (21% length of random list at least 50).

As can be seen, QuickCheck runs the default 100 test cases and prints a warning if
the expected coverage is not reached. This is a useful feature, but it is up to us to decide
whether 100 test cases are suitable and whether we can really claim that the given coverage
will be reached or not. To free us from making this guess, QuickCheck provides the func-
tion checkCoverage :: prop → Property. When checkCoverage is used,
QuickCheck will run an increasing number of test cases until it can decide whether the
percentage in cover was reached or cannot be reached at all. The way QuickCheck does
this, is by using sequential statistical hypothesis testing [35]. Thus, if QuickCheck comes
to the conclusion that the given percentage can or cannot be reached, it is based on a robust
statistical test giving us high confidence in the result.

When we run the example from above but now with checkCoverage we get the fol-
lowing output:

+++ OK, passed 12800 tests
(15.445% length of random-list at least 50).

We see that after QuickCheck ran 12,800 tests it came to the statistically robust conclu-
sion that, indeed, at least 15% of the test cases have a random list with at least 50 elements.

3.4 Comparison with unit testing

Section 2 shows that the standard in code testing of ABS is unit testing. For a better under-
standing and how our work relates to this other technique we briefly introduce unit testing
in Java and compare it with property-based testing as introduced above.

 Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

 47 Page 8 of 22

As already pointed out in the introduction, unit tests are small pieces of code which test
other code. These pieces of code are call test cases, and should be as small as possible,
testing only a single aspect of the code under test. The way to implement unit tests is using
the unit testing library JUnit, which provides annotations, assertions and test executors, to
annotate test cases, express invariants, execute test cases and generate reports of the results.

In the following we briefly show how to express the properties of lists, as introduced
above, with unit testing. We write a class ListTest, which contains all test cases,
each annotated by @Test, which tells the test executor that this is a test to run. Invari-
ants are expressed in our case with assertEquals, however JUnit provides all sorts of
asserts, to express different invariants.

public class ListTest {
// reverse of reverse restores the original order
@Test
public void testReverseReverse() {

List<String> xs = new ArrayList<>();
xs.add("Test1");
xs.add("Test2");
xs.add("Test3");

// make a copy to compare original state
List<String> xsOrig = new ArrayList<>(xs);

// reverse twice, mutates xs
Collections.reverse(xs);
Collections.reverse(xs);

// test invariant
assertEquals(xs, xsOrig, "Lists not equal after reverse of reverse");

}

// reverse distributes over append (addAll in Java)
@Test
public void testReverseDistribute() {

List<String> xs = new ArrayList<>();
xs.add("A");
xs.add("B");
xs.add("C");

List<String> ys = new ArrayList<>();
ys.add("X");
ys.add("Y");
ys.add("Z");

// copy lists
List<String> xsCpy = new ArrayList<>(xs);
List<String> ysCpy = new ArrayList<>(ys);

// reverse (xs ++ ys) =>
// append ys to xs, mutates xs

xs.addAll(ys);
// reverse xs, mutates xs
Collections.reverse(xs);

// reverse ys ++ reverse xs =>
Collections.reverse(xsCpy);
Collections.reverse(ysCpy);
ysCpy.addAll(xsCpy);

// express invariant (==)
assertEquals(xs, ysCpy, "Lists not equal after reverse distributive");

}
}

Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

Page 9 of 22 47

We immediately see how verbose unit tests are over property tests. The reason is not
only found in object-oriented programming, but also that unit tests are not expressing spec-
ifications but following a very operational, imperative approach, stating how to test some-
thing instead of what is actually tested. We argue that without the comments added by us
and appropriate naming of the tests, it would be not very obvious what exactly the unit tests
are testing, whereas in property-based testing this is immediately clear.

A very important detail is that in this listing we only provide tests with 3 elements
in each list. This does not cover all test cases, for example lists with a single element,
empty lists, or lists of different sizes in the case of testReverseDistribute are
missing. For a proper test coverage, we would need to manually provide all edge cases
as additional test cases. This is implicitly covered in property-based testing, which gen-
erates the input data, automatically covering edge cases as well.

As for the label, cover and checkCoverage feature from property-based test-
ing with QuickCheck, there is simply no equal in unit testing with JUnit. Therefore it is
simply not possible to express such specifications.

It might look like that property-based testing is superior to unit testing, however it is
not as both focus on different types of tests. Whereas property-based testing is ideally
suited for testing data-centric problems, which can be expressed in specifications, such
as the list properties above, unit testing is better suited for testing side effects of impera-
tive code in a rather operational way. Therefore we see property-based testing and unit
testing as complementary techniques.

4 Event‑driven agent‑based SIR model

As use case to develop the concepts in this paper, we use the explanatory SIR model
[23]. It is a very well studied and understood compartment model from epidemiology,
which allows to simulate the dynamics of an infectious disease like influenza, tuberculo-
sis, chicken pox, rubella and measles spreading through a population.

In this model, people in a population of size N can be in either one of the three states
Susceptible, Infected or Recovered at a particular time, where it is assumed that ini-
tially there is at least one infected person in the population. People interact on average
with a given number of � other people per time unit and become infected with a given
probability � when interacting with an infected person. When infected, a person recov-
ers on average after � time units and is then immune to further infections. An interac-
tion between infected persons does not lead to re-infection, thus, these interactions are
ignored in this model. This definition gives rise to three compartments with the transi-
tions seen in Fig. 1.

In this paper we follow [24] for translating the informal SIR specification into an
event-driven agent-based approach [27]. The dynamics it produces are shown in Fig. 2,
which was generated by our own implementation undertaken for this paper, accessible
from our repository [32].

 Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

 47 Page 10 of 22

4.1 An informal specification

In this section we give an informal specification of the agent behaviour, relating the input
to according output events. Before we can do that we first need to define the event types of
the model, how they related to scheduling and how we can conceptually represent agents.

We are using Haskell as notation and implementation language as we conducted our
research with it because it originated property-based testing. We are aware that Haskell
is not a mainstream programming language, so to make this paper sufficiently self con-
tained, we introduce concepts step-by-step, with many comments (– in the Haskell
code) and explanations. This should allow readers, familiar with programming in gen-
eral, understand the ideas behind what we are doing. Fortunately it is not necessary
to go into detail of how agents are implemented as for our approach it is enough to
understand the agents’ inputs and outputs. For readers interested in the details of how to
implement ABS in Haskell, we refer to another work of us [33].

We start by defining the states the agents can be in:

-- enumeration of the agents states
data SIRState = Susceptible | Infected | Recovered

The model uses three types of events. First, MakeContact is used by a susceptible agent
to proactively make contact with � other agents per time unit by scheduling it to itself. Second,
Contact is used by susceptible and infected agents to contact other agents, revealing their
id and their state to the receiver. Third, Recover is used by an infected agent to proactively
make the transition to recovered after � time units.

-- agents are identified by a unique Integer
type AgentId = Int
-- enumeration of the three events
data SIREvent = MakeContact | Contact AgentId SIRState | Recover

As events are scheduled we need a new type to hold them, which we termed Queue-
Item as it is put into the event queue. It contains the event to be scheduled, the id of the
receiving agent and the scheduling time.

type Time = Double
data QueueItem = QueueItem SIREvent AgentId Time

Finally, we define an agent: it is a function, mapping an event to the current state of the
agent with a list of scheduled events. This is a simplified view on how agents are actually
implemented in Haskell but it suffices for our purpose.

Fig. 1 States and transitions in
the SIR compartment model

Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

Page 11 of 22 47

-- An agent maps an incoming event to the agents current state
-- and a list of scheduled events
sirAgent :: SIREvent -> (SIRState, [QueueItem])

We are now ready to give the full specification of the susceptible, infected and recov-
ered agent by stating the input-to-output event relations. The susceptible agent is specified
as follows:

1. MakeContact—if the agent receives this event it will output � (Contact ai
Susceptible) events, where ai is the agents own id and Susceptible indicating
the event comes from a susceptible agent. The events have to be scheduled immediately
without delay, thus having the current time as scheduling timestamp. The receivers of
the events are uniformly randomly chosen from the agent population. Additionally, to
continue the pro-active contact making process, the agent schedules MakeContact
to itself 1 time unit into the future. The agent doesn’t change its state, stays Suscep-
tible and does not schedule any other events than the ones mentioned.

2. (Contact _ Infected)—if the agent receives this event there is a chance of uni-
form probability � that the agent becomes Infected. If this happens, the agent will
schedule a Recover event to itself into the future, where the time is drawn randomly

Fig. 2 Dynamics of the SIR compartment model using an event-driven agent-based approach. Population
size N = 1000, contact rate � =

1

5
 , infection probability � = 0.05 , illness duration � = 15 with initially 1

infected agent

 Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

 47 Page 12 of 22

from the exponential distribution with � = � . If the agent does not become infected, it
will not change its state, stays Susceptible and does not schedule any events.

3. (Contact _ _) or Recover—if the agent receives any of these other events it will
not change its state, stays Susceptible and does not schedule any events.

This specification implicitly covers that a susceptible agent can never transition from a
Susceptible to a Recovered state within a single event as it can only make the tran-
sition to Infected or stay Susceptible.

The infected agent is specified as follows:

1. Recover—if the agent receives this, it will not schedule any events but make the
transition to the Recovered state.

2. (Contact sender Susceptible)—if the agent receives this, it will reply
immediately with (Contact ai Infected) to sender, where ai is the infected
agents’ id and the scheduling timestamp is the current time. It will not schedule any
events and stays Infected.

3. In case of any other event, the agent will not schedule any events and stays Infected.

This specification implicitly covers that an infected agent never goes back to the Sus-
ceptible state as it can only make the transition to Recovered or stay Infected.
Also, from the specification of the susceptible agent it becomes clear that a susceptible
agent who became infected, will always recover as the transition to Infected includes
the scheduling of Recovered to itself.

The recovered agent specification is very simple: it stays Recovered forever and
does not schedule any events.

5 Encoding agent specifications

We start by encoding the invariants of the susceptible agent directly into Haskell, imple-
menting a function, which takes all necessary parameters and returns a Bool indicating
whether the invariants hold or not. We are using pattern matching, therefore it reads like
a formal specification due to the declarative nature of functional programming.

Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

Page 13 of 22 47

susceptibleProps :: SIREvent -- random event sent to agent
-> SIRState -- output state of the agent
-> [QueueItem SIREvent] -- list of events the agent scheduled
-> AgentId -- agent id of the agent
-> Bool

-- received Recover => stay Susceptible, no event scheduled
susceptibleProps Recover Susceptible es _ = null es
-- received Contact _ Recovered => stay Susceptible, no event scheduled
susceptibleProps (Contact _ Recovered) Susceptible es _ = null es
-- received Contact _ Susceptible => stay Susceptible, no event scheduled
susceptibleProps (Contact _ Susceptible) Susceptible es _ = null es
-- received Contact _ Infected, didn’t get Infected, no event scheduled
susceptibleProps (Contact _ Infected) Susceptible es _ = null es
-- received Contact _ Infected AND got infected, check events
susceptibleProps (Contact _ Infected) Infected es ai

= checkInfectedInvariants ai es
-- received MakeContact => stay Susceptible, check events
susceptibleProps MakeContact Susceptible es ai

= checkMakeContactInvariants ai es cor
-- all other cases are invalid and result in a failed test case
susceptibleProps _ _ _ _ = False

Next, we give the implementation for the checkInfectedInvariants func-
tion. We omit a detailed implementation of checkMakeContactInvariants as it
works in a similar way and its details do not add anything conceptually new. The func-
tion checkInfectedInvariants encodes the invariants which have to hold when
the susceptible agent receives a (Contact _ Infected) event from an infected
agent and becomes infected.

checkInfectedInvariants :: AgentId -- agent id of the agent
-> [QueueItem SIREvent] -- list of scheduled events
-> Bool

checkInfectedInvariants sender
-- expect exactly one Recovery event
[QueueItem receiver (Event Recover) t’]
-- receiver is sender (self) and scheduled into the future
= sender == receiver && t’ >= t

-- all other cases are invalid
checkInfectedInvariants _ _ = False

5.1 Writing a property test

After having encoded the invariants into a function, we need to write a QuickCheck prop-
erty test, which calls this function with random test data. Although QuickCheck comes
with a lot of data generators for existing Haskell types, it obviously does not have genera-
tors for custom types, like the SIRState and SIREvent. We refer to Sect. 3, where we
explain the concept of data generators and implement generators for Color and Proba-
bility. The run-time generators for SIRState and genEvent for generating random
SIREvents work similar to the Color generator and is omitted. For readers who are
interested in a detailed implementation of both, we refer to the code repository [32].

All parameters to the property test are generated randomly, which expresses that the
properties encoded in the previous section have to hold invariant of the model parame-
ters. We make use of additional data generator modifiers: Positive ensures that a value

 Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

 47 Page 14 of 22

generated is positive; NonEmptyList ensures that a randomly generated list is not empty.
Further, we use the function label, as explained in Sect. 3, to get an understanding of the
distribution of the transitions. The case where the agents output state is Recovered is
marked as “INVALID” as it must never occur, otherwise the test will fail, due to the invari-
ants encoded in the previous section.

prop_susceptible :: Positive Int -- beta (contact rate)
-> Probability -- gamma (infectivity)
-> Positive Double -- delta (illness duration)
-> Positive Double -- current simulation time
-> NonEmptyList AgentId -- population agent ids
-> Gen Bool

prop_susceptible
(Positive beta) (P gamma) (Positive delta) (Positive t) (NonEmpty ais) = do
-- generate random event, requires the population agent ids
evt <- genEvent ais
-- run susceptible random agent with given parameters (implementation omitted)
(ai, ao, es) <- genRunSusceptibleAgent beta gamma delta t ais evt
-- check properties
return (label (labelTestCase ao) (susceptibleProps evt ao es ai))
where

labelTestCase :: SIRState -> String
labelTestCase Infected = "Susceptible -> Infected"
labelTestCase Susceptible = "Susceptible"
labelTestCase Recovered = "INVALID"

We have omitted the implementation of genRunSusceptibleAgent as it would
require the discussion of implementation details of the agent. Conceptually speaking, it
executes the agent with the respective arguments with a fresh random-number generator
and returns the agent id, its state and scheduled events.

Finally, we run the test using QuickCheck. Due to the large random sampling space with
5 parameters, we increase the number of test cases to 100,000.

> quickCheckWith (stdArgs {maxSuccess=100000}) prop_susceptible
+++ OK, passed 100000 tests (6.77s):
94.522% Susceptible
5.478% Susceptible -> Infected

All 100,000 test cases pass, taking 6.7 s to run on our hardware. The distribution of the
transitions shows that we indeed cover both cases a susceptible agent can exhibit within
one event. It either stays susceptible or makes the transition to infection. The fact that there
is no transition to Recovered shows that the implementation is correct.

Encoding of the invariants and writing property tests for the infected agent follows the
same idea and is not repeated here. Next, we show how to test transition probabilities using
the powerful statistical hypothesis testing feature of QuickCheck.

5.2 Encoding transition probabilities

In the specifications from the previous section there are probabilistic state transitions, for
example the susceptible agent might become infected, depending on the events it receives
and the infectivity (�) parameter. To encode these probabilistic properties we are using the
function cover of QuickCheck. As introduced in Sect. 3, this function allows us to explic-
itly specify that a given percentage of successful test cases belong to a given class.

Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

Page 15 of 22 47

For our case we follow a slightly different approach than in the example of Sect. 3: we
include all test cases into the expected coverage, setting the second parameter always to
True as well as the last argument, as we are only interested in testing the coverage, which
is in fact the property we want to test. Implementing this property test is then simply a
matter of computing the probabilities and of case analysis over the random input event and
the agents output. It is important to note that in this property test we cannot randomise the
model parameters � , � and � because this would lead to random coverage. This might seem
like a disadvantage but we do not really have a choice here, still the fixed model parameters
can be adjusted arbitrarily and the property must still hold. We could have combined this
test into the previous one but then we couldn’t have used randomised model parameters.
For this reason, and to keep the concerns separated, we opted for two different tests, which
makes them also much more readable.

prop_susceptible_prob :: Positive Double -- current simulation time
-> NonEmptyList AgentId -- population agent ids

-> Property
prop_susceptible_prob (Positive t) (NonEmpty ais) = do

-- fixed model parameters, otherwise random coverage
let cor = 5 -- contact rate (beta)

inf = 0.05 -- infectivity (gamma)
ild = 15.0 -- illness duration (delta)

-- compute distributions for all cases depending on event and SIRState
-- frequencies; technical detail, omitted for clarity reasons
let recoverPerc = ...

makeContPerc = ...
contactRecPerc = ...
contactSusPerc = ...
contactInfSusPerc = ...
contactInfInfPerc = ...

-- generate a random event
evt <- genEvent ais
-- run susceptible random agent with given parameters, only
-- interested in its output SIRState, ignore id and events
(_, ao, _) <- genRunSusceptibleAgent cor inf ild t ais evt
-- encode expected distributions
-- case analysis over random input events
return $ property $ case evt of

Recover ->
cover recoverPerc True "Susceptible recv Recover" True

MakeContact ->
cover makeContPerc True "Susceptible recv MakeContact" True

(Contact _ Recovered) ->
cover contactRecPerc True "Susceptible recv Contact * Recovered" True

(Contact _ Susceptible) ->
cover contactSusPerc True "Susceptible recv Contact * Susceptible" True

(Contact _ Infected) ->
-- case analysis over resulting agent state
case ao of

Susceptible ->
cover contactInfSusPerc True

"Susceptible recv Contact * Infected, stays Susceptible" True
Infected ->

cover contactInfInfPerc True
"Susceptible recv Contact * Infected, becomes Infected" True

_ ->
cover 0 True "INVALID" True

We have omitted the details of computing the respective distributions of the cases,
which depend on the frequencies of the events and the occurrences of SIRState

 Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

 47 Page 16 of 22

within the Contact event. By varying different distributions in the genEvent func-
tion, we can change the distribution of the test cases, leading to a more general test than
just using uniform distributed events. When running the property test we get the follow-
ing output:

+++ OK, passed 100 tests (0.01s):
40% Susceptible recv MakeContact
25% Susceptible recv Recover
14% Susceptible recv Contact * Infected, stays Susceptible
12% Susceptible recv Contact * Susceptible
9% Susceptible recv Contact * Recovered

Only 9% Susceptible recv Contact * Recovered, but expected 11%
Only 25% Susceptible recv Recover, but expected 33%

QuickCheck runs 100 test cases, prints the distribution of the labels and issues warnings
in the last two lines that generated and expected coverages differ in these cases. Further,
not all cases are covered, for example the contact with an Infected agent and the case of
becoming infected. The reason for these issues is insufficient testing coverage as 100 test
cases are simply not enough for a statistically robust result. We could increase the number
of test cases to 100,000, which might cover all cases but could still leave QuickCheck not
satisfied as the expected and generated coverage might still differ.

As a solution to this fundamental problem, we use QuickChecks checkCoverage
function. As introduced in Sect. 3, when the function checkCoverage is used, Quick-
Check will run an increasing number of test cases until it can decide whether the percent-
age in cover was reached or cannot be reached at all. With the usage of checkCover-
age we get the following output:

+++ OK, passed 819200 tests (7.32s):
33.3292% Susceptible recv Recover
33.2697% Susceptible recv MakeContact
11.1921% Susceptible recv Contact * Susceptible
11.1213% Susceptible recv Contact * Recovered
10.5356% Susceptible recv Contact * Infected, stays Susceptible
0.5520% Susceptible recv Contact * Infected, becomes Infected

After 819,200 (!) test cases, run in 7.32 s on our hardware, QuickCheck comes to the
statistically robust conclusion that the distributions generated by the test cases reflect the
expected distributions and passes the property test.

6 Encoding model invariants

By informally reasoning about the agent specification and by realising that they are, in fact,
a state machine with a one-directional flow of Susceptible → Infected → Recovered (as seen
in Fig. 1), we can come up with a few invariants, which have to hold for any SIR simulation
run, under random model parameters and independent of the random-number stream and
the population:

Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

Page 17 of 22 47

1. Simulation time is monotonic increasing. Each event carries a timestamp when it is
scheduled. This timestamp may stay constant between multiple events but will even-
tually increase and must never decrease. Obviously, this invariant is a fundamental
assumption in most simulations where time advances into the future and does not flow
backwards.

2. The number of total agents N stays constant. In the SIR model no dynamic creation or
removal of agents during simulation happens.

3. The number of susceptible agents S is monotonic decreasing. Susceptible agents might
become infected, reducing the total number of susceptible agents but they can never
increase because neither an infected nor recovered agent can go back to susceptible.

4. The number of recovered agents R is monotonic increasing. This is because infected
agents will recover, leading to an increase of recovered agents but once the recovered
state is reached, there is no escape from it.

5. The number of infected agents I respects the invariant of the equation I = N − (S + R)
for every step. This follows directly from the first property which says N = S + I + R.

6.1 Encoding the invariants

All these properties are expressed directly in code and read like a formal specification due
to the declarative nature of functional programming:

stnegaforebmunlatotN--tnI::stnairavnIris
-> [(Time,(Int,Int,Int))] -- output each step: (Time,(S,I,R))
-> Bool

sirInvariants n aos = timeInc && aConst && susDec && recInc && infInv
where

(ts, sirs) = unzip aos -- split Time and (S,I,R) into 2 separate lists
(ss, _, rs) = unzip3 sirs -- split S, I and R into 3 separate lists

-- 1. time is monotonic increasing
timeInc = allPairs (<=) ts
-- 2. number of agents N stays constant in each step
aConst = all agentCountInv sirs
-- 3. number of susceptible S is monotonic decreasing
susDec = allPairs (>=) ss
-- 4. number of recovered R is monotonic increasing
recInc = allPairs (<=) rs
-- 5. number of infected I = N - (S + R)
infInv = all infectedInv sirs

-- encodes property 2
agentCountInv :: (Int,Int,Int) -> Bool
agentCountInv (s,i,r) = s + i + r == n

-- encodes property 5
infectedInv :: (Int,Int,Int) -> Bool
infectedInv (s,i,r) = i == n - (s + r)

-- returns True if a predicate p is satisfied for all pairs in a list
allPairs :: (Ord a, Num a) => (a -> a -> Bool) -> [a] -> Bool
allPairs p xs = all (uncurry f) (pairs xs)

-- pair up neighbouring elements of a list
pairs :: [a] -> [(a,a)]
pairs xs = zip xs (tail xs)

 Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

 47 Page 18 of 22

Putting this property into a QuickCheck test is straightforward. We randomise the model
parameters � (contact rate), � (infectivity) and � (illness duration) because the properties
have to hold for all positive, finite model parameters.

prop_sir_invariants :: Positive Int -- beta (contact rate)
-> Probability -- gamma (infectivity)
-> Positive Double -- delta (illness duration)
-> TimeRange -- random duration in range (0, 50)
-> [SIRState] -- population
-> Property

prop_sir_invariants
(Positive beta) (P gamma) (Positive delta) (T t) as = property (do

-- total agent count
let n = length as
-- run the SIR simulation with a new RNG
ret <- genSimulationSIR as beta gamma delta t
-- check invariants and return result
return (sirInvariants n ret)

Due to the large sampling space, we increase the number of test cases to run to 100,000
and all tests pass as expected. It is important to note that we put a random time limit within
the range of (0,50) on the simulations to run. Meaning, that if a simulation does not termi-
nate before that limit, it will be terminated at that random t. The reason for this is entirely
practical as it ensures that the wall clock time to run the tests stays within reasonable
bounds while still retaining randomness.

7 Discussion

In this paper we have shown how to use property-based testing on a technical level to
encode informal specifications of agent behaviour and model invariants into formal speci-
fication directly in code. By incorporating this powerful technique into simulation develop-
ment, confidence in the correctness of an implementation is likely to increase substantially,
something of fundamental importance for ABS in general and for models supporting far-
reaching policy decision in particular. Although our research uses the simple agent-based
SIR model to demonstrate our approach, we hypothesise that it is applicable to event-driven
ABS [27] in general, as we clearly focus on relating input to output events. To put our
hypothesis to a test would require the generalisation of this simple model into a full frame-
work of property-based testing for event-driven ABS, which we leave for further research.

The benefits of a property-based approach in ABS over unit testing is manifold. First,
it expresses specifications rather than individual test cases, which makes it more general
than unit testing. It allows expressing probabilities of various types (hypotheses, transi-
tions, outputs) and performing statistically robust testing by sequential hypothesis testing.
Most importantly, it relates whole classes of inputs to whole classes of outputs, automati-
cally generating thousands of tests if necessary, therefore better scaling to the stochastic
nature of ABS.

The main challenge of property-based testing is to write custom data generators, which
produce sufficient coverage for the problem at hand, something not always obvious when
starting out. Further, it is not always clear without some analysis, whether a property
test actually covers enough of the random test space or not. As a robust solution to this
issues, QuickCheck provides functions allowing to specify required coverage as well as

Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

Page 19 of 22 47

functionality to perform sequential statistical hypothesis testing to arrive at statistically
robust coverage tests. An alternative solution to the potential coverage problems of Quick-
Check is the deterministic property-testing library SmallCheck [30], which instead of ran-
domly sampling the test space, enumerates test cases exhaustively up to some depth.

We hypothesise that it is very likely that if Gintis [19] would have applied rigorous unit
and property-based testing to his model he might have found the inconsistencies and could
have corrected them. Additionally, the code of the re-implementation [18] contains numer-
ous invariant checks and assertions, which are properties expressed in code, thus immedi-
ately applicable for property-based testing. Further, due to the mathematical nature of Gin-
tis’ model, many properties in the form of formulas can be found in the paper specification
[19], which could be directly expressible using property-based and unit testing.

Property-based testing has a close connection to model checking [26], where properties
of a system are proved in a formal way. The important difference is that the checking hap-
pens directly on code and not on the abstract, formal model, thus one can say that it com-
bines model checking and unit testing, embedding it directly in the software development
and Test-Driven Development process without an intermediary step. We hypothesise that
adding it to the already existing testing methods in the field of ABS is of substantial value
as it allows to cover a much wider range of test cases due to automatic data generation.
This can be used in two ways: to verify an implementation against a formal specification
and to test hypotheses about an implemented simulation. This puts property-based testing
on the same level as agent- and system testing, where not technical implementation details
of agents are checked like in unit tests but their individual complete behaviour and the sys-
tem behaviour as a whole.

8 Further research

The transitions we implemented were one-step transitions, feeding only a single event
to the agents. Although we covered the full functionality by also testing the infected and
recovered agent separately, the next step is to implement property tests which test the full
transition from susceptible to recovered. This would require a stateful approach with mul-
tiple events and a different approach calculating the probabilities. We leave this for further
research.

We have omitted tests for the infected agent as they follow conceptually the same pat-
terns as the susceptible agent. The testing of transitions of the infected agent work slightly
different though as they follow an exponential distribution but are encoded in a similar
fashion as demonstrated with the susceptible agent. The case for the recovered agent is a bit
more subtle, due to its behaviour: it simply stays Recovered forever. A property-based
test for the recovered agent would therefore run a recovered agent for a random number of
time units and require that its output is always Recovered. Of course, this is no proof
that the recovered agent stays recovered forever as this would take forever to test and is
thus not computable. Here we are hitting the limits of what is possible with random black-
box testing like property-based testing. Without looking at the actual implementation it
is not possible to prove that the recovered agent is really behaving as specified. We made
this fact clear at the beginning of this paper, that property-based testing is not proof for
correctness, but is only a support for raising the confidence in correctness by construct-
ing cases that show that the behaviour is not incorrect. To be really sure that the recovered

 Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

 47 Page 20 of 22

agent behaves as specified we need to employ white-box verification and look at the actual
implementation. This is beyond the scope of this paper and left for further research.

The reason why we limit the virtual time in Sect. 6 to 50 time units is also related to
the limitations of property-based testing. Theoretically, limiting the duration is actually not
necessary because we can reason that the SIR simulation will always reach an equilibrium
in finite steps. Unfortunately, this is not possible to express and test directly with property-
based testing and would also require a dependently typed programming language like Idris
[9, 10]. We leave this for further research.

An interesting and valuable undertaking would be to conduct a user study with a couple
of users (around 5) to show that our approach indeed brings benefits, for example inject-
ing faults into implementations and then see if and how the users detect these faults using
property-based testing. As a user study is beyond the focus of this paper, we leave it for
further research.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Asta, S., Özcan, E., & Siebers, P. O. (2014). An investigation on test driven discrete event simula-
tion. In Operational research society simulation workshop 2014 (SW14). http://eprin ts.notti ngham .ac.
uk/28211 /.

 2. Axelrod, R. (1995). The convergence and stability of cultures: Local convergence and global polariza-
tion. Working paper, Santa Fe Institute. http://econp apers .repec .org/paper /wopsa fiwp/95-03-028.htm.

 3. Axelrod, R. (1997). Advancing the art of simulation in the social sciences. In R. Conte, R. Heg-
selmann, & P. Terna (Eds.), Simulating social phenomena (pp. 21–40). Berlin: Springer. https ://doi.
org/10.1007/978-3-662-03366 -1_2.

 4. Axelrod, R. (2006). Chapter 33 agent-based modeling as a bridge between disciplines. In L. T. A. K.
L. Judd (Ed.), Handbook of computational economics (Vol. 2, pp. 1565–1584). Amsterdam: Elsevier.
https ://doi.org/10.1016/S1574 -0021(05)02033 -2.

 5. Axelrod, R., & Tesfatsion, L. (2006). A guide for newcomers to agent-based modeling in the social sci-
ences. Staff general research papers archive, Iowa State University, Department of Economics. http://
econp apers .repec .org/paper /isuge nres/12515 .htm.

 6. Beck, K. (2002). Test Driven Development: By Example (01st ed.). Boston: Addison-Wesley
Professional.

 7. Botta, N., Mandel, A., Hofmann, M., Schupp, S., & Ionescu, C. (2013). Mathematical specification of
an agent-based model of exchange. In Proceedings of the AISB convention.

 8. Botta, N., Mandel, A., Ionescu, C., Hofmann, M., Lincke, D., Schupp, S., et al. (2011). A functional
framework for agent-based models of exchange. Applied Mathematics and Computation, 218(8),
4025–4040. https ://doi.org/10.1016/j.amc.2011.08.051.

 9. Brady, E. (2013). Idris, a general-purpose dependently typed programming language: Design and
implementation. Journal of Functional Programming, 23(05), 552–593. https ://doi.org/10.1017/S0956
79681 30001 8X.

 10. Brady, E. (2017). Type-driven development with Idris. New York: Manning Publications Company.
(Google-Books-ID: eWzEjwEACAAJ) .

 11. Burnstein, I. (2010). Practical software testing: A process-oriented approach (1st ed.). Berlin: Springer
Publishing Company, Incorporated.

 12. Claessen, K., & Hughes, J. (2000). QuickCheck—A lightweight tool for random testing of Haskell
programs. In Proceedings of the fifth ACM SIGPLAN international conference on functional

http://creativecommons.org/licenses/by/4.0/
http://eprints.nottingham.ac.uk/28211/
http://eprints.nottingham.ac.uk/28211/
http://econpapers.repec.org/paper/wopsafiwp/95-03-028.htm
https://doi.org/10.1007/978-3-662-03366-1_2
https://doi.org/10.1007/978-3-662-03366-1_2
https://doi.org/10.1016/S1574-0021(05)02033-2
http://econpapers.repec.org/paper/isugenres/12515.htm
http://econpapers.repec.org/paper/isugenres/12515.htm
https://doi.org/10.1016/j.amc.2011.08.051
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X

Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

Page 21 of 22 47

programming, ICFP ’00 (pp. 268–279). New York, NY, USA: ACM. https ://doi.org/10.1145/35124
0.35126 6.

 13. Claessen, K., & Hughes, J. (2002). Testing monadic code with QuickCheck. SIGPLAN Notices,
37(12), 47–59. https ://doi.org/10.1145/63651 7.63652 7.

 14. Colell, A. M. (1995). Microeconomic theory. Oxford: Oxford University Press. (Google-Books-ID:
dFS2AQAACAAJ) .

 15. Collier, N., & Ozik, J. (2013). Test-driven agent-based simulation development. In 2013 winter simu-
lations conference (WSC) (pp. 1551–1559). https ://doi.org/10.1109/WSC.2013.67215 38.

 16. ComSES: Computational Model Library. (2019). Retrieved June 18, 2020 from https ://www.comse
s.net/codeb ases/.

 17. Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up.
Washington, DC: The Brookings Institution.

 18. Evensen, P., & Märdin, M. (2010). An extensible and scalable agent-based simulation of Barter eco-
nomics. Master’s thesis. Chalmers University of Technology, Göteborg. https ://gupea .ub.gu.se/handl
e/2077/22063 .

 19. Gintis, H. (2006). The emergence of a price system from decentralized bilateral exchange. Contribu-
tions in Theoretical Economics, 6(1), 1–15. https ://doi.org/10.2202/1534-5971.1302.

 20. Gintis, H. (2019). Herbert Gintis Website. Retrieved January 14, 2020 from https ://peopl e.umass .edu/
ginti s/. https ://peopl e.umass .edu/ginti s/.

 21. Gurcan, O., Dikenelli, O., & Bernon, C. (2013). A generic testing framework for agent-based simula-
tion models. Journal of Simulation, 7(3), 183–201. https ://doi.org/10.1057/jos.2012.26.

 22. Hughes, J. (2007). QuickCheck testing for fun and profit. In Proceedings of the 9th international
conference on practical aspects of declarative languages, PADL’07 (pp. 1–32). Berlin, Heidelberg:
Springer-Verlag. https ://doi.org/10.1007/978-3-540-69611 -7_1. http://dx.doi.org/10.1007/978-3-540-
69611 -7_1.

 23. Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidem-
ics. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
115(772), 700–721. https ://doi.org/10.1098/rspa.1927.0118.

 24. Macal, C. M. (2010). To agent-based simulation from system dynamics. In Proceedings of the winter
simulation conference, WSC ’10 (pp. 371–382). Baltimore, Maryland: Winter Simulation Conference.
http://dl.acm.org/citat ion.cfm?id=24335 08.24335 51.

 25. Macal, C. M. (2016). Everything you need to know about agent-based modelling and simulation. Jour-
nal of Simulation, 10(2), 144–156. https ://doi.org/10.1057/jos.2016.7.

 26. McMillan, K. L. (1992). Symbolic model checking: An approach to the state explosion problem. Ph.D.
thesis, USA . UMI Order No. GAX92-24209.

 27. Meyer, R. (2014). Event-driven multi-agent simulation. In Multi-agent-based simulation XV, lecture
notes in computer science (pp. 3–16). Cham: Springer. https ://doi.org/10.1007/978-3-319-14627 -0_1.
https ://link.sprin ger.com/chapt er/10.1007/978-3-319-14627 -0_1.

 28. North, M. J. (2018). Hammer or tongs: How best to build agent-based models? In Y. Demazeau, B.
An, J. Bajo, & A. Fernández-Caballero (Eds.), Advances in practical applications of agents, multi-
agent systems, and complexity: The PAAMS collection (pp. 3–11). Cham: Springer.

 29. Onggo, B. S. S., & Karatas, M. (2016). Test-driven simulation modelling: A case study using agent-
based maritime search-operation simulation. European Journal of Operational Research, 254, 517–
531. https ://doi.org/10.1016/j.ejor.2016.03.050.

 30. Runciman, C., Naylor, M., Lindblad, F. (2008). Smallcheck and lazy Smallcheck: Automatic exhaus-
tive testing for small values. In Proceedings of the first ACM SIGPLAN symposium on Haskell, Haskell
’08 (pp. 37–48). New York, NY, USA: ACM. https ://doi.org/10.1145/14112 86.14112 92.

 31. Siebers, P.O., & Aickelin, U. (2008). Introduction to multi-agent simulation. arXiv :0803.3905 [cs].
 32. Thaler, J. (2019). Repository of agent-based SIR implementation in Haskell. Retrieved June 18, 2020

fromhttps ://githu b.com/thale rjona than/haske ll-sir.
 33. Thaler, J., Altenkirch, T., & Siebers, P. O. (2018). Pure functional epidemics: An agent-based

approach. In Proceedings of the 30th symposium on implementation and application of functional lan-
guages, IFL 2018 (pp. 1–12). New York, NY, USA: ACM. https ://doi.org/10.1145/33102 32.33103 72.
http://doi.acm.org/10.1145/33102 32.33103 72. Event-place: Lowell, MA, USA.

 34. Thaler, J., & Siebers, P. O. (2019). Show me your properties: The potential of property-based testing
in agent-based simulation. In Proceedings of the 2019 summer simulation conference, SummerSim ’19
(pp. 1:1–1:12). San Diego, CA, USA: Society for Computer Simulation International. http://dl.acm.
org/citat ion.cfm?id=33741 38.33741 39.

https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/636517.636527
https://doi.org/10.1109/WSC.2013.6721538
https://www.comses.net/codebases/
https://www.comses.net/codebases/
https://gupea.ub.gu.se/handle/2077/22063
https://gupea.ub.gu.se/handle/2077/22063
https://doi.org/10.2202/1534-5971.1302
https://people.umass.edu/gintis/
https://people.umass.edu/gintis/
https://people.umass.edu/gintis/
https://doi.org/10.1057/jos.2012.26
https://doi.org/10.1007/978-3-540-69611-7_1
http://dx.doi.org/10.1007/978-3-540-69611-7_1
http://dx.doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1098/rspa.1927.0118
http://dl.acm.org/citation.cfm?id=2433508.2433551
https://doi.org/10.1057/jos.2016.7
https://doi.org/10.1007/978-3-319-14627-0_1
https://link.springer.com/chapter/10.1007/978-3-319-14627-0_1
https://doi.org/10.1016/j.ejor.2016.03.050
https://doi.org/10.1145/1411286.1411292
http://arxiv.org/abs/0803.3905
https://github.com/thalerjonathan/haskell-sir
https://doi.org/10.1145/3310232.3310372
http://doi.acm.org/10.1145/3310232.3310372
http://dl.acm.org/citation.cfm?id=3374138.3374139
http://dl.acm.org/citation.cfm?id=3374138.3374139

 Autonomous Agents and Multi-Agent Systems (2020) 34:47

1 3

 47 Page 22 of 22

 35. Wald, A. (1992). Sequential tests of statistical hypotheses. In S. Kotz & N. L. Johnson (Eds.), Break-
throughs in statistics: Foundations and basic theory (pp. 256–298)., Springer series in statistics New
York, NY: Springer. https ://doi.org/10.1007/978-1-4612-0919-5_18.

 36. Wooldridge, M. (2009). An introduction to multiagent systems (2nd ed.). New York: Wiley.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/978-1-4612-0919-5_18

	Specification testing of agent-based simulation using property-based testing
	Abstract
	1 Introduction
	2 Related work
	3 Property-based testing
	3.1 Generators
	3.2 Distributions
	3.3 Coverage
	3.4 Comparison with unit testing

	4 Event-driven agent-based SIR model
	4.1 An informal specification

	5 Encoding agent specifications
	5.1 Writing a property test
	5.2 Encoding transition probabilities

	6 Encoding model invariants
	6.1 Encoding the invariants

	7 Discussion
	8 Further research
	References

