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Abstract
The importance of Agent-Based Simulation (ABS) as scientific method to generate data for 
scientific models in general and for informed policy decisions in particular has been widely 
recognised. However, the important technique of code testing of implementations like unit 
testing has not generated much research interested so far. As a possible solution, in previ-
ous work we have explored the conceptual use of property-based testing. In this code test-
ing method, model specifications and invariants are expressed directly in code and tested 
through automated and randomised test data generation. This paper expands on our previ-
ous work and explores how to use property-based testing on a technical level to encode and 
test specifications of ABS. As use case the simple agent-based SIR model is used, where 
it is shown how to test agent behaviour, transition probabilities and model invariants. The 
outcome are specifications expressed directly in code, which relate whole classes of ran-
dom input to expected classes of output. During test execution, random test data is gener-
ated automatically, potentially covering the equivalent of thousands of unit tests, run within 
seconds on modern hardware. This makes property-based testing in the context of ABS 
strictly more powerful than unit testing, as it is a much more natural fit due to its stochastic 
nature.

Keywords Agent-based simulation testing · Code testing · Test driven development · 
Model specification

1 Introduction

Since its inception in the early 1990s [17, 31, 36], Agent-Based Simulation (ABS) as a 
third way of doing science [3, 5] has matured substantially and has found its way into the 
mainstream of science [25]. Further, a number of ABS frameworks and tools like RePast, 
AnyLogic and NetLogo as well as open databases of ABS models [16] have been devel-
oped, allowing for quick and robust prototyping and development of models.
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However, despite the broad acceptance and adoption of ABS as methodology and gen-
erative way of doing science, there have been struggles as reported by Axelrod [4]. He 
discusses the vulnerability of ABS to misunderstanding: due to informal specifications of 
models and change requests amongst members of a research team, bugs are very likely to 
be introduced. Further, he reports how difficult it was to reproduce other work [2], which 
took the team four months, due to inconsistencies between the original code and the pub-
lished paper. The consequence is that counter-intuitive simulation results can lead to weeks 
of checking whether the code matches the model and is bug-free [3].

The same problem was reported by researchers [7], which tried to reproduce the work of 
Gintis [19]. In his work, Gintis claimed to have found a mechanism in bilateral decentral-
ized exchange, which resulted in Walrasian General Equilibrium without the neo-classi-
cal approach of a tatonement process through a central auctioneer [14]. This was a major 
breakthrough for economics as the theory of Walrasian General Equilibrium is non-con-
structive. It postulates the properties and existence of the equilibrium but does not explain 
the process and dynamics through which this equilibrium can be reached or constructed. 
Gintis seemed to have found a model for this process.

The authors [7] failed to reproduce the results and were only able to solve the prob-
lem by directly contacting Gintis, which provided the code, the definitive formal reference. 
It was found that there was a bug in the code leading to unexpected results, which were 
seriously damaged through this error. They also reported ambiguity between the informal 
model description in Gintis’ paper and the actual implementation. This discovery lead to 
research in a functional framework for agent-based models of exchange [8], which tried to 
give a very formal functional specification of the model, coming very close to an imple-
mentation in Haskell. The failure of Gintis was investigated in more depth also by other 
researchers [18] who got access to Gintis’ code through his website [20]. They found that 
the code in Object Pascal did not follow good object-oriented design principles (all of it 
was public, code duplication) and discovered a number of bugs serious enough to damage 
the results.

These issues show that due to the fact that ABS is primarily used for scientific research, 
often producing break-through scientific results, besides on converging both on stand-
ards for testing the robustness of implementations and on its tools, ABS more importantly 
needs to be free of bugs, verified against their specification, validated against hypotheses 
and ultimately be reproducible [4]. Further, a special issue with ABS is that the emergent 
behaviour of the system is generally not known in advance and researchers look for some 
unique emergent pattern in the dynamics. Whether the emergent pattern is then truly due 
to the system working correctly, or a bug in disguise is often not obvious and becomes 
increasingly difficult to assess with increasing system complexity.

These facts are also underlined in summaries of various ABS development methods [28] 
which all put fundamental emphasis on the verification and validation process for ABS. 
Although there exist methods and research of verification and validation in ABS, unfortu-
nately, as Sect. 2 shows, there does not exist much research on the issue of code testing an 
ABS implementation. In software engineering, this task has been traditionally achieved by 
unit testing, as introduced by Beck in the seminal work on Test-Driven Development [6]. 
Unit tests are code pieces which test a given unit of functionality of some given feature. 
Generally, this results in hundreds or sometimes thousands of unit tests as all execution 
paths of the whole software should be covered.

We hypothesise that the reason why unit testing is not very present in the field of ABS 
verification and validation research, is a conceptual mismatch between unit testings’ deter-
ministic and ABS’ rather stochastic nature. The fact that a unit test needs to be written for 
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each edge case makes it difficult to scale up to the stochastic nature of ABS, where the 
agent and model behaviour in general is often characterised by probabilistic distributions 
instead of deterministic rules. As a possible solution to this issue, our work [34] was the 
first to propose property-based testing as an alternative to unit testing for code testing ABS 
implementations. The main idea of property-based testing is to express model specifica-
tions and invariants directly in code and test them through automated and randomised test 
data generation. In our paper [34] we presented various ways to conceptually use property-
based testing to code test ABS implementations. However, we did not discuss technical 
details and sequential statistical hypothesis testing and left the exact workings of property-
based testing for ABS open as it was beyond the focus of that paper.

In this paper we pick up our conceptual work [34] and put it into a more technical per-
spective and demonstrate additional techniques of property-based testing in the context 
of ABS, which were not covered in the conceptual paper. More specifically, in this paper 
we additionally show how to encode agent specifications and model invariants into prop-
erty tests, using an agent-based SIR model [24] as use case. Following an event-driven 
approach [27], we demonstrate how to express an agent specification in code by relating 
random input events to specific output events. Further, additionally using specific property-
based testing features, which allow expressing expected coverage of data distributions, we 
show how transition probabilities can be tested. Finally, we also express model invariants 
by encoding them into property tests. By doing this, we demonstrate how property-based 
testing works on a technical level, how specifications and invariants can be put into code 
and how probabilities can be expressed and tested using statistically robust verification. 
This in-depth technical investigation was beyond the focus of our original, conceptual work 
[34] but the results of this paper gives additional evidence to its conclusion, that property-
based testing maps naturally to ABS. Further, this work shows that in the context of ABS, 
property-based testing does scale up better than unit testing as it allows to run thousands 
of test cases automatically instead of constructing each manually and, more importantly, 
property-based testing is able to encode probabilities, something unit testing is not capable 
of in general.

The paper is structured as follows: Sect. 2 presents related work. In Sect. 3 property-
based testing is introduced on a technical level. In Sect. 4 the agent-based SIR model is 
introduced, together with its informal event-driven specification. Sections 5 and 6 contain 
the main contribution of the paper, where it is shown how to encode agent specifications, 
transition probabilities and model invariants with property-based testing. Section  7 dis-
cusses the approach and concludes and Sect. 8 identifies further research.

2  Related work

Research on code testing of ABS is quite new with few publications so far. Our own work 
[34] is the first paper to introduce property-based testing to ABS. In it we show on a con-
ceptual level that property-based testing allows to do both verification and validation of an 
implementation. However, we do not go into technical details of actual implementations, 
nor how to use property-based testing on a technical level, nor do we introduce the sequen-
tial statistical hypothesis testing of the QuickCheck library to express probabilities.

The use of unit testing in the context of ABS was first discussed by Collier et al. [15]. 
The authors introduce Test-Driven Development to ABS and use RePast to show how to 
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verify the correctness of an implementation with unit tests. A similar approach has been 
discussed for Discrete Event Simulation in the AnyLogic software toolkit [1].

Unit tests to verify an ABS implementation of maritime search operations was men-
tioned in [29]. The authors validate their model against an analytical solution from the-
ory by running the simulation with unit tests and then performing a statistical comparison 
against the formal specification.

Property-based testing has also connections to data generators [21] and load generators 
and random testing [11] with the important benefit that property-based testing allows to 
express them directly in code.

The authors of [21] provide a case study of an agent-based simulation of synaptic con-
nectivity, for demonstrating their generic testing framework in RePast and MASON, which 
rely on JUnit to run automated tests.

As most of these works are using unit testing, we provide a comparison between our 
proposed approach and unit testing in the following section.

3  Property‑based testing

In property-based testing functional specifications, also called properties, are formulated 
in code and tried to falsify using a property-based testing library. In general, to falsify a 
functional specification, the property-based testing library runs automated test cases by 
automatically generating test data. When a test case fails, the functional specification was 
falsified by finding a counter example. For better analysis, the library then reduces the test 
data to its simplest form for which the test still fails, like shrinking of a list or pruning of a 
tree. On the other hand, if no counter example could be found for the functional specifica-
tion, it is deemed valid and the test succeeds.

Property-based testing has its origins in the QuickCheck library [12, 13] of the pure 
functional programming language Haskell. QuickCheck tries to falsify the specifications 
by randomly sampling the test space. This library has been successfully used for testing 
Haskell code in the industry for years, underlining its maturity and real world relevance in 
general and of property-based testing in particular [22].

To give an understanding of how property-based testing works with QuickCheck, we 
give a practical example of how to implement a property of lists. Such a property is directly 
expressed as a function in Haskell, with the return type of Bool. This indicates whether 
the property holds for the given random inputs or not. In general, a QuickCheck property 
can take arbitrary inputs, with random data generated automatically by QuickCheck during 
testing. The example property we want to encode is that reversing a reversed list results 
again in the original list:

-- Reversing of a reversed list is the original list
prop_reverse_reverse :: [Int] -> Bool
prop_reverse_reverse xs = reverse (reverse xs) == xs

Testing the property with QuickCheck is simply done using the function
quickCheck:
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> quickCheck prop_reverse_reverse
+++ OK, passed 100 tests.

QuickCheck generates 100 test cases by default and requires all of them to pass. 
Indeed, all 100 test cases of prop_reverse_reverse pass and therefore the prop-
erty as a whole passes the test. Note that we do not provide any data for the input argu-
ment [Int], a list of Integers, because QuickCheck is doing this automatically for us. 
For the standard types of Haskell, QuickCheck provides existing data generators.

To give an example of what happens in case of failure due to a wrong property, we 
look at a wrong implementation of the property, that reverse distributes over the list 
append operator (++ in Haskell): 

-- reverse is distributive over list append (++)
-- This is a wrong implementation for explanatory reasons!
-- For a correct property, swap xs and ys on the right hand side.
prop_reverse_distributive :: [Int] -> [Int] -> Bool
prop_reverse_distributive xs ys

= reverse (xs ++ ys) == reverse xs ++ reverse ys

> quickCheck prop_reverse_distributive
*** Failed! Falsifiable (after 4 tests and 5 shrinks):
[0]
[1]

As expected, the property test fails because QuickCheck found a counter example to 
the property after 4 test cases. Also, we see that QuickCheck applied 5 shrinks to find 
the minimal failing counter example xs = [0] and ys = [1]. The reason for the 
failure is a wrong implementation of the prop_reverse_distributive property: 
to correct it, xs and ys need to be swapped on the right hand side of the equation. Note 
that when run repeatedly, QuickCheck might find the counter example earlier and might 
apply fewer shrinks due to a different random-number generator seed, resulting in differ-
ent random data to start with.

3.1  Generators

QuickCheck comes with a lot of data generators for existing types like String, 
Int, Double, [] (List), but in case one wants to randomize custom data types, 
one has to write custom data generators. There are two ways to do this. The first one is 
to fix them at compile time by writing an Arbitrary type class instance. A type class 
can be understood as an interface definition, and an instance as a concrete implementa-
tion of such an interface for a specific type. The advantage of having an Arbitrary 
instance is that the custom data type can be used as random argument to a function as in 
the examples above. The second way to write custom data generators is to implement a 
run-time generator in the Gen context.

Here we implement a custom data generator for both cases, using a simple color rep-
resentation as example. We start with the run-time option, running in the Gen context:
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-- enumeration of colors
data Color = Red | Green | Blue

genColor :: Gen Color
genColor = elements [Red, Green, Blue]

This implementation makes use of the elements :: [a] → Gen a function, 
which picks a random element from a non-empty list with uniform probability. If a skewed 
distribution is needed, one can use the frequency :: [(Int, Gen a)] → Gen 
a function, where a frequency can be specified for each element. Generating on average 
80% Red, 15% Green and 5% Blue can be achieved using this function:

genColor :: Gen Color
genColor = frequency [(80, Red), (15, Green), (5, Blue)]

Implementing an Arbitrary instance is straightforward, one only needs to implement 
the arbitrary :: Gen a method:

instance Arbitrary Color where
arbitrary = genColor

When we have a random Double as input to a function, but want to restrict its random 
range to (0,1) because it reflects a probability, we can do this easily with newtype and 
implementing an Arbitrary instance:

newtype Probability = P Double

instance Arbitrary Probability where
arbitrary = P <$> choose (0, 1)

3.2  Distributions

QuickCheck provides functions to measure the coverage of test cases. This can be done 
using the label :: String → prop → Property function. It takes a String 
as first argument and a testable property and constructs a Property. QuickCheck collects 
all the generated labels, counts their occurrences and reports their distribution. For exam-
ple, it can be used to get an idea of the length of the random lists created in the reverse_
reverse property shown above:

reverse_reverse_label :: [Int] -> Property
reverse_reverse_label xs

= label ("length of random-list is " ++ show (length xs))
(reverse (reverse xs) == xs)

When running the test, we get the following output:
+++ OK, passed 100 tests:
5% length of random-list is 27
5% length of random-list is 0
4% length of random-list is 19
...
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3.3  Coverage

QuickCheck provides two additional functions to work with test-case distributions: cover 
and checkCoverage. The function cover :: Double → Bool → String 
→ prop → Property allows to explicitly specify that a given percentage of success-
ful test cases belongs to a given class. The first argument is the expected percentage, the 
second argument is a Bool indicating whether the current test case belongs to the class or 
not, the third argument is a label for the coverage, and the fourth argument is the property 
which needs to hold for the test case to succeed.

Here we look at an example where we use cover to express that we expect 15% of all 
test cases to have a random list with at least 50 elements:

reverse_reverse_cover :: [Int] -> Property
reverse_reverse_cover xs

= cover 15 (length xs >= 50) "Length of random list at least 50"
(reverse (reverse xs) == xs)

When running the twice, we get the following output:

+++ OK, passed 100 tests (10% length of random list at least 50).
Only 10% Length of random-list at least 50, but expected 15%.
+++ OK, passed 100 tests (21% length of random list at least 50).

As can be seen, QuickCheck runs the default 100 test cases and prints a warning if 
the expected coverage is not reached. This is a useful feature, but it is up to us to decide 
whether 100 test cases are suitable and whether we can really claim that the given coverage 
will be reached or not. To free us from making this guess, QuickCheck provides the func-
tion checkCoverage :: prop → Property. When checkCoverage is used, 
QuickCheck will run an increasing number of test cases until it can decide whether the 
percentage in cover was reached or cannot be reached at all. The way QuickCheck does 
this, is by using sequential statistical hypothesis testing [35]. Thus, if QuickCheck comes 
to the conclusion that the given percentage can or cannot be reached, it is based on a robust 
statistical test giving us high confidence in the result.

When we run the example from above but now with checkCoverage we get the fol-
lowing output:

+++ OK, passed 12800 tests
(15.445% length of random-list at least 50).

We see that after QuickCheck ran 12,800 tests it came to the statistically robust conclu-
sion that, indeed, at least 15% of the test cases have a random list with at least 50 elements.

3.4  Comparison with unit testing

Section 2 shows that the standard in code testing of ABS is unit testing. For a better under-
standing and how our work relates to this other technique we briefly introduce unit testing 
in Java and compare it with property-based testing as introduced above.
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As already pointed out in the introduction, unit tests are small pieces of code which test 
other code. These pieces of code are call test cases, and should be as small as possible, 
testing only a single aspect of the code under test. The way to implement unit tests is using 
the unit testing library JUnit, which provides annotations, assertions and test executors, to 
annotate test cases, express invariants, execute test cases and generate reports of the results.

In the following we briefly show how to express the properties of lists, as introduced 
above, with unit testing. We write a class ListTest, which contains all test cases, 
each annotated by @Test, which tells the test executor that this is a test to run. Invari-
ants are expressed in our case with assertEquals, however JUnit provides all sorts of 
asserts, to express different invariants.

public class ListTest {
// reverse of reverse restores the original order
@Test
public void testReverseReverse() {

List<String> xs = new ArrayList<>();
xs.add("Test1");
xs.add("Test2");
xs.add("Test3");

// make a copy to compare original state
List<String> xsOrig = new ArrayList<>(xs);

// reverse twice, mutates xs
Collections.reverse(xs);
Collections.reverse(xs);

// test invariant
assertEquals(xs, xsOrig, "Lists not equal after reverse of reverse");

}

// reverse distributes over append (addAll in Java)
@Test
public void testReverseDistribute() {

List<String> xs = new ArrayList<>();
xs.add("A");
xs.add("B");
xs.add("C");

List<String> ys = new ArrayList<>();
ys.add("X");
ys.add("Y");
ys.add("Z");

// copy lists
List<String> xsCpy = new ArrayList<>(xs);
List<String> ysCpy = new ArrayList<>(ys);

// reverse (xs ++ ys) =>
// append ys to xs, mutates xs

xs.addAll(ys);
// reverse xs, mutates xs
Collections.reverse(xs);

// reverse ys ++ reverse xs =>
Collections.reverse(xsCpy);
Collections.reverse(ysCpy);
ysCpy.addAll(xsCpy);

// express invariant (==)
assertEquals(xs, ysCpy, "Lists not equal after reverse distributive");

}
}
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We immediately see how verbose unit tests are over property tests. The reason is not 
only found in object-oriented programming, but also that unit tests are not expressing spec-
ifications but following a very operational, imperative approach, stating how to test some-
thing instead of what is actually tested. We argue that without the comments added by us 
and appropriate naming of the tests, it would be not very obvious what exactly the unit tests 
are testing, whereas in property-based testing this is immediately clear.

A very important detail is that in this listing we only provide tests with 3 elements 
in each list. This does not cover all test cases, for example lists with a single element, 
empty lists, or lists of different sizes in the case of testReverseDistribute are 
missing. For a proper test coverage, we would need to manually provide all edge cases 
as additional test cases. This is implicitly covered in property-based testing, which gen-
erates the input data, automatically covering edge cases as well.

As for the label, cover and checkCoverage feature from property-based test-
ing with QuickCheck, there is simply no equal in unit testing with JUnit. Therefore it is 
simply not possible to express such specifications.

It might look like that property-based testing is superior to unit testing, however it is 
not as both focus on different types of tests. Whereas property-based testing is ideally 
suited for testing data-centric problems, which can be expressed in specifications, such 
as the list properties above, unit testing is better suited for testing side effects of impera-
tive code in a rather operational way. Therefore we see property-based testing and unit 
testing as complementary techniques.

4  Event‑driven agent‑based SIR model

As use case to develop the concepts in this paper, we use the explanatory SIR model 
[23]. It is a very well studied and understood compartment model from epidemiology, 
which allows to simulate the dynamics of an infectious disease like influenza, tuberculo-
sis, chicken pox, rubella and measles spreading through a population.

In this model, people in a population of size N can be in either one of the three states 
Susceptible, Infected or Recovered at a particular time, where it is assumed that ini-
tially there is at least one infected person in the population. People interact on average 
with a given number of � other people per time unit and become infected with a given 
probability � when interacting with an infected person. When infected, a person recov-
ers on average after � time units and is then immune to further infections. An interac-
tion between infected persons does not lead to re-infection, thus, these interactions are 
ignored in this model. This definition gives rise to three compartments with the transi-
tions seen in Fig. 1.

In this paper we follow [24] for translating the informal SIR specification into an 
event-driven agent-based approach [27]. The dynamics it produces are shown in Fig. 2, 
which was generated by our own implementation undertaken for this paper, accessible 
from our repository [32].
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4.1  An informal specification

In this section we give an informal specification of the agent behaviour, relating the input 
to according output events. Before we can do that we first need to define the event types of 
the model, how they related to scheduling and how we can conceptually represent agents.

We are using Haskell as notation and implementation language as we conducted our 
research with it because it originated property-based testing. We are aware that Haskell 
is not a mainstream programming language, so to make this paper sufficiently self con-
tained, we introduce concepts step-by-step, with many comments (– in the Haskell 
code) and explanations. This should allow readers, familiar with programming in gen-
eral, understand the ideas behind what we are doing. Fortunately it is not necessary 
to go into detail of how agents are implemented as for our approach it is enough to 
understand the agents’ inputs and outputs. For readers interested in the details of how to 
implement ABS in Haskell, we refer to another work of us [33].

We start by defining the states the agents can be in:

-- enumeration of the agents states
data SIRState = Susceptible | Infected | Recovered

The model uses three types of events. First, MakeContact is used by a susceptible agent 
to proactively make contact with � other agents per time unit by scheduling it to itself. Second, 
Contact is used by susceptible and infected agents to contact other agents, revealing their 
id and their state to the receiver. Third, Recover is used by an infected agent to proactively 
make the transition to recovered after � time units.

-- agents are identified by a unique Integer
type AgentId = Int
-- enumeration of the three events
data SIREvent = MakeContact | Contact AgentId SIRState | Recover

As events are scheduled we need a new type to hold them, which we termed Queue-
Item as it is put into the event queue. It contains the event to be scheduled, the id of the 
receiving agent and the scheduling time.

type Time = Double
data QueueItem = QueueItem SIREvent AgentId Time

Finally, we define an agent: it is a function, mapping an event to the current state of the 
agent with a list of scheduled events. This is a simplified view on how agents are actually 
implemented in Haskell but it suffices for our purpose.

Fig. 1  States and transitions in 
the SIR compartment model
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-- An agent maps an incoming event to the agents current state
-- and a list of scheduled events
sirAgent :: SIREvent -> (SIRState, [QueueItem])

We are now ready to give the full specification of the susceptible, infected and recov-
ered agent by stating the input-to-output event relations. The susceptible agent is specified 
as follows: 

1. MakeContact—if the agent receives this event it will output � (Contact ai 
Susceptible) events, where ai is the agents own id and Susceptible indicating 
the event comes from a susceptible agent. The events have to be scheduled immediately 
without delay, thus having the current time as scheduling timestamp. The receivers of 
the events are uniformly randomly chosen from the agent population. Additionally, to 
continue the pro-active contact making process, the agent schedules MakeContact 
to itself 1 time unit into the future. The agent doesn’t change its state, stays Suscep-
tible and does not schedule any other events than the ones mentioned.

2. (Contact _ Infected)—if the agent receives this event there is a chance of uni-
form probability � that the agent becomes Infected. If this happens, the agent will 
schedule a Recover event to itself into the future, where the time is drawn randomly 

Fig. 2  Dynamics of the SIR compartment model using an event-driven agent-based approach. Population 
size N = 1000, contact rate � =

1

5
 , infection probability � = 0.05 , illness duration � = 15 with initially 1 

infected agent



 Autonomous Agents and Multi-Agent Systems           (2020) 34:47 

1 3

   47  Page 12 of 22

from the exponential distribution with � = � . If the agent does not become infected, it 
will not change its state, stays Susceptible and does not schedule any events.

3. (Contact _ _) or Recover—if the agent receives any of these other events it will 
not change its state, stays Susceptible and does not schedule any events.

This specification implicitly covers that a susceptible agent can never transition from a 
Susceptible to a Recovered state within a single event as it can only make the tran-
sition to Infected or stay Susceptible.

The infected agent is specified as follows: 

1. Recover—if the agent receives this, it will not schedule any events but make the 
transition to the Recovered state.

2. (Contact sender Susceptible)—if the agent receives this, it will reply 
immediately with (Contact ai Infected) to sender, where ai is the infected 
agents’ id and the scheduling timestamp is the current time. It will not schedule any 
events and stays Infected.

3. In case of any other event, the agent will not schedule any events and stays Infected.

This specification implicitly covers that an infected agent never goes back to the Sus-
ceptible state as it can only make the transition to Recovered or stay Infected. 
Also, from the specification of the susceptible agent it becomes clear that a susceptible 
agent who became infected, will always recover as the transition to Infected includes 
the scheduling of Recovered to itself.

The recovered agent specification is very simple: it stays Recovered forever and 
does not schedule any events.

5  Encoding agent specifications

We start by encoding the invariants of the susceptible agent directly into Haskell, imple-
menting a function, which takes all necessary parameters and returns a Bool indicating 
whether the invariants hold or not. We are using pattern matching, therefore it reads like 
a formal specification due to the declarative nature of functional programming. 
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susceptibleProps :: SIREvent -- random event sent to agent
-> SIRState -- output state of the agent
-> [QueueItem SIREvent] -- list of events the agent scheduled
-> AgentId -- agent id of the agent
-> Bool

-- received Recover => stay Susceptible, no event scheduled
susceptibleProps Recover Susceptible es _ = null es
-- received Contact _ Recovered => stay Susceptible, no event scheduled
susceptibleProps (Contact _ Recovered) Susceptible es _ = null es
-- received Contact _ Susceptible => stay Susceptible, no event scheduled
susceptibleProps (Contact _ Susceptible) Susceptible es _ = null es
-- received Contact _ Infected, didn’t get Infected, no event scheduled
susceptibleProps (Contact _ Infected) Susceptible es _ = null es
-- received Contact _ Infected AND got infected, check events
susceptibleProps (Contact _ Infected) Infected es ai

= checkInfectedInvariants ai es
-- received MakeContact => stay Susceptible, check events
susceptibleProps MakeContact Susceptible es ai

= checkMakeContactInvariants ai es cor
-- all other cases are invalid and result in a failed test case
susceptibleProps _ _ _ _ = False

Next, we give the implementation for the checkInfectedInvariants func-
tion. We omit a detailed implementation of checkMakeContactInvariants as it 
works in a similar way and its details do not add anything conceptually new. The func-
tion checkInfectedInvariants encodes the invariants which have to hold when 
the susceptible agent receives a (Contact _ Infected) event from an infected 
agent and becomes infected. 

checkInfectedInvariants :: AgentId -- agent id of the agent
-> [QueueItem SIREvent] -- list of scheduled events
-> Bool

checkInfectedInvariants sender
-- expect exactly one Recovery event
[QueueItem receiver (Event Recover) t’]
-- receiver is sender (self) and scheduled into the future
= sender == receiver && t’ >= t

-- all other cases are invalid
checkInfectedInvariants _ _ = False

5.1  Writing a property test

After having encoded the invariants into a function, we need to write a QuickCheck prop-
erty test, which calls this function with random test data. Although QuickCheck comes 
with a lot of data generators for existing Haskell types, it obviously does not have genera-
tors for custom types, like the SIRState and SIREvent. We refer to Sect. 3, where we 
explain the concept of data generators and implement generators for Color and Proba-
bility. The run-time generators for SIRState and genEvent for generating random 
SIREvents work similar to the Color generator and is omitted. For readers who are 
interested in a detailed implementation of both, we refer to the code repository [32].

All parameters to the property test are generated randomly, which expresses that the 
properties encoded in the previous section have to hold invariant of the model parame-
ters. We make use of additional data generator modifiers: Positive ensures that a value 
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generated is positive; NonEmptyList ensures that a randomly generated list is not empty. 
Further, we use the function label, as explained in Sect. 3, to get an understanding of the 
distribution of the transitions. The case where the agents output state is Recovered is 
marked as “INVALID” as it must never occur, otherwise the test will fail, due to the invari-
ants encoded in the previous section.

prop_susceptible :: Positive Int -- beta (contact rate)
-> Probability -- gamma (infectivity)
-> Positive Double -- delta (illness duration)
-> Positive Double -- current simulation time
-> NonEmptyList AgentId -- population agent ids
-> Gen Bool

prop_susceptible
(Positive beta) (P gamma) (Positive delta) (Positive t) (NonEmpty ais) = do
-- generate random event, requires the population agent ids
evt <- genEvent ais
-- run susceptible random agent with given parameters (implementation omitted)
(ai, ao, es) <- genRunSusceptibleAgent beta gamma delta t ais evt
-- check properties
return (label (labelTestCase ao) (susceptibleProps evt ao es ai))
where

labelTestCase :: SIRState -> String
labelTestCase Infected = "Susceptible -> Infected"
labelTestCase Susceptible = "Susceptible"
labelTestCase Recovered = "INVALID"

We have omitted the implementation of genRunSusceptibleAgent as it would 
require the discussion of implementation details of the agent. Conceptually speaking, it 
executes the agent with the respective arguments with a fresh random-number generator 
and returns the agent id, its state and scheduled events.

Finally, we run the test using QuickCheck. Due to the large random sampling space with 
5 parameters, we increase the number of test cases to 100,000.

> quickCheckWith (stdArgs {maxSuccess=100000}) prop_susceptible
+++ OK, passed 100000 tests (6.77s):
94.522% Susceptible
5.478% Susceptible -> Infected

All 100,000 test cases pass, taking 6.7 s to run on our hardware. The distribution of the 
transitions shows that we indeed cover both cases a susceptible agent can exhibit within 
one event. It either stays susceptible or makes the transition to infection. The fact that there 
is no transition to Recovered shows that the implementation is correct.

Encoding of the invariants and writing property tests for the infected agent follows the 
same idea and is not repeated here. Next, we show how to test transition probabilities using 
the powerful statistical hypothesis testing feature of QuickCheck.

5.2  Encoding transition probabilities

In the specifications from the previous section there are probabilistic state transitions, for 
example the susceptible agent might become infected, depending on the events it receives 
and the infectivity ( � ) parameter. To encode these probabilistic properties we are using the 
function cover of QuickCheck. As introduced in Sect. 3, this function allows us to explic-
itly specify that a given percentage of successful test cases belong to a given class.
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For our case we follow a slightly different approach than in the example of Sect. 3: we 
include all test cases into the expected coverage, setting the second parameter always to 
True as well as the last argument, as we are only interested in testing the coverage, which 
is in fact the property we want to test. Implementing this property test is then simply a 
matter of computing the probabilities and of case analysis over the random input event and 
the agents output. It is important to note that in this property test we cannot randomise the 
model parameters � , � and � because this would lead to random coverage. This might seem 
like a disadvantage but we do not really have a choice here, still the fixed model parameters 
can be adjusted arbitrarily and the property must still hold. We could have combined this 
test into the previous one but then we couldn’t have used randomised model parameters. 
For this reason, and to keep the concerns separated, we opted for two different tests, which 
makes them also much more readable. 

prop_susceptible_prob :: Positive Double -- current simulation time
-> NonEmptyList AgentId -- population agent ids

-> Property
prop_susceptible_prob (Positive t) (NonEmpty ais) = do

-- fixed model parameters, otherwise random coverage
let cor = 5 -- contact rate (beta)

inf = 0.05 -- infectivity (gamma)
ild = 15.0 -- illness duration (delta)

-- compute distributions for all cases depending on event and SIRState
-- frequencies; technical detail, omitted for clarity reasons
let recoverPerc = ...

makeContPerc = ...
contactRecPerc = ...
contactSusPerc = ...
contactInfSusPerc = ...
contactInfInfPerc = ...

-- generate a random event
evt <- genEvent ais
-- run susceptible random agent with given parameters, only
-- interested in its output SIRState, ignore id and events
(_, ao, _) <- genRunSusceptibleAgent cor inf ild t ais evt
-- encode expected distributions
-- case analysis over random input events
return $ property $ case evt of

Recover ->
cover recoverPerc True "Susceptible recv Recover" True

MakeContact ->
cover makeContPerc True "Susceptible recv MakeContact" True

(Contact _ Recovered) ->
cover contactRecPerc True "Susceptible recv Contact * Recovered" True

(Contact _ Susceptible) ->
cover contactSusPerc True "Susceptible recv Contact * Susceptible" True

(Contact _ Infected) ->
-- case analysis over resulting agent state
case ao of

Susceptible ->
cover contactInfSusPerc True

"Susceptible recv Contact * Infected, stays Susceptible" True
Infected ->

cover contactInfInfPerc True
"Susceptible recv Contact * Infected, becomes Infected" True

_ ->
cover 0 True "INVALID" True

We have omitted the details of computing the respective distributions of the cases, 
which depend on the frequencies of the events and the occurrences of SIRState 
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within the Contact event. By varying different distributions in the genEvent func-
tion, we can change the distribution of the test cases, leading to a more general test than 
just using uniform distributed events. When running the property test we get the follow-
ing output: 

+++ OK, passed 100 tests (0.01s):
40% Susceptible recv MakeContact
25% Susceptible recv Recover
14% Susceptible recv Contact * Infected, stays Susceptible
12% Susceptible recv Contact * Susceptible
9% Susceptible recv Contact * Recovered

Only 9% Susceptible recv Contact * Recovered, but expected 11%
Only 25% Susceptible recv Recover, but expected 33%

QuickCheck runs 100 test cases, prints the distribution of the labels and issues warnings 
in the last two lines that generated and expected coverages differ in these cases. Further, 
not all cases are covered, for example the contact with an Infected agent and the case of 
becoming infected. The reason for these issues is insufficient testing coverage as 100 test 
cases are simply not enough for a statistically robust result. We could increase the number 
of test cases to 100,000, which might cover all cases but could still leave QuickCheck not 
satisfied as the expected and generated coverage might still differ.

As a solution to this fundamental problem, we use QuickChecks checkCoverage 
function. As introduced in Sect. 3, when the function checkCoverage is used, Quick-
Check will run an increasing number of test cases until it can decide whether the percent-
age in cover was reached or cannot be reached at all. With the usage of checkCover-
age we get the following output:

+++ OK, passed 819200 tests (7.32s):
33.3292% Susceptible recv Recover
33.2697% Susceptible recv MakeContact
11.1921% Susceptible recv Contact * Susceptible
11.1213% Susceptible recv Contact * Recovered
10.5356% Susceptible recv Contact * Infected, stays Susceptible
0.5520% Susceptible recv Contact * Infected, becomes Infected

After 819,200 (!) test cases, run in 7.32 s on our hardware, QuickCheck comes to the 
statistically robust conclusion that the distributions generated by the test cases reflect the 
expected distributions and passes the property test.

6  Encoding model invariants

By informally reasoning about the agent specification and by realising that they are, in fact, 
a state machine with a one-directional flow of Susceptible → Infected → Recovered (as seen 
in Fig. 1), we can come up with a few invariants, which have to hold for any SIR simulation 
run, under random model parameters and independent of the random-number stream and 
the population: 
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1. Simulation time is monotonic increasing. Each event carries a timestamp when it is 
scheduled. This timestamp may stay constant between multiple events but will even-
tually increase and must never decrease. Obviously, this invariant is a fundamental 
assumption in most simulations where time advances into the future and does not flow 
backwards.

2. The number of total agents N stays constant. In the SIR model no dynamic creation or 
removal of agents during simulation happens.

3. The number of susceptible agents S is monotonic decreasing. Susceptible agents might 
become infected, reducing the total number of susceptible agents but they can never 
increase because neither an infected nor recovered agent can go back to susceptible.

4. The number of recovered agents R is monotonic increasing. This is because infected 
agents will recover, leading to an increase of recovered agents but once the recovered 
state is reached, there is no escape from it.

5. The number of infected agents I respects the invariant of the equation I = N − (S + R) 
for every step. This follows directly from the first property which says N = S + I + R.

6.1  Encoding the invariants

All these properties are expressed directly in code and read like a formal specification due 
to the declarative nature of functional programming:

stnegaforebmunlatotN--tnI::stnairavnIris
-> [(Time,(Int,Int,Int))] -- output each step: (Time,(S,I,R))
-> Bool

sirInvariants n aos = timeInc && aConst && susDec && recInc && infInv
where

(ts, sirs) = unzip aos -- split Time and (S,I,R) into 2 separate lists
(ss, _, rs) = unzip3 sirs -- split S, I and R into 3 separate lists

-- 1. time is monotonic increasing
timeInc = allPairs (<=) ts
-- 2. number of agents N stays constant in each step
aConst = all agentCountInv sirs
-- 3. number of susceptible S is monotonic decreasing
susDec = allPairs (>=) ss
-- 4. number of recovered R is monotonic increasing
recInc = allPairs (<=) rs
-- 5. number of infected I = N - (S + R)
infInv = all infectedInv sirs

-- encodes property 2
agentCountInv :: (Int,Int,Int) -> Bool
agentCountInv (s,i,r) = s + i + r == n

-- encodes property 5
infectedInv :: (Int,Int,Int) -> Bool
infectedInv (s,i,r) = i == n - (s + r)

-- returns True if a predicate p is satisfied for all pairs in a list
allPairs :: (Ord a, Num a) => (a -> a -> Bool) -> [a] -> Bool
allPairs p xs = all (uncurry f) (pairs xs)

-- pair up neighbouring elements of a list
pairs :: [a] -> [(a,a)]
pairs xs = zip xs (tail xs)
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Putting this property into a QuickCheck test is straightforward. We randomise the model 
parameters � (contact rate), � (infectivity) and � (illness duration) because the properties 
have to hold for all positive, finite model parameters.

prop_sir_invariants :: Positive Int -- beta (contact rate)
-> Probability -- gamma (infectivity)
-> Positive Double -- delta (illness duration)
-> TimeRange -- random duration in range (0, 50)
-> [SIRState] -- population
-> Property

prop_sir_invariants
(Positive beta) (P gamma) (Positive delta) (T t) as = property (do

-- total agent count
let n = length as
-- run the SIR simulation with a new RNG
ret <- genSimulationSIR as beta gamma delta t
-- check invariants and return result
return (sirInvariants n ret)

Due to the large sampling space, we increase the number of test cases to run to 100,000 
and all tests pass as expected. It is important to note that we put a random time limit within 
the range of (0,50) on the simulations to run. Meaning, that if a simulation does not termi-
nate before that limit, it will be terminated at that random t. The reason for this is entirely 
practical as it ensures that the wall clock time to run the tests stays within reasonable 
bounds while still retaining randomness.

7  Discussion

In this paper we have shown how to use property-based testing on a technical level to 
encode informal specifications of agent behaviour and model invariants into formal speci-
fication directly in code. By incorporating this powerful technique into simulation develop-
ment, confidence in the correctness of an implementation is likely to increase substantially, 
something of fundamental importance for ABS in general and for models supporting far-
reaching policy decision in particular. Although our research uses the simple agent-based 
SIR model to demonstrate our approach, we hypothesise that it is applicable to event-driven 
ABS [27] in general, as we clearly focus on relating input to output events. To put our 
hypothesis to a test would require the generalisation of this simple model into a full frame-
work of property-based testing for event-driven ABS, which we leave for further research.

The benefits of a property-based approach in ABS over unit testing is manifold. First, 
it expresses specifications rather than individual test cases, which makes it more general 
than unit testing. It allows expressing probabilities of various types (hypotheses, transi-
tions, outputs) and performing statistically robust testing by sequential hypothesis testing. 
Most importantly, it relates whole classes of inputs to whole classes of outputs, automati-
cally generating thousands of tests if necessary, therefore better scaling to the stochastic 
nature of ABS.

The main challenge of property-based testing is to write custom data generators, which 
produce sufficient coverage for the problem at hand, something not always obvious when 
starting out. Further, it is not always clear without some analysis, whether a property 
test actually covers enough of the random test space or not. As a robust solution to this 
issues, QuickCheck provides functions allowing to specify required coverage as well as 
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functionality to perform sequential statistical hypothesis testing to arrive at statistically 
robust coverage tests. An alternative solution to the potential coverage problems of Quick-
Check is the deterministic property-testing library SmallCheck [30], which instead of ran-
domly sampling the test space, enumerates test cases exhaustively up to some depth.

We hypothesise that it is very likely that if Gintis [19] would have applied rigorous unit 
and property-based testing to his model he might have found the inconsistencies and could 
have corrected them. Additionally, the code of the re-implementation [18] contains numer-
ous invariant checks and assertions, which are properties expressed in code, thus immedi-
ately applicable for property-based testing. Further, due to the mathematical nature of Gin-
tis’ model, many properties in the form of formulas can be found in the paper specification 
[19], which could be directly expressible using property-based and unit testing.

Property-based testing has a close connection to model checking [26], where properties 
of a system are proved in a formal way. The important difference is that the checking hap-
pens directly on code and not on the abstract, formal model, thus one can say that it com-
bines model checking and unit testing, embedding it directly in the software development 
and Test-Driven Development process without an intermediary step. We hypothesise that 
adding it to the already existing testing methods in the field of ABS is of substantial value 
as it allows to cover a much wider range of test cases due to automatic data generation. 
This can be used in two ways: to verify an implementation against a formal specification 
and to test hypotheses about an implemented simulation. This puts property-based testing 
on the same level as agent- and system testing, where not technical implementation details 
of agents are checked like in unit tests but their individual complete behaviour and the sys-
tem behaviour as a whole.

8  Further research

The transitions we implemented were one-step transitions, feeding only a single event 
to the agents. Although we covered the full functionality by also testing the infected and 
recovered agent separately, the next step is to implement property tests which test the full 
transition from susceptible to recovered. This would require a stateful approach with mul-
tiple events and a different approach calculating the probabilities. We leave this for further 
research.

We have omitted tests for the infected agent as they follow conceptually the same pat-
terns as the susceptible agent. The testing of transitions of the infected agent work slightly 
different though as they follow an exponential distribution but are encoded in a similar 
fashion as demonstrated with the susceptible agent. The case for the recovered agent is a bit 
more subtle, due to its behaviour: it simply stays Recovered forever. A property-based 
test for the recovered agent would therefore run a recovered agent for a random number of 
time units and require that its output is always Recovered. Of course, this is no proof 
that the recovered agent stays recovered forever as this would take forever to test and is 
thus not computable. Here we are hitting the limits of what is possible with random black-
box testing like property-based testing. Without looking at the actual implementation it 
is not possible to prove that the recovered agent is really behaving as specified. We made 
this fact clear at the beginning of this paper, that property-based testing is not proof for 
correctness, but is only a support for raising the confidence in correctness by construct-
ing cases that show that the behaviour is not incorrect. To be really sure that the recovered 
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agent behaves as specified we need to employ white-box verification and look at the actual 
implementation. This is beyond the scope of this paper and left for further research.

The reason why we limit the virtual time in Sect. 6 to 50 time units is also related to 
the limitations of property-based testing. Theoretically, limiting the duration is actually not 
necessary because we can reason that the SIR simulation will always reach an equilibrium 
in finite steps. Unfortunately, this is not possible to express and test directly with property-
based testing and would also require a dependently typed programming language like Idris 
[9, 10]. We leave this for further research.

An interesting and valuable undertaking would be to conduct a user study with a couple 
of users (around 5) to show that our approach indeed brings benefits, for example inject-
ing faults into implementations and then see if and how the users detect these faults using 
property-based testing. As a user study is beyond the focus of this paper, we leave it for 
further research.
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