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Abstract

We consider optimal pricing policies for airlines when passengers are uncertain

at the time of ticketing of their eventual willingness to pay for air travel. Auctions

at the time of departure efficiently allocate space and a profit maximizing airline

can capitalize on these gains by overbooking flights and repurchasing excess tickets

from those passengers whose realized value is low. Nevertheless profit maximization

entails distortions away from the efficient allocation. Under regularity conditions,

we show that the optimal mechanism can be implemented by a modified double

auction. In order to encourage early booking, passengers who purchase late are

disadvantaged. In order to capture the information rents of passengers with high

expected values, ticket repurchases at the time of departure are at a subsidized

price, sometimes leading to unused capacity.
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1 Introduction

Overselling limited seating space is standard practice among airlines. According to U.S.

Department of Transportation reports, between April and June 2011, about one per cent

of passengers ticketed on a U.S. domestic flight were denied boarding on that flight. To

mitigate the potential inconvenience to passengers, airlines typically look for volunteers

willing to transfer to later flights, raising the level of compensation offered until enough

passengers willing to delay their travel have been found. As a result, only about one per

cent of passengers who are denied boarding on oversold flights are bumped involuntarily.1

Airlines typically explain their practices as being motivated by the fact that a certain

number of passengers can be expected not to show up (on time) for a flight and overbook-

ing capitalizes on slack capacity, improving efficiency. From this perspective, the extent

to which an airline should overbook is chiefly a statistical question, one which requires

airlines to balance the value of unused capacity against the costs associated with over-

booked flights, including inconvenience to passengers and possible compensation. This is

also the view expressed in the extensive body of literature in operations research (early

contributions include Beckmann (1958) and Rothstein (1971)).2

In this paper, we explore a different but complementary rationale for overbooking.

This rationale is based on price discrimination among passengers who face uncertainty

about the eventual value they will place on being seated on the flight. Unlike the

operations-based perspective on overbooking, passenger incentives—both to purchase tick-

ets and to give up their seats for compensation—are central to our theory. We focus on

a setting where ticket sales are not needed to achieve an efficient allocation, but where

they instead play a role in extracting surplus from passengers who are uncertain about

their values for flying in advance of the flight. Of course, one expects that, in practice,

the traditional rationale for overbooking also plays a role. Our modeling choice is moti-

vated by simplicity and a desire to understand which properties of pricing policies used

by airlines arise from the surplus-extraction motive.

We consider an airline which can offer homogeneous tickets at a single price, akin

to offering only a single fare class. We show that the airline may profit from selling

more tickets than the available capacity. Rather than indiscriminately canceling tickets

when a flight is overbooked, i.e., resorting to involuntary bumping of passengers, the

1Attempts to elicit volunteers are becoming more sophisticated. For instance, Delta Airlines has
recently implemented a system in which passengers indicate, at the time of check-in, their willingness
to take a later flight. They do so by specifying the minimum value of the travel voucher they would be
willing to receive to delay their travel.

2There are a few recent exceptions. For example in Gallego and Sahin (2010) the airline sells options
to fly and passengers whose values turn out to be low take the refund rather than fly. However, in contrast
to our assumptions, the refund in their model is independent of the demand.
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airline always finds it profitable to treat the purchase of a ticket as conferring the right

to a seat. The airline must then repurchase these rights. Although, in practice, airlines

withhold their authority to bump even unwilling passengers, subject to rules surrounding

compensation,3 our finding does seem consistent with the status quo in the U.S., where

involuntary bumping occurs only rarely.

Procuring oversold capacity via auction offers airlines the chance to improve the ex-

post efficiency of seating allocations. The choice of reallocation mechanism also affects the

demand for tickets. Compensation that passengers anticipate in the event of overbooking

improves the value of obtaining a ticket in advance of the flight. Therefore, the design of

mechanisms for determining the final seat allocation cannot be separated from the choice

of ticket pricing policies. We shed light on this connection.

In our theory, the passengers who purchase tickets in advance of the flight will be

those who have sufficiently favorable information about their value for flying. Among

ticket purchasers, those with the least favorable information will be at the margin. Such

passengers are, of course, more likely to benefit from compensation offered on the date of

travel. The possibility of future compensation allows the airline to raise the price of the

ticket without affecting the payoffs of the marginal ticket holders and to do so without

reducing the number of tickets sold. In so doing, airlines reduce the consumer surplus

of the infra-marginal ticket holders. This is simply because infra-marginal ticket holders

pay the higher ticket price but are less likely to benefit from the compensation for giving

up their seat. In this way, the promise of future compensation is a tool for the airline to

limit consumer surplus.

While the above observations seem consistent with practice, our theory also suggests

possible ways that airlines could tailor seat reallocation to improve profits. For example,

the airline may profit from repurchasing seating rights even when capacity constraints

do not bind. While many airlines do agree to repurchase seating rights through partial

refunds, the profitability of such policies naturally depends on the distribution of passenger

values (and there may well be other reasons airlines would find encouraging empty flights

undesirable).

Airlines can also improve profits by reallocating seating rights to passengers who do

not purchase tickets in advance, either because they anticipate a low value for flying

or because they are “out of the market”. A passenger being out of the market simply

captures the possibility that their need for travel has yet to arise. We show that airlines

profit by giving such passengers the opportunity to fly, but that doing so improves the

3The U.S. Department of Transportation sets out the rules for compensation in the case of involuntary
bumping in ‘Fly-Rights: A Consumer Guide to Air Travel’. Compensation for involuntary bumping is
mandatory, and may be as high as US$1,300.
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value of the option associated with not purchasing a ticket. It therefore reduces the

demand for tickets. This consideration encourages the airline to charge higher prices to

unticketed passengers, an observation which seems to help explain the substantially higher

ticket prices often observed in the two or three weeks immediately preceding a flight (see

McAfee and te Velde (2006) and Lazarev (2012) for these pricing patterns).

We are able to quantify an airline’s incentive to allocate rationed space between ticket

holders and non-ticket holders using a version of the familiar virtual surplus measure.

These formulas show how allocation decisions not only affect revenues directly through

departure-time transfers, but also affect revenues indirectly through their effect on passen-

gers’ willingness to pay for tickets in advance. Under appropriate regularity conditions, we

show that the optimal mechanism can be implemented using a modified double auction.

Finally, our analysis offers a way to evaluate the efficiency and welfare consequences

of overbooking and seat reallocation. This kind of analysis may be important for policy

makers who are considering imposing possible restrictions on overbooking.4 We argue that

overbooking and subsequent reallocation is potentially efficiency enhancing (although we

provide no general results about the direction of the effect).

The rest of the paper unfolds as follows. After discussing related literature in the rest

of this section, we introduce a model in Section 2. Section 3 introduces the mechanisms

at work when a single kind of ticket is sold before the date of travel as described above.

We then introduce a stylized example to illustrate the key trade-offs. In Section 4 we

consider the general model and derive the optimal transfers and allocation rules for these

pricing mechanisms. We then show how to implement the optimal mechanism through a

modified double auction. Section 5 discusses the possibility of multiple fare classes and

Section 6 concludes the paper. There are two Appendices: Appendix A provides proofs

of all results while Appendix B explains an approach to analyzing multiple fare classes

and deriving the optimal mechanism without any restrictions.

Related literature

Julian Simon first suggested auction mechanisms as a response to overbooking in the air-

line industry in the mid-1960s (see Simon (1994)). These suggestions were implemented

by the industry in the U.S. starting in 1978, with volunteers being selected on the basis

of their willingness to give up their seats, rather than arbitrarily.5 In another notable

4In the U.S., overbooking has long been accepted practice, but policy is still evolving in other jurisdic-
tions. In the Philippines, the regulator recently proposed a ban on overbooking, although policy has now
evolved towards permitting and regulating it (“Passenger bill of rights out soon”, www.philstar.com,
October 27, 2012).

5Simon (1994) notes that prior to 1978, companies such as United Airlines followed a practice of
bumping “old people and armed services personnel, on the assumption that they would be least likely to
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contribution, Vickrey (1972) proposed the use of an efficient auction to resolve the prob-

lem of allocation of seats in the event of overbooking. Vickrey proposed extending this

mechanism to include dynamic flexible pricing schemes, and speculated about many of

the issues that we address here, although without a formal model.

Our paper also contributes to more recent literature on selling to consumers who

learn about their valuations over time. An important question we are concerned with is

the following: When should the firm allocate available capacity—before or after buyers

have learned their values? Biehl (2001), Deb (2014), Dana (1998), Möller and Watanabe

(2010), and Nocke, Peitz, and Rosar (2011) provide models in which sellers choose to

discriminate between consumers based on their prior information, for instance through

offers of “advanced purchase discounts”. DeGraba (1995) and Courty (2003) study re-

lated models in which there is no role for intertemporal discrimination due to buyers

initially lacking private information. The key distinction relative to our work is that ca-

pacity constraints in these papers are either respected (e.g., DeGraba (1995) and Möller

and Watanabe (2010))—i.e. tickets sold do not exceed the available capacity—or com-

pletely absent (e.g., Biehl (2001), Courty (2003), Deb (2014), and Nocke, Peitz, and Rosar

(2011)). We instead demonstrate how a seller (airline) may find it optimal to over-allocate

capacity and then use an appropriate mechanism for ensuring that capacity constraints

are respected on the date of consumption.

There is also a recent branch of literature in revenue management and marketing that

considers buyers with evolving valuations and shows that advance selling with partial

refunds (or selling options to fly) ensures higher revenue than selling non-refundable tickets

(Gallego and Sahin, 2010; Gallego, Kou, and Phillips, 2008) and that discounts for advance

selling may increase revenues (Shugan and Xie, 2000; Xie and Shugan, 2001; Gallego and

Sahin, 2010; Gallego, Kou, and Phillips, 2008). However, while these papers include more

institutional details than ours, they assume that refunds for cancellations are fixed, which

seriously limits the choices available to airlines. In particular, in our model, the refund

as well as whether the passenger will fly or not will be determined as a comparison with

other passenger values at a re-allocation auction before the departure.

In work independent of our own, Fu, Gautier, and Watanabe (2012) also study a

setting in which an airline can over-allocate capacity, and then either repurchase it or

randomly select passengers not to fly. Unlike our work, the airline can only allocate seats

to passengers who buy tickets in advance of the flight. The overselling of tickets therefore

improves efficiency by helping the airline match the highest value passengers with the

available capacity. In contrast, the airline in our model can achieve full efficiency without

advance ticket sales.

complain.”
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Restricting the available fare options to a single fare class means the airline loses some

of its ability to screen initial passenger information. To screen passengers, the airline may

strictly profit from setting ticket prices that are unattractive for some passengers who,

although they are in the market and able to make advance ticket purchases, believe they

are likely to have low values for flying. While such passengers choose not to purchase

tickets in advance, they still have the opportunity to participate at a later date. In sum,

the airline balances trade-offs which are absent in most of the literature on dynamic

mechanism design with agents who learn about their preferences over time (e.g., Baron

and Besanko (1984), Courty and Li (2000), Battaglini (2005), Eso and Szentes (2007), and

Pavan, Segal, and Toikka (2014)). This literature does not restrict the class of mechanisms

and finds that the principal (say, the seller) finds it at least weakly optimal to contract

with agents at the first opportunity. This is simply because of the revelation principle,

since any outcome obtained by (temporarily) excluding some agents can be replicated by a

mechanism which induces participation by all agents at the first opportunity (in particular,

the principal can use a direct revelation mechanism in which the first report occurs on

the date of the agent’s arrival). Below we discuss the airline’s optimal mechanism when

it is not restricted in the mechanisms it can offer (see Appendix B for a full analysis).

Here, contracting with all passengers on the date they arrive to the market is an optimal

policy, and is often strictly optimal.6

We assume that the airline can fully commit to the ticket price and terms, which

is a common assumption in the literature on dynamic mechanism design. An important

exception is Deb and Said (2015). Unlike the rest of the literature, the seller in their model

cannot commit to the contracts it offers at later dates. Exclusion of buyers is important as

it dictates the composition of buyers available to sign later contracts, effectively providing

a form of commitment to offer less generous contracts at later dates. Thus, as in our paper,

the seller may strictly profit by not contracting with all available customers, although the

reason for this finding is quite different (i.e., lack of commitment, rather than a restriction

on the seller’s ability to screen customers).

Selling tickets in our model also provides a way for the airline to distinguish timely

arrivers from those who arrive to the market late. Our paper is thus related to the

literature studying buyers who arrive over time but who face no uncertainty about their

future valuations. Examples include Gershkov and Moldovanu (2009, 2012), Board and

Skrzypacz (2015), Said (2012), and Hinnosaar (2015) (see Bergemann and Said (2011) for

an overview, as well as McAfee and te Velde (2006) for a review focused on applications

6Contracting with an agent at the first opportunity indeed is often strictly optimal in the existing
literature on dynamic mechanism design. An exception is Nocke, Peitz, and Rosar (2011). In this model,
the seller finds it weakly optimal to delay contracting to some buyers (but, by the revelation principle,
the same profits can be obtained by inducing immediate participation by all).
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to the airline industry).7 Further examples include work by Pai and Vohra (2013) and

Mierendorff (2016), who provide models where buyers arrive over time and have private

deadlines. Mierendorff shows that the optimal mechanism may feature a handicap auction

that favors the early arriver, in order that the early arriver truthfully disclose a late

deadline. In contrast to all of these papers, we study an environment where buyers are

uncertain about their future values for the good. The treatment of a setting with both

dynamic arrivals and valuation uncertainty builds on recent work by Garrett (2014, 2015).

2 Model

A risk-neutral monopolist airline is selling m seats on a flight that departs at date 1.

There are n risk-neutral potential passengers who are ex-ante anonymous and symmetric,

where n ≥ m.

A passenger may arrive to the market at date 0 or only at date 1. Only passengers

arriving at date 0 will have the opportunity to purchase tickets at date 0, as described

below. Date-1 arrivals naturally represent passengers who only come to realize their desire

to fly close to the date of travel. The possibility of such passengers is easy to accommodate

in the analysis, but is also not crucial for our main qualitative results.

A passenger i arriving at date 0 receives partial information about his value for flying

at date 1, vi, which is captured by a signal θi. Vectors of values are denoted in bold

font, i.e., v = (vi)
n
i=1, with v−i′ = (vi)i 6=i′ for any individual passenger i′. A passenger’s

time of arrival and both the information about his value for flying and the value itself

are determined independently of the other passengers’ realizations and are his private

information.

The signals θi are drawn from a distribution with a CDF F whose support is Θ =

[0, 1] ∪ {∅}.8 The signal θi = ∅ indicates that the passenger is out of the market and

unavailable for ticket purchases at date 0. For notational convenience we will adopt

the convention that ∅ < 0. A signal θi ∈ [0, 1] indicates that the passenger enters

the market at date 0 and we assume that F admits a density f over that range and

includes the possibility of an atom at ∅. Abusing the notation slightly, F (θi|S) denotes

the distribution of θ̃i, conditional on event S.

Conditional on his signal θi, a passenger i’s (non-negative) eventual willingness to pay

ṽi is distributed according to the CDF G(vi|θi), where G (·|·) is continuously differentiable,

and where the density is denoted g(vi|θi). The support of the marginal distribution of ṽi

is [v, v]. (The support of the distribution of ṽi conditional on a particular realization θi

7See Lazarev (2012) for a recent empirical study of dynamic pricing in the airline industry.
8Throughout, random variables are denoted using tildes.
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of the signal may be a strict subset of [v, v].) Abusing notation, we also let G(v|S) and

G(v−i′ |S−i′) denote the joint distributions of passenger values conditional on the events

(θi)
n
i=1 ∈ S ⊂ Θn and (Θi)i 6=i′ ∈ S−i′ ⊂ Θn−1.

Signals are ordered in the sense of first-order stochastic dominance, so, for all vi,

G (vi|θi) is nonincreasing in θi over [0, 1] (at this point, we impose no additional restrictions

on G (·|∅)). To simplify some of the analysis, we further impose the weak restriction that

there exists k > 0 such that, for all x, G (kθi + x|θi) is nondecreasing in θi.
9

The airline may sell tickets at date 0 and reallocate capacity (including to unticketed

passengers) at date 1. We describe the mechanisms that the airline can use below. There

is no discounting. Passengers realize utility vi if they are allocated a seat and a utility zero

otherwise, less any payments made to the airline across the two periods. So a passenger

whose (possibly negative) total payment to the airline is ρ earns utility vi − ρ if he is

seated and −ρ if he is not. Given a fixed number of available seats m and a zero cost of

seating a passenger in an available seat, the airline maximizes the expected total payment

by passengers.

3 Pricing Mechanisms

We consider pricing mechanisms Ω of the following form. At date 0, the airline sets a price

p for tickets, and also commits to a family of re-allocation mechanisms to be used at date

1 depending on the number of tickets sold.10 In particular, the mechanism will be used

to determine which passengers will sell back their tickets in the event of overbooking, to

broker the possible transfer of seating rights from the date-0 purchasers to those unticketed

passengers who are willing to pay to fly, and possibly to sell additional seats to passengers

who wish to purchase tickets at date 1. Throughout, we restrict attention to mechanisms

that treat passengers symmetrically.

Feasibility and incentive constraints. The mechanism Ω must satisfy familiar

feasibility and incentive constraints. First, at most m passengers can be seated on the

plane. Second, the mechanism must be implementable in perfect Bayesian equilibrium:

whether or not a passenger purchases a ticket, his continuation play at date 1 must be

optimal given updated beliefs. Our assumption is that, at date 1, absent any information

9This allows us to rely directly on arguments in Pavan, Segal, and Toikka (2014); see the proof of
Lemma 1. In words, the condition says that there exists k such that, for any x, the probability that a
passenger’s value for flying exceeds his signal θi by more than kθi +x, is nonincreasing in his signal. (We
are grateful to Phil Reny for suggesting this interpretation.)

10We maintain the assumption that the airline can fully commit throughout the paper. See Deb and
Said (2015) for an analysis of how dynamic rationing can provide partial commitment power for a seller
who cannot otherwise commit to contracts offered at future dates.
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provided by the airline, passengers act without knowing how many other tickets have

been sold and the signals or values of the other passengers. However, it will turn out

that, compared to Bayesian incentive-compatible mechanisms, there is no loss in revenue

in using mechanisms that inform all passengers of the total number of tickets sold and

that ask passengers to play dominant strategies at date 1 (see Lemma 2 below). At date

0, a passenger’s decision whether or not to purchase a ticket must be optimal given the

anticipated continuation play.

Our treatment of participation constraints is familiar from the dynamic mechanism

design literature. Tickets are a contractual commitment for both the airline and the pas-

sengers, so we treat ticketed passengers as required to participate at date 1. However, we

will show that, by designing ticket prices and transfers appropriately, the airline need not

rely on the passengers’ commitments.11 For unticketed passengers, there is no contractual

commitment (indeed, ticket sales are the only contract formed at date 0 and ticket prices

are the only date-0 transfers) and so these passengers are not compelled to participate at

date 1.

Additional constraints on the mechanism. Our analysis focuses on a restricted

class of mechanisms. The first restriction, already implicit in the discussion above, is that

the airline is permitted to offer tickets for a single fare class with a single price p. We

assume that all passengers present at date 0 simultaneously decide whether to purchase

a ticket at price p.

Intuitively, selling tickets is a way of dividing customers among those who are present

at date 0 and have certain beliefs over their willingness to pay, and those who do not.

It is thus equivalent to a restriction on the message space available at date 0. A buyer

present at date 0 faces the decision either to communicate his desire to purchase a ticket

(by sending the only available message, “purchase”), or not to communicate at all at date

0. When the set of possible customer date-0 beliefs is sufficiently rich, the airline could

often profit by choosing a finer partition, requiring a richer message space. This could be

achieved by offering multiple fare classes, each with a different set of terms, a possibility

that we discuss below. However, our main focus is on the case where the airline offers a

single fare class, and thus has no way to distinguish between the different passengers who

request a ticket at date 0.

There are at least two reasons to focus on limited screening at date 0. First, it may

be unrealistic to expect airlines to distinguish finely between passenger beliefs (in our

model, the airline would find it profitable to offer a continuum of contracts with different

11This is because the airline has a degree of freedom to shift payments across time. By increasing the
price of the ticket and reducing any date-1 payment (equivalently, increasing any date-1 subsidy) to ticket
holders, the airline can ensure that ticket holders find date-1 participation optimal, even if they are not
contractually bound.
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terms; we derive the optimal mechanism with no restrictions on tickets in Appendix B).12

Second, while it may be realistic to consider a small number of fare classes, restricting

attention to only one simplifies the analysis. In particular, it allows us to focus on the

decision of passengers whether to contract in advance of the flight, rather than the decision

of which kind of contract to purchase.

Note that the restriction to a single fare class is by no means essential for our conclusion

that the airline may enter more contracts at date 0 than it has seats. As is true in most

of the work on dynamic mechanism design (as reviewed briefly above), were the airline

not restricted in its choice of mechanism, it would optimally write contracts with all

passengers arriving to the market at date 0. In other words, all passengers available

at date 0 would participate in the mechanism at this date. Given our restriction on

date-0 contracting, however, an airline may profitably use date-0 participation to screen

passengers. As explained above, it can do this by selling tickets to some passengers but

not others. Our interest then is in understanding how (and when) the airline optimally

uses this screening device.

We assume that all passengers requesting a ticket at price p receive one. This comes

at no cost to the airline: in particular, the airline could not gain by limiting the number

of tickets sold and applying a randomized-rationing rule.13 This is simply because the

profits of any pricing mechanism which (randomly) rations ticket sales can be attained

by an alternative mechanism in which (i) a ticket is sold to every passenger who requests

one, and (ii) ticketed passengers are randomly assigned either the allocations and pay-

ments associated with holding a ticket in the original mechanism with rationing, or the

allocations and payments associated with not holding a ticket in that mechanism. Below

we will provide conditions under which the airline strictly profits by selling tickets to all

buyers who request them, rather than limiting the number sold and rationing randomly.

Our second restriction is that having a ticket cannot decrease the probability of being

seated. In particular, if the mechanism seats an unticketed passenger with value vi at date

1, then it will also seat the same passenger if he has instead purchased a ticket at date

0 (holding fixed the actions of the other passengers, and assuming that the passenger in

question behaves optimally at date 1). In other words, obtaining a ticket at date 0 does

not hurt a buyer’s probability of being seated at date 1.14 The idea here is that tickets

12Indeed, part of our objective is to explain how an airline can profit from overbooking with simple
instruments which resemble those already used in the industry.

13The randomized-rationing rule, which gives all buyers asking for a ticket an equal probability of
receiving one, is common in the literature (see Tirole, 1988, pp 213-214). In our setting, randomized
rationing follows from the assumptions that (i) passengers are ex-ante identical and anonymous, and (ii)
passengers have no way of expressing their date-0 information other than expressing their demand for a
ticket.

14Note that this is different to assuming that ticketed passengers are seated ahead of unticketed pas-
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are required to play the role with which we are familiar, i.e., providing privileged access

to their holders. Our analysis focuses on the extent to which the airline profitably uses

tickets in this role.

The above conditions allow us to focus attention on a class of mechanisms which is easy

to analyze. Assuming for simplicity that passengers purchase tickets whenever indifferent,

we show that such mechanisms have the following property.

Lemma 1. In any pricing mechanism satisfying the above conditions, there exists a

threshold value θ∗ such that passengers purchase tickets if and only if they arrive at date

0 and have a signal no less than θ∗.

Excluding boundary cases in which all or no available passengers purchase tickets,

θ∗ must be a signal for which passengers are indifferent. Hence, we refer to this as the

“marginal signal” and to the passenger as the “marginal ticket holder”. Buyers with initial

signals above θ∗ anticipate higher values for flying in the sense of first-order stochastic

dominance. Since obtaining a ticket increases a buyer’s chances of being seated, buyers

with signals above θ∗ strictly prefer purchasing tickets at date 0.

If the marginal signal θ∗ is less than one, then (given that buyers draw signals sym-

metrically) there is a positive probability that the airline sells tickets to all n passengers.

If, in addition, m < n, then the airline practices overbooking. That is, there is a positive

probability that more tickets are sold than available seats. Corollary 1 below will give

sufficient conditions for θ∗ to be less than one in the profit-maximizing pricing mechanism.

The date 1 mechanism. Before describing how the airline sets ticket prices, consider

the mechanism it uses to allocate seats at date 1. We assume that the airline faces

no restriction on date-1 mechanisms, and, without loss of generality, we consider direct

revelation mechanisms. Payments and allocations in these mechanisms depend on which

passengers hold tickets and their reported values for flying.

Let s ∈ {0, . . . , n} be the number of passengers holding tickets purchased at date 0.

We will use subscripts j to denote passengers that hold tickets at date 1 and subscripts

k to denote those who do not. Thus, we can order passengers so that j = 1, . . . , s hold

tickets and the remaining passengers k = s+1, . . . , n do not. We let Ss denote this event,

i.e.

Ss = {θj ≥ θ∗, j = 1, . . . , s; θk < θ∗, k = s+ 1, . . . n} (1)

and we denote by Ss−i the corresponding event with passenger i excluded.

At date 1, each passenger observes his realized willingness to pay as well as whether

or not he is holding a ticket. A direct revelation mechanism is described by a collection

sengers with the same value. We instead derive this as an implication of our model (under appropriate
regularity conditions) in Proposition 2.
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of functions (q, t), such that, for each s ∈ {0, . . . , n}, qs(v) = (qsi (v))ni=1 gives the prob-

ability that each passenger i is seated while ts(v) = (tsi (v))ni=1 gives the payment that

each passenger i makes to the airline at date 1.15 Conditional on s tickets sold, we say

passengers play the “s-mechanism”. To ease notation, and without loss of optimality,

payments and probabilities of allocation are defined (unless otherwise specified) for all

values in [v, v], which includes values that may be inconsistent with equilibrium play.16

Consider a passenger i who truthfully reports his value vi, while other passengers

report v−i, and suppose the total number of tickets sold is s. Disregarding the ticket

price paid at date 0, if any, the payoff to passenger i is U s
i (v) = qsi (v)vi − tsi (v).

Let r̃ be the random variable representing the number of tickets purchased by passen-

gers other than i, which thus follows a binomial distribution with parameters (n− 1, 1−
G (θ∗)). The date 1 mechanism (q, t) is Bayesian incentive compatible if, for each ticketed

passenger j, all vj and all reports v̂j

E
[
U r̃+1
j (vj, ṽ−j)

]
≥ E

[
qr̃+1
j (v̂j, ṽ−j)vj − tr̃+1

j (v̂j, ṽ−j)
]

(2)

and, for each unticketed passenger k, all values vk and all reports v̂k,

E
[
U r̃
k (vk, ṽ−k)

]
≥ E

[
qr̃k(v̂k, ṽ−k)vk − tr̃k(v̂k, ṽ−k)

]
. (3)

The mechanism is ex-post incentive compatible if, for all s, all i, vi, v̂i and v−i,

U s
i (vi,v−i) ≥ qsi (v̂i,v−i)vi − tsi (v̂i,v−i). (4)

Thus in an ex-post incentive-compatible mechanism the airline can publicly announce the

number of ticket holders and truth-telling would remain ex-post optimal for all passengers.

The following lemma shows that any Bayesian incentive-compatible mechanism can be

replaced by an ex-post incentive-compatible mechanism that generates the same expected

profit. The proof follows from essentially the same arguments made in Gershkov, Goeree,

Kushnir, Moldovanu, and Shi (2012).

Lemma 2. There is no loss of optimality in restricting attention to ex-post incentive-

compatible mechanisms, i.e., mechanisms in which the airline announces the number of

tickets sold and truth-telling is ex-post optimal for all passengers.

15While we allow for random allocations, there is no loss of generality in considering deterministic
transfers due to the linearity of airline and passenger payoffs.

16In particular, we require the mechanism to be defined if one of the bidders claims to have a value
that is inconsistent with his decision whether to purchase a ticket, a possibility which arises because the
support of G (·|θi) may be a strict subset of [v, v] for θi ∈ [0, 1].
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Ticket pricing. The airline designs the date-1 mechanisms, taking into account not

only the revenues they generate, but also how they affect the passengers’ willingness to

pay for a ticket at date 0. To formalize the trade-offs we will need some notation.

We denote the expected utility of a ticketed passenger as a function of his date-0

signal, given the s-mechanism, by V
s
(·). For the unticketed passenger, it is V s(·). These

expected payoffs are gross of the ticket price. Thus, for the signals of ticketed passengers

θj and of unticketed passengers θk,

V
s
(θj) = E

[
U s
j (ṽ)|θ̃j = θj, θ̃−j ∈ Ss−j

]
and V s(θk) = E

[
U s
k(ṽ)|θ̃k = θk, θ̃−k ∈ Ss−k

]
.

The expected per-passenger profit earned at date 1 from ticketed and unticketed passen-

gers in the s-mechanism is given by

Π
s

= E
[
tsj(ṽ)|θ̃ ∈ Ss

]
and Πs = E

[
tsk(ṽ)|θ̃ ∈ Ss

]
.

Note that Π
s

and V
s
(θj) are defined only for s > 0, since, when the number of ticketed

passengers is s = 0, the profit from and value for a ticketed passenger are both irrelevant.

Similarly, Πs and V s(θj) are defined only for s < n, since, when s = n, there are no

unticketed passengers.

The expected payoff as of date 0 to a passenger i with signal θi who purchases a ticket

at price p is Er̃V
r̃+1

(θi) − p, where the number of other ticket holders, r̃, is determined

according to the binomial distribution given above. The expected payoff to this passenger

if not purchasing a ticket is Er̃V r̃(θi). In an optimal pricing mechanism, for any θ∗ ≤ 1,

the ticket price p must satisfy

Er̃V
r̃+1

(θ∗)− p = Er̃V r̃(θ∗). (5)

Equation (5) states that the marginal ticket holder is indifferent between purchasing a

ticket and not purchasing. When θ∗ > 0, given that signals are continuously distributed

on [0, 1], this condition is necessary for passengers to optimally follow the desired ticket

purchasing strategy. If θ∗ = 0, then a range of ticket prices are consistent with incentive

compatibility, however Eq. (5) specifies the airline’s uniquely profit-maximizing choice.17

Equation (5) allows us to express the ticket price in terms of the marginal ticket-buying

17A lower choice of p is consistent with θ∗ = 0, but the airline can then increase profits by raising p
without affecting passenger incentives.
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signal. For any threshold signal θ∗

p =
n−1∑
r=0

(
n− 1

r

)
(1− F (θ∗))r F (θ∗)n−1−r [V

r+1
(θ∗)− V r(θ∗)]. (6)

The airline’s expected profit is therefore

π = n (1− F (θ∗)) p+ Es̃[s̃Π
s̃

+ (n− s̃)Πs̃], (7)

where the number of ticket purchasers, s̃, has binomial distribution with parameters

(n, 1−F (θ∗)). After substituting Eq. (6) and rearranging, expected profit can be expressed

in terms of the date-1 mechanisms and a threshold ticket-buying signal θ∗, as Eq. (8)

below.

Lemma 3. The airline’s expected profit can be expressed as

n∑
s=0

φs(θ∗)

[
s
(
Π
s

+ V
s
(θ∗)

)
+ (n− s)

(
Πs − 1− F (θ∗)

F (θ∗)
V s(θ∗)

)]
, (8)

where the probability of selling exactly s tickets, φs(θ∗), is defined by

φs(θ∗) =

(
n

s

)
F (θ∗)n−s (1− F (θ∗))s .

From Equation (8), we can directly see several implications for our analysis. First, it

suggests that we may be able to solve for the optimal reallocation mechanism for each s

separately. We take advantage of this separability to characterize optimal pricing mecha-

nisms in what follows. Second, it emphasizes the relevant factors in revenue maximization.

Of course, it includes revenue from selling seats to passengers on the day of departure,

Πs, as well as (what will be nonpositive) revenue from buying back seats allocated to

ticketed passengers, Π
s
. Additionally, it includes the surplus that the marginal ticketed

passenger expects to receive, V
s
, and the value of the surplus of the marginal unticketed

passenger, V s, which affects the revenue negatively, since it decreases the motivation to

purchase tickets in advance. The surplus term V s is weighted by [1 − F (θ∗)]/F (θ∗) re-

flecting the relative probability of a passenger being ticketed rather than unticketed; i.e.,

the importance of V s in determining profits is increasing in the relative probability that

a ticket is sold.18 Notice that the surplus terms V s and V
s

are determined for marginal

18This is easiest to understand when n = 1, in which case the expression in Equation (8) becomes

(1− F (θ∗))
(

Π
1

+ V
1

(θ∗)
)

+ F (θ∗)

(
Π0 − 1− F (θ∗)

F (θ∗)
V 0 (θ∗)

)
= (1− F (θ∗))

(
Π

1
+ p
)

+ F (θ∗) Π0.
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consumers, because they are the ones determining the ticket price, whereas revenue terms

are averages over the infra-marginal consumers.

Illustrative Example

In this section, we will illustrate the main trade-offs faced by the airline in determining

how to price tickets, how to allocate seats, and whether to overbook. We consider two

passengers and one seat to be allocated. Three kinds of date-1 mechanism are then

possible:

1. The “repurchase mechanism”, where both passengers purchased tickets at date 0.

2. The “spot mechanism”, where neither passenger purchased a ticket at date 0.

3. The “reallocation mechanism”, where precisely one passenger purchased a ticket at

date 0.

Departing momentarily from the distributional assumptions of the model set-up, pas-

sengers in our example either arrive at date 0 with a signal (or “type”) in
{
θ, θ
}

, with

θ < θ, or they arrive at date 1, with type ∅. These types are drawn independently with

equal probability, i.e., the probability of each type is 1/3. In the second period, each

passenger i realizes willingness to pay vi, which is either v or v where 0 < v < v. For

illustrative purposes, the signal θ represents a passenger who is certain he will have a high

value for flying (i.e., with probability 1, his willingness to pay is v). On the other hand,

θ and ∅ represent passengers who are uncertain about their eventual willingness to pay:

they can have values v or v with equal probability, i.e., g(v|θ) = g(v|∅) = 1/2.

We suppose that the airline sells tickets to passengers present at date 0 (i.e., to passen-

gers with signals θ and θ). As we note formally at the end of this section, this is without

loss of optimality for the airline, and in fact permits the airline to achieve the optimal

profit from any mechanism, not only mechanisms in our restricted class. We comment

below on instances where the airline strictly profits from selling tickets, which will only

be the case for certain values of v and v.

It turns out that we can restrict attention to mechanisms whose final allocation has

“no distortion at the top”. That is, if there is at least one passenger with high value

v, then, regardless of how many tickets were purchased in the first period, the seat will

not be left empty and at least one of the high-value passengers will be seated (without

loss of generality, we assume that a ticketed passenger is seated ahead of an unticketed

passenger). That such a policy is optimal is unsurprising, since choosing not to seat a
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passenger with value v does not reduce passenger rents. Thus, the problem reduces to

deciding how to treat two passengers when both have low realized values (v), depending

on which of the two (if any) purchased tickets in the first period.

The repurchase mechanism

If two tickets are sold at date 0, the flight is overbooked. As noted above, the question

to be answered is whether to allocate a seat when both passengers have low values.

Note, from Eq. (8), that the airline’s repurchase mechanism is chosen to maximize

Π
2

+ V
2
(θ∗). (9)

Thus, the airline is maximizing a hybrid welfare function which is the sum of date-1 profits

Π
2

from the average ticket holder, whose signal is either θ or θ, plus the anticipated payoff

of the marginal ticket holder V
2
(θ∗) (here, θ∗ = θ). Intuitively, repurchasing tickets on

an overbooked flight requires a compensation to ticket holders and potentially raises the

value of holding a ticket, which in turn increases the price the airline can charge for tickets

in the first period. On the other hand, such a compensation directly reduces the airline’s

profits. The fact that these two terms are conditioned on different events creates a wedge

which implies that these costs and benefits are not offset one-for-one.

To illustrate, consider first the effect on the expected payoff to a given passenger with

signal θ, i.e., V
2
(θ), of a one dollar cash transfer to that passenger in the event that both

passengers have low values. Conditional on having signal θ, a passenger expects to have

value v with probability 1/2 and expects the other ticket holder to have value v with

probability 1/2 · 1/2 = 1/4. The transfer thus increases V
2
(θ) by 1/8.

On the other hand, the airline understands that each ticket holder has value v inde-

pendently, with probability 1/4. Hence, the transfer reduces Π
2

by 1/16. The net effect

on the airline’s objective is strictly positive. A one dollar transfer increases Π
2

+ V
2
(θ∗)

by 1/16.

It follows that the airline has an incentive to increase the size of the subsidy as much

as possible. The size of the subsidy is constrained by incentive compatibility: a buyer

with value v must not prefer to claim a value v.

How seats are allocated affects the incentive constraint. For example, consider an

efficient mechanism where exactly one of the passengers is seated if both report values

v, with each passenger being seated with equal probability. In this case, the transfer τ

to a given passenger cannot be larger than v/2. To see why, note that, if the passenger

in question has value v but reports value v, he would fly with probability 1/2, receive

subsidy τ , and obtain payoff τ + v/2. Incentive compatibility requires that this payoff
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be no larger than the payoff from reporting v truthfully, flying with probability 1 and

receiving no subsidy:

τ + v/2 ≤ v. (10)

As an alternative, the airline could use an inefficient mechanism which seats neither

passenger when both ticket holders report low values. This enables the subsidy to be

raised to v without violating the incentive compatibility of a high-value passenger. We

can calculate the net effect on the airline’s objective as follows. Increasing the subsidy

from v/2 to v decreases Π
2

by 1/16 · v/2 but increases V
2
(θ∗) by 1/8 · [v/2− v/2].

The latter reflects that in the eyes of the marginal ticket holder, the subsidy will

be triggered with higher probability (i.e., with probability 1/8) than in the eyes of the

average ticket holder (with probability 1/16), and in this event, his subsidy increases by

v/2 but his utility from flying decreases by v/2 (in the efficient mechanism he would have

had an equal chance of retaining his seat). Thus, the distorted mechanism with a high

subsidy is preferred by the airline whenever(
1

8
− 1

16

)
v

2
− 1

8

v

2
> 0 (11)

which is equivalent to v > 2v. If this condition holds, then it is profitable to leave the

seat empty and increase the transfer to the low-value passenger.

The Spot Mechanism

Now consider the case in which no tickets were sold in the first period. In this case the

airline may sell the seat in a spot auction to passengers arriving in the second period.

According to Eq. (8), it will use a mechanism which maximizes

Π0 − 1− F (θ∗)

F (θ∗)
V 0(θ) = Π0 − 2V 0(θ). (12)

The airline trades off profit in the spot mechanism from contracting with new passen-

gers who arrive with probability 1/3 against the implications for the rent that must be left

to passengers who arrive at date 0 through adjustments to the ticket price. In particular,

V 0(θ) represents the outside option from not purchasing a ticket available to the marginal

ticket holder, who has signal θ. Increases in this outside option require corresponding

reductions in the ticket price.

Again, the question we need to resolve is whether to seat one of the passengers in

the event that both have low values. In particular, consider seating each passenger with

equal probability in this event, rather than seating nobody. This has three implications
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for Eq. (12):

1. It allows the airline to charge a passenger v/2 when both passengers have low values,

since each passenger is seated with probability 1/2. This increases Π0. Conditional

on no tickets sold, the event occurs with probability 1/4.

2. It reduces the price that can be charged to a high-value passenger when the other

passenger has a low value by (v − v) /2 (the passenger is now charged v−(v − v) /2).

This reduces Π0. Again, this event occurs with probability 1/4.

3. It increases by (v − v) /2 the rent a passenger can expect in the spot auction if his

value is high and the other passenger’s is low. A passenger with signal θ who chooses

not to purchase a ticket believes that this occurs with probability 1/4 in the spot

auction. The effect is to increase V 0(θ).

The overall effect of seating a low-value passenger (at random) on Π0 is then v/4−v/8,

while the effect on V 0(θ) is v/8− v/8. The overall effect on Eq. (12) is v/2− (3/8) v, so

the airline should seat a low-value passenger if and only if v > (3/4) v.

It is worth comparing the airline’s objective here to two alternatives. First, the mecha-

nism that maximizes Π0 is simply the optimal spot auction, conditional on both passengers

receiving signal ∅. As explained above, simply maximizing Π0 would ignore the effects of

seating a low-value passenger on the ticket price (in particular, the ticket price which is

acceptable to the marginal ticket-holder, who has signal θ). Second, one might compare

the airline’s objective to that in the case where tickets are not offered at date 0, so that

passengers only participate at date 1. A further difference here is that the distribution of

passenger values would be different (the probability of a high value would be 2/3 rather

than 1/2).

The Reallocation Mechanism

Finally, consider the case in which a single ticket is purchased in the first period. According

to Eq. (8), the reallocation mechanism should maximize

Π
1

+ Π1 + V
1
(θ)− 1− F (θ∗)

F (θ∗)
V 1(θ). (13)

As argued above, a high-value passenger always flies ahead of a low-value passenger.

Hence, a low-value ticketed passenger, for instance, is optimally induced to give up his

seat in preference to a high-value unticketed one. The question is then which passenger

(i.e., the ticketed or the unticketed passenger), if any, to seat if both have low values? It

turns out Eq. (13) is maximized in our example by either (i) letting the ticketed passenger
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keep his seat in preference to a low-value unticketed passenger, or (ii) seating no low-value

passenger. Flying empty is strictly better if and only if v > 2v, which is the same condition

as for the repurchase mechanism.

The optimal policy described here reflects the same trade-offs as for the repurchase

and spot mechanisms above. For instance, note that reallocating the seat to an unticketed

low-value passenger would increase V 1(θ), which would increase the outside option to the

marginal ticket holder, type θ, of not purchasing a ticket. This would require a reduction

in the ticket price.

First Period Ticket Sales

One can now check when the airline strictly profits from selling tickets at date 0 (and then

overbooking the flight whenever both passengers arrive at date 0), rather than contracting

with passengers only at date 1. It turns out that the airline profits in case v < 2v, since

this implies that low-value passengers are seated in the optimal mechanism with positive

probability. One way to understand this is that, for these parameters, tickets allow the

airline to distinguish between low-value passengers arriving at date 0 and those who arrive

at date 1 (recall that a ticketed passenger will always fly ahead of an unticketed low-value

passenger).

More generally, we can understand the role of ticket sales in the following way. Con-

sider first the case in which the optimal spot auction is efficient, i.e., always sells the seat

to the passenger with the highest value (breaking ties at random). In such a mechanism,

an early-arriving passenger with signal θ earns rents in expectation. This is because there

is a positive probability that his realized value will be v and the other passenger will have

value v. In that case the auction price will be v and he will earn rents equal to v − v.
Consider now a two-stage mechanism in which

1. Tickets are sold at a price equal to θ’s expected rents from the spot auction.

2. Unticketed passengers are excluded.

3. The allocation and transfer rules are otherwise the same as the spot auction. In par-

ticular the value of an unticketed passenger is still used to determine the allocation

and price paid by a ticketed passenger.

In this mechanism, buying a ticket is equivalent to buying admission to the spot

auction. The ticket price extracts the expected rents of θ, and reduces the rents of θ by

an equal amount, but leaves the welfare from trade with ticketed passengers unchanged.

These effects raise profits relative to the spot auction. Any losses come from exclusion of
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unticketed passengers. Thus, if the probability of ∅ is sufficiently low, then this two-stage

mechanism improves upon the spot auction.

Exclusion of unticketed passengers ensures that an early arriver would obtain zero

utility if he were to refuse to buy a ticket. This increases the additional surplus of the

marginal passenger (i.e., the passenger with signal θ) from holding a ticket and this surplus

will be extracted through the ticket price. Total exclusion of unticketed passengers is not

necessary to achieve this. It is enough that the airline refuses to seat a low-value passenger

unless he is holding a ticket. This guarantees that high-value unticketed passengers earn

no information rents and that again, the expected utility of an unticketed passenger is

zero.19

Unrestricted optimum

In the discussion above we focused attention on mechanisms which sell tickets to all

passengers present at date 0, i.e., passengers with signals θ and θ. Under the assumptions

of the illustrative example, this turns out to be without loss of optimality. Intuitively, if

the airline does not sell tickets to the passengers with low signals, then it sells tickets only

to passengers who already know their valuation, and in this case it can obtain the same

profits through the spot mechanism on date 1.

Lemma 4. The mechanism described above achieves the highest profit attainable by any

mechanism.

4 General Analysis

General properties of the optimal mechanism

Before describing how we approach the problem of characterizing the optimal allocation

rule, we propose a system of date-1 transfers which maximizes profit for the airline given

any implementable allocation rule q. By the envelope theorem, the date-1 mechanism

defined above must satisfy, for any s, any passenger i, and any v,

U s
i (v) = U s

i (v,v−i)−
∫ v

vi

qsi (y,v−i)dy = U s
i (v,v−i) +

∫ vi

v

qsi (y,v−i)dy. (14)

Note that the share of the surplus a passenger i expects to obtain at date 1, for each

s and v−i, is determined up to a constant by his value vi and the allocation rule q. For

19Alternatively, the airline may choose to seat unticketed low-value passengers, but only when there
are no passengers already holding tickets. As explained above, favoring ticketed passengers in this way
again reduces the rents available from not purchasing a ticket.
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ticketed passengers, adjusting this constant does not affect expected payoffs at date 0

provided the ticket price is correspondingly adjusted according to Eq. (5). It is therefore

without loss of optimality to focus on date-1 mechanisms such that, for all s, all ticketed

passengers j, and all v−j, U
s
j (v,v−j) = v. On the other hand, adjusting period-1 payoffs

for unticketed passengers by a constant does affect ex-ante payoffs. In particular, if the

payoff earned by the passenger with the minimum value U s
k(v,v−k) is greater than zero,

the airline can profit by increasing transfers by unticketed passengers by choosing an

appropriate constant. This not only reduces the rent left to unticketed passengers but

also allows the airline to increase ticket prices according to Eq. (5). We can thus focus on

mechanisms satisfying U s
k(v,v−k) = 0 for all s, all unticketed passengers k and all v−k.

The corresponding transfers are given by

tsj(vj,v−j) = vjq
s
j (vj,v−j) +

∫ v

vj

qsj (y,v−j)dy − v, (15)

tsk(vk,v−k) = vkq
s
k(vk,v−k)−

∫ vk

v

qsk(y,v−k)dy.

The airline’s profit now depends only on the allocation rule. Note also from Eq. (14)

that passenger payoffs are not affected by adjusting the allocation to ensure passengers

with values v fly wherever possible (i.e., setting qsi (v,v−i) = 1 wherever possible and

adjusting transfers accordingly). Moreover, since a buyer i’s allocation remains monotonic

in his valuation,20 the allocation remains implementable. In other words, it is possible

and costless to provide the passenger with the option to fly by reporting v whenever the

number of passengers reporting v is less than the available seats m. This observation,

together with Eq. (15), implies the following result.

Proposition 1. It is optimal to structure the pricing mechanism so that

1. A ticket is an option to fly and passengers are never bumped involuntarily.21

2. Ticket holders who are seated make (and receive) no payments.

3. Any ticket holder who does not fly receives a payment which at least matches his

value in compensation.

Part 1 of the proposition states that, at least in the above framework, airlines cannot

profit from using involuntary bumping. In particular, there is no loss to airlines in allowing

20This monotonicity is both necessary and sufficient for the ex-post implementability of the allocations
by the date-1 mechanism.

21Note that passengers will not be bumped involuntarily, even in case more than m passengers have
the highest value v. In this case, all of these buyers will be indifferent between keeping their seat and
instead taking the compensation v on offer.
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those with the highest value of flying to do so. Indeed, the arrangement can be optimally

structured so that ticketed passengers do not pay anything to keep their seats (Part 2

of the proposition) but are compensated for giving up a seat. Under this arrangement,

enticing passengers with high values to give up their seats (as required, if the flight is

overbooked and the passengers with tickets have the high values), while still seating those

with the very high valuations, requires a high compensation to the unseated ticketed

passengers. While the compensation provided by the airline in such cases may be large,

the surplus provided to ticketed passengers can be recouped through the date-0 ticket

price.

Note that the optimality of a mechanism without “involuntary bumping” follows from

the use of sufficiently sophisticated auction mechanisms for resolving which passengers will

fly. For instance, if the flight is overbooked by passengers with high values for being seated,

the level of refund offered responds to their reported values and is correspondingly high.

A possible disadvantage of using such mechanisms in practice is that both the available

refund and the seat price for unticketed passengers is completely determined only after

passengers report their values on date 1. Airlines may favor simpler mechanisms where

prices are specified before passengers have learned their final values for flying. If these

mechanisms cannot respond to excess demand (e.g., when there are more ticket-holders

than there are seats that realize high values for flying), then involuntary bumping would

be necessary to reconcile the demand with the number of seats.22

Optimal allocations

We now derive the optimal allocation. From Eq. (8), for each s, the airline’s profits are

proportional to

s
(
Π
s

+ V
s
(θ∗)

)
+ (n− s)

(
Πs − 1− F (θ∗)

F (θ∗)
V s(θ∗)

)
. (16)

From Eq. (14), the revenues earned from a ticketed passenger j and non-ticketed

passenger k through the s-mechanism are

Π
s

=

∫
v

tsj(v)dG(v|Ss) =

∫
v

[
vjq

s
j (v)− U s

j (v)
]
dG(v|Ss)

22We believe the analysis below nonetheless sheds some light on optimal pricing under less flexible
or responsive mechanisms. For instance, note that in the limit, as the number of available seats and
passengers becomes large, the variation in the compensation made available to ticket holders diminishes;
i.e., compensation must also be approximately predictable in the class of mechanisms that we consider
in this paper.
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and

Πs =

∫
v

[vkq
s
k(v)− U s

k(v)] dG(v|Ss)

and the welfare of the passenger with the marginal signal is

V
s
(θ∗) =

∫
vj

∫
v−j

U s
j (v)dG(v−j|Ss−j)dG(vj|θ∗) (17)

for a ticketed passenger j and

V s(θ∗) =

∫
vk

∫
v−k

U s
k(v)dG(v−k|Ss−k)dG(vk|θ∗) (18)

for a passenger k without a ticket.

Focusing now on the expressions for ticketed passengers, using Eq. (14) and integration

by parts yields

Π
s

= −
∫
v−j

U s
j (v,v−j)dG(v−j|Ss−j)

+

∫
v

qsj (v)vjdG(v|Ss) +

∫
v−j

[∫
vj

G(vj|θ̃j ≥ θ∗)qsj (v)dvj

]
dG(v−j|Ss−j)

and

V
s
(θ∗) =

∫
v−j

U s
j (v,v−j)dG(v−j|Ss−j)−

∫
v−j

[∫
vj

G(vj|θ∗)qsj (v)dvj

]
dG(v−j|Ss−j).

Putting these together and collecting terms we obtain an expression for the virtual surplus

of ticketed passengers

s
(
Π
s

+ V
s
(θ∗)

)
= Eṽ

[
s∑
j=1

qsj (ṽ)VS(ṽj)

∣∣∣∣∣Ss
]
, (19)

where

VS(vj) = vj −
G(vj|θ∗)−G(vj|θ̃j ≥ θ∗)

g(vj|θ̃j ≥ θ∗)
. (20)

As anticipated above, all terms involving U s
j (v,v−j) are canceled: these constants are free

variables in the airline’s maximization.23

Turning now to the terms in Eq. (16) involving unticketed passengers, and using the

23As described above, this is intuitive because any constant added to the ticket holder’s ex-post utility
at date 1 can be recovered via an equal increase in the ticket price at date 0.
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fact that unticketed passengers with the lowest values earn zero surplus, we have

(n− s)
(

Πs − 1− F (θ∗)

F (θ∗)
V s(θ∗)

)
= Eṽ

[
n∑

k=s+1

qsk(ṽ)VS(ṽk)

∣∣∣∣∣Ss
]
, (21)

where

VS(vk) = vk −
1−G(vk|θ̃k < θ∗) + 1−F (θ∗)

F (θ∗)
(1−G(vk|θ∗))

g(vk|θ̃k < θ∗)
. (22)

To summarize the above, we have derived a convenient expression for the airline’s profit in

an optimal mechanism implementing an allocation rule q, which satisfies the requirements

set out in Section 3.

Lemma 5. Let s be a given number of tickets sold and consider the date-1 mechanism

implementing the allocation qs(·). Suppose that the unticketed passenger with the lowest

value earns zero surplus in this mechanism. Then the expression in Eq. (16) is equal to

E

[
s∑
j=1

qsj (ṽ)VS(ṽj) +
n∑

k=s+1

qsk(ṽ)VS(ṽk)

∣∣∣∣∣Ss
]
. (23)

The transformed expected revenue of Eq. (23) is a familiar expected virtual surplus. As

usual, the first pass at a solution is to consider the allocation rule which, at every realized

valuation profile, allocates seats to the m passengers with the highest (non-negative)

virtual surpluses. One then verifies that the proposed allocation indeed gives precedence

to ticketed passengers over unticketed passengers in the sense described in Section 3, and

that the ticket price defined by Eq. (5) and the transfers defined by Eq. (15) implement

the allocation. The following conditions on the virtual surpluses are sufficient to guarantee

this.

Proposition 2. Fix θ∗ ∈ [0, 1]. Suppose that (i) max
{

VS(vj), 0
}

and max {VS(vk), 0}
are non-decreasing functions, and (ii) VS(vi) ≥ VS(vi) for all vi ∈ Supp

[
G
(
·|θ̃ ≥ θ∗

)]
∩

Supp
[
G
(
·|θ̃ < θ∗

)]
, a nonempty set.24 The allocation which maximizes virtual surplus

(conditional on the marginal signal θ∗) is implementable and maximizes the airline’s profit.

Condition (i) ensures that an extended allocation can be found such that each passen-

ger’s probability of being seated is non-decreasing in his own report (whether or not that

report is made in equilibrium). It thus guarantees the existence of an ex-post incentive-

compatible period-1 mechanism which implements the allocation. Condition (ii) ensures

24The requirement that Supp
[
G
(
·|θ̃ ≥ θ∗

)]
∩ Supp

[
G
(
·|θ̃ < θ∗

)]
be nonempty is a minor technical

requirement, which is satisfied in most of the cases of interest. For instance, it is enough to suppose that
type ∅ has positive probability and that G (·|∅) has full support on [v, v].

24



that an allocation q can be found that gives precedence to ticketed passengers over untick-

eted passengers in the sense described in Section 3. Given that the ticket price satisfies

Eq. (5), this guarantees that passengers will purchase tickets if and only if their signal

exceeds θ∗.

Note that, given the conditions of Proposition 2, the optimal pricing mechanism has

the property that, if there are two passengers with the same value and the one without a

ticket is seated, then the passenger with a ticket must be seated as well. This preferential

treatment of ticketed passengers relative to unticketed passengers is different from our

assumption above, where we assumed that having a ticket cannot lower the chances of

being seated for any individual passenger (we make the same point in footnote 14 above).

Understanding the trade-offs

Ticketed Passengers

We now consider the allocations described in Proposition 2 and how these reflect the

airline’s incentives. The virtual surplus of ticket holders is given by

VS(vj) = vj −
G(vj|θ∗)−G(vj|θ̃j ≥ θ∗)

g(vj|θ̃j ≥ θ∗)
. (24)

To interpret this, first consider that the decision not to seat a ticketed passenger j, i.e., by

setting qsj (v) = 0 for some s and realized values v, is an advance commitment to a ticket

purchaser j that his ticket will be repurchased in the event that s passengers hold tickets

and the profile of all passengers’ realized valuations is v. Such a commitment impacts

the airline’s profits via two effects. First, it raises the payment to a ticketed passenger

announcing value vj and thus, by incentive compatibility, requires the airline to raise by

an equal amount the utility of all types lower than vj. This directly reduces the airline’s

profits within the date 1 mechanism by G(vj|θ̃j ≥ θ∗) and correspondingly lowers the

airline’s willingness to repurchase the ticket from passenger j. Note that G(vj|θ̃j ≥ θ∗)

measures the probability that j’s value will fall below vj, conditional on j’s purchase of a

ticket at date 0.

The second effect operates indirectly via revenues from date 0 ticket sales. Indeed,

some of the additional utility provided by the airline through date 1 repurchases can be

recouped via increased ticket prices. At the time of ticket purchase, the marginal type θ∗

assesses a probability G(vj|θ∗) that his value will fall below vj and that he will benefit from

the increased utility resulting from the airline’s commitment to repurchase a ticket from

type vj. That leads to an increased willingness to pay for a ticket that can be extracted

dollar-for-dollar by increasing the price of a ticket. This indirect effect raises the airline’s
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profits by G(vj|θ∗) where, crucially, this measures the probability that j’s value will fall

below vj, conditional on i being the marginal ticket purchaser, θ∗.

Putting all of this together, the airline chooses to seat a passenger based on the extent

to which the surplus created vj exceeds a measure that accounts for the net effect on the

airline’s profits. That measure is proportional to the difference G(vj|θ∗) − G(vj|θ̃j ≥ θ∗)

in the repurchase probability assessed by the marginal and average ticket purchasers (θ∗

and θj ≥ θ∗ respectively).

In light of this wedge between marginal and average ticket holders, overbooking and

repurchasing can be seen as an instrument to refine the screening of passengers by will-

ingness to pay at date 0. For illustrative purposes, consider an airline that practices no

overbooking and seats all ticketed passengers. One way the airline could seek to increase

profits is to raise the ticket price, thus reducing the surplus earned by infra-marginal

ticket holders. However, doing so affects the decision of the marginal ticket holders to

purchase tickets, so this improvement in screening comes at the cost of reduced ticket

sales. Overbooking enables the airline to capture consumer surplus without sacrificing

ticket sales. The airline raises ticket prices and effectively strikes a deal with the marginal

type θ∗ that the price increase will be returned in expectation through repurchases in the

event that his valuation turns out to be low. Since this is calculated to be a one-for-one

intertemporal transfer for the marginal type θ∗, it is less favorable for passengers with

signals above θ∗ because they assess a strictly lower probability of repurchase. Thus, the

higher price coupled with potential repurchase maintains the indifference of the marginal

type and strictly lowers the consumer surplus of infra-marginal types.

Unticketed Passengers

Consider now the virtual surplus of an unticketed passenger.

VS(vk) = vk −
1−G(vk|θ̃k < θ∗) + 1−F (θ∗)

F (θ∗)
(1−G(vk|θ∗))

g(vk|θ̃k < θ∗)
(25)

Just as with ticketed passengers, the incentive to seat an unticketed passenger mixes the

direct effect on revenues in the s-mechanism with an indirect effect on revenues from

ticket sales. Indeed, the virtual surplus can be seen as the sum of two terms, the first of

which,

vk −
1−G(vk|θ̃k < θ∗)

g(vk|θ̃k < θ∗)
(26)

is the familiar expression for the marginal revenue from selling to buyer k in a standard

monopoly problem. It has the one noteworthy difference: the expressions are conditioned
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on passenger k having a date 0 signal below the threshold θ∗. The remaining term in

VS is a correction which accounts for the effect on first period ticket sales from a date 1

decision to seat an unticketed passenger. A mechanism which allocates space to unticketed

passengers reduces the value of holding a ticket, and consequently reduces the revenue

from ticket sales. This term is conditional on θ∗ because it is the marginal ticket holder’s

willingness to pay that determines the ticket price.

Optimal ticket price

The above analysis takes the marginal signal θ∗ as given, then finds the optimal allocation

conditional on this cut-off. The final step in deriving the profit-maximizing pricing mech-

anism is to deduce the optimal choice of θ∗. We begin by providing a sufficient condition

to guarantee the profitability of setting θ∗ < 1 and hence selling tickets with positive

probability.

Corollary 1. Suppose that there exists θ∗ ∈ [0, 1) such that (i) max
{

VS(vj), 0
}

and

max {VS(vk), 0} are non-decreasing functions, and (ii) VS(vi) ≥ VS(vi) for all vi ∈
Supp

[
G
(
·|θ̃ ≥ θ∗

)]
∩Supp

[
G
(
·|θ̃ < θ∗

)]
, a nonempty set, with a strict inequality for an

interval of positive length.25 The airline strictly prefers a pricing mechanism with ticket

sales at date 0 and a marginal ticket holder θ∗ over a date-1 spot auction (where passen-

gers only contract with the airline at date 1). If n > m, then given marginal ticket holder

θ∗ such that the above conditions are satisfied, the airline strictly profits by overbooking

the flight with positive probability.

The optimality of selling tickets at date 1 under these conditions follows the same logic

as in the stylized example of Section 3. The conditions guarantee that there exists some

threshold θ∗ such that the optimal mechanism conditional on θ∗ (as determined above)

implements a different allocation rule for ticketed versus unticketed passengers. For such

θ∗, the airline finds tickets a useful screening device to distinguish between passengers

arriving at date 0 with strong beliefs that their values for flying will be high and other

passengers (those who believe their values are more likely to be low, or who arrive at

date 1). Since signals are drawn independently, there is a positive probability that all n

passengers observe signals above θ∗ at date 1. Hence, if the number of seats m is less than

n, the flight is overbooked with positive probability. Note here that, under the conditions

in Corollary 1, the airline does strictly better by overbooking the flight (selling tickets to

25The conditions ensure that there are some values for which, under the optimal allocation given
θ∗, holding a ticket matters in deciding whether a passenger is seated. While we find these conditions
straightforward to give in light of Proposition 2; we expect one can also find weaker conditions to guarantee
the profitability of offering tickets in advance of the flight.
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any passengers with signals above some θ∗) than randomly rationing tickets to ensure the

flight is not overbooked (by allocating any passenger with signal above θ∗ a ticket with

an appropriate probability of less than one).

We can contrast Corollary 1 with a particularly simple case in which ticket sales and

overbooking do not improve profits. This is where all passengers in the market at date 0

are perfectly informed of their eventual values for flying at date 1.

Example 1. When signals are fully informative (i.e., passengers arriving at date 0 know

their values with certainty at that date), a spot auction at date 1 is an optimal mechanism.

The reason for this result is related to the discussion of our stylized example in Sec-

tion 3. As we explained in this example, the reason an airline finds advanced ticket sales

useful in our model is that it allows the airline to capture some of the rents that passengers

expect to earn due to the possibility that their values for flying may turn out to be higher

than expected (in the stylized example, when their values equal v). When passengers

know their values in advance, this possibility does not arise.

Finally, calculating the precise value of θ∗ is complicated because changing θ∗ affects

not only the beliefs of the marginal ticket holder (whose signal is θ∗) about his eventual

value for flying, but also the distribution of values among ticketed and unticketed pas-

sengers (conditional on each number of tickets sold). This not only affects profits in the

date-1 mechanism, but also the likelihood that the marginal ticket holder is finally seated.

Nonetheless, the determinants of the optimal choice of θ∗ are easier to understand in the

context of a simple example like the following.

Example 2. Suppose that, for each passenger i, θ̃i and ε̃i are independently and uniformly

distributed on [0, 1]. Suppose that passengers’ values are determined by vi = θi + aεi.

1. Fix any m,n ≥ 1. There exists a such that, for all a ≥ a, θ∗ = 0; i.e., all passengers

purchase tickets.

2. Fix m ≥ n (so there are no capacity constraints), and assume a ∈ (0, 1/4). Then

θ∗ = 1/2− a/4.

3. Fix any a, γ ∈ (0, 1/2) and let m = bγnc. There exists n such that, for all n ≥ n,

θ∗ ∈ [1− γ − a, 1− γ + a].

This example features a setting where all n passengers arrive at date 0 with probability

1. The date-0 signal θi of passenger i adjusts his final value for a seat one-for-one, while

εi represents a “shock” to the final value whose size is scaled by the parameter a. Hence,

when a is large, passengers are highly uncertain at date 0 as to their values for seats.
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Case 1 applies when the parameter a is sufficiently large, i.e., when the passengers

are relatively uncertain at date 0 of their future value for flying. In this case, an optimal

policy involves selling tickets to all passengers and overbooking occurs with probability

1 whenever n > m. The reason this is optimal is simply the rent extraction motive for

ticket sales described above. In particular, as a becomes large, the rents that a passenger

i can earn on account of a high realization of the shock εi become large. The seller can

capture much of the expected rent by contracting with the passenger at date 0, but not

if contracting is delayed until date 1.

As noted above, a second consideration in determining the threshold for ticket pur-

chases, θ∗, is the aim of discriminating between passengers with favorable and unfavorable

beliefs about their eventual values for flying. This can be achieved by selling tickets to

those passengers with favorable signals but not to those with unfavorable signals. For in-

stance, when m ≥ n, so that capacity is unconstrained, as in Case 2, we can calculate θ∗

exactly. Passengers with signals above θ∗ receive tickets and these passengers are favored

in the optimal allocation: if an unticketed passenger with value vi is seated, then so is a

ticketed passenger with the same value.

When capacity constraints bind, calculating the optimal threshold θ∗ is more com-

plicated for the reasons explained above. However, the two principles described above

continue to apply. Note that Case 1 applies whether or not capacity constraints bind.

Case 3 addresses a scenario where the number of passengers is large and capacity con-

straints are highly likely to bind. In this case, we can observe the following regarding the

optimal pricing mechanism conditional on θ∗. If θ∗ falls outside the specified bounds, then

whether a passenger holds a ticket is highly unlikely to affect the optimal allocation (for

large enough n). For example, if θ∗ < 1− γ − a, passengers with signals no greater than

θ∗ would be highly unlikely to be seated in the optimal pricing mechanism (conditional

on θ∗), simply because their realized value will be relatively low. Hence, ticket sales do a

poor job of screening customers based on their initial beliefs, suggesting θ∗ < 1 − γ − a
cannot be optimal. This appears to reflect a general principle: The airline would like to

choose θ∗ so that whether a passenger holds a ticket is likely to matter for the eventual

allocation of seats.

Implementation via a double auction

Assuming Proposition 2 applies, it is straightforward to specify a “handicap” double

auction which implements the optimal pricing mechanism. The transfers that are made

in the auction we propose are identical to those given by Eq. (15).

Some new notation will be convenient for formalizing the rules of the auction. For any
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ticket-holder value vj, define the matching value vk(vj) for an unticketed passenger to be

the highest value satisfying

VS(vj) = VS(vk(vj)). (27)

Note that vk(vj) is increasing in vj. Conversely, define vj(vk) as the matching value of the

ticket holder. The rules of the double auction are as follows. Each passenger submits a

bid and the airline announces the reserve price R defined to be the highest value satisfying

VS(R) = 0. Passengers are ranked in descending order of bids and the q highest bidding

passengers are allocated a seat provided their bids exceed the reserve R.

Payments are determined as follows. Let bq and bq+1 denote the q and q + 1st highest

bids. In case the number of bids exceeding R is smaller than either q or q + 1, then

bq and/or bq+1 are set equal to R. Any ticketed passenger who is not seated receives

compensation equal to bq. Any unticketed passenger who wins a seat is charged vk(b
q+1).

The transfers are zero for all ticketed passengers who fly and unticketed passengers who

do not.

Proposition 3. Suppose that the conditions of Proposition 2 hold. Then there exists a

dominant-strategy equilibrium of the double auction which implements the optimal pricing

mechanism.

Note that the spread between the price paid by unticketed passengers for seats and

the compensation to the unseated ticket holders need not be positive. Although seats

are transferred from ticketed passengers to unticketed passengers only if the latter have

sufficiently higher values than the former, it does not mean that the net transfers are

always positive. To see this, consider an example with one seat, one ticketed passenger

and one unticketed passenger. Suppose the ticketed passenger has a value close to the

lower bound v and the unticketed passenger a value close to the upper bound v. Then the

ticketed passenger may receive compensation close to v, whereas the unticketed passenger

may pay a significantly smaller amount for the seat.26 However, the negative ex-post net

revenue occurs only if the difference between bq and bq+1 is sufficiently large and these

bids are made by an unticketed and a ticketed passenger, respectively. The probability of

this event is very low when the number of passengers is higher than two.

5 Multiple fare classes and unrestricted mechanisms

In this section, we briefly discuss the restriction to pricing mechanisms with a single price

at date 1. As we noted, the restriction to a single price, with all passengers making their

26The argument is analogous to Myerson and Satterthwaite (1983).
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ticket purchasing decisions simultaneously, corresponds to an assumption that passengers

can communicate a single message (say “purchase”) at date 0. Here, we are motivated

by the observation that passengers, in visiting an airline’s website, for example, often

have the choice of a limited number of options, or “fare classes”, and remain uninformed

about other passengers’ purchasing decisions. Our focus on a single fare class is aimed

at simplifying the key trade-offs. We now discuss how our results should be expected

to extend to cases where the airline is permitted additional fare classes, or faces no

restriction on the number of classes. While the details of how we can adapt our formal

analysis are presented in Appendix B, here we outline the main qualitative conclusions

that we anticipate from this analysis.

To begin, consider the extreme case in which the airline faces no restriction so that

each signal θi ≥ 0 can be assigned distinct ticket terms. Since the airline has an array of

ticket classes at its disposal, it is (at least weakly) optimal to contract with all passengers

in the market at date 0. As we noted above, this follows simply from the revelation

principle: any outcome which has some passengers delay their participation until date 1

can be replicated by a mechanism which induces participation (and revelation of θi) at

date 0. In contrast, when there is a single fare class (as we have analyzed in this paper),

the choice of signals for which passengers will purchase tickets (as captured by θ∗) plays

an important role in screening customers based on their initial information. Setting ticket

prices high enough that some passengers do not purchase is a way for the airline to reduce

the likelihood of being seated for those passengers who are initially most pessimistic about

their values for flying. This reduces the information rents for those passengers who are

initially more optimistic.

The optimal mechanism with no restriction on fare classes is easiest to characterize

under certain restrictions on the joint distribution of θi and vi. For instance, if all pas-

sengers arrive at date 0, the relevant restrictions are familiar from the literature following

Baron and Besanko (1984) and Courty and Li (2000). Under such restrictions, the opti-

mal allocation is monotone in the sense that a passenger is more likely to be seated for

higher realizations of both the initial signal θi and final value vi. Suppose we focus on

an implementation in the spirit of that described in Proposition 1. In particular, pas-

sengers reporting high enough values vi will obtain a seat with probability 1 and make

no payments. We can then observe that passengers reporting higher values of θi obtain,

on average, less compensation for not flying. Indeed, this is necessarily the case in an

incentive-compatible mechanism to ensure passengers with the highest values of θi have

incentives to keep their seats at date 1.27 That passengers with higher values of θi wish

27In fact, the observation is true both conditionally on the realization of vi and unconditionally (the
former by incentive compatibility at date 1, and the latter because higher values of θi realize higher values
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to purchase tickets with less compensation for not flying follows from the fact that such

passengers are more certain of having a high value for flying (and hence expect to benefit

less from the possibility of compensation).28

The case in which airlines offer only a few fare classes is perhaps most closely in line

with pricing practice. This case can be understood as intermediate between the extremes

of a single fare class and having no restriction on fare classes. The date-0 mechanism

would involve passengers simultaneously deciding which among several fare classes (with

different prices) to purchase.

Recall our restriction that a passenger is more likely to fly if he purchases a ticket than

if he does not purchase one (for each realization of (vi, θi)
n
i=1). The natural analogue in

a setting with multiple fare classes would feature the tickets purchased by higher signals

θi increasing the likelihood of flying for a given passenger. We then anticipate that the

optimal mechanism conditional on a given number of fare classes would behave as follows,

subject to appropriate restrictions on the distribution of signals and values (and hence

corresponding virtual surpluses). As with the unrestricted mechanism, passengers with

high signals θi would purchase cheaper tickets offering less compensation for giving up

their seat. These passengers would be willing to purchase tickets with low compensation

simply because they are less likely to have low values. This would be consistent with

the idea that so-called “flexible” tickets are particularly valuable to passengers who are

unsure whether they will enjoy a high payoff from taking the flight.

Finally, note that, under the proposed restriction, the signals purchasing different fare

classes would be determined simply according to an ordered partition. For instance, with

two fare classes, we would now anticipate two thresholds, θ∗1 and θ∗2, satisfying 0 ≤ θ∗1 < θ∗2.

Passenger i would not purchase a ticket if θi < θ∗1, would purchase a relatively cheap fare

with little compensation if θi ≥ θ∗2, and would purchase a more expensive fare with high

compensation in case θi ∈ [θ∗1, θ
∗
2). Overbooking would then occur whenever the number

of passengers purchasing airfares, i.e., the number with θi ≥ θ∗1, exceeds the number of

available seats m.

Similar principles to those we have seen would then apply to setting the prices and

compensation policies for the various fare classes. For instance, the airline could lower

the probability of being seated for a passenger with the less expensive fare class (i.e., with

θi ≥ θ∗2) and in doing so raise compensation to an unseated ticket holder. This would raise

the price the airline could charge for this fare class and reduce the rents earned by infra-

vi in the sense of first-order stochastic dominance).
28Naturally, this conclusion reflects that the distribution over values vi increases with θi in the sense of

first-order stochastic dominance. Our focus on this case simplifies the analysis, but a natural alternative
may be where θi captures passengers’ degree of certainty regarding future values (for example, a second-
order stochastic dominance relation, as analyzed in Courty and Li (2000)).
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marginal holders of tickets in this fare class (i.e., those with θi > θ∗2). Again, the reason

would be that infra-marginal passengers are less likely to benefit from the compensation.

Similarly, the airline could lower the probability of being seated for a passenger with the

more expensive fare (i.e., those with θi ∈ [θ∗1, θ
∗
2)). This would increase the compensation

available for this fare and permit an increase in prices of both fares (since the option of

type θ∗2 to purchase the more expensive fare class becomes less appealing).

6 Conclusions

This paper proposed an incentive-based rationale for overbooking and shed light on a

novel interplay between screening ex-ante via ticket prices and screening ex-post through

auctions. Compensation offered to ticketed passengers in return for their seats helps

improve demand for tickets, allowing the airline to raise ticket prices. At the same time,

passengers who strongly believe they will have a high value for flying do not expect

to benefit from such compensation. These passengers, who are infra-marginal when it

comes to buying tickets, pay the higher ticket prices but expect to benefit little from

compensation, so they expect less surplus. Repurchased tickets may or may not be sold

to unticketed passengers. Selling seats to unticketed passengers can improve efficiency,

but it also improves the outside option of passengers who may consider purchasing tickets

in advance of the flight, lowering the demand for tickets.

To highlight our main ideas, we have abstracted from several relevant features of airline

markets. As noted, we focused for the most part on a single fare class, although most

airlines offer several. We also considered a monopolist airline, although overbooking is

likely to have implications for competition. A passenger who has purchased a ticket from

one airline will find it costly to then purchase a seat from a competitor unless she expects

a full refund for the original ticket price. In turn, competition would be likely to influence

airlines’ choices of compensation policies. For instance, an airline may wish to dissuade

a ticketed passenger from giving up his seat at the last minute and flying with a cheaper

competitor.

We assumed that passengers are forward-looking and strategic and abstracted from

possible behavioral biases. For instance, the extent to which passengers internalize pos-

sible compensation when considering ticket purchases clearly has important implications

for our theory. Passengers’ perceptions about likely compensation may not depend simply

on contractually agreed terms, but also on airlines’ marketing policies.

A related concern from which we abstracted in the analysis is transaction costs. In

practice, overbooking is usually resolved at the airport, with passengers volunteering their

seats right before the flight (in response to appropriate compensation). However, turning
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up to a flight on time and then not taking it (typically delaying travel until a later time)

is costly for the passenger. This concern may well limit airlines’ use of overbooking at

present, but this could conceivably change with the evolution of information technology.

For instance, airlines could adopt technology to solicit volunteers to satisfy capacity con-

straints before passengers incur the cost of visiting the airport on time for the flight. Our

analysis suggests how this could be profitable for the airline, and what trade-offs it may

face in implementing such a scheme. While increases in overbooking might seem a concern

for regulators, we have illustrated how overbooking may enhance efficiency. The reason is

that the airline can extract passenger rents through early ticket sales rather than charging

high prices to unticketed passengers, generating inefficient exclusion.

Finally, it is worth pointing out that overbooking arises in settings other than airline

markets. Hotels, restaurants, and car rental agencies are also known to overbook, although

mechanisms for eliciting customer preferences and compensating them in the event of

overbooking seem much less developed. One key difference with airlines may be that

there is a predetermined flight date, so all passengers who are ticketed for the flight gather

in the same place. Soliciting volunteers according to willingness to pay then becomes a

natural possibility, and one which we observe in practice.

Overbooking can also be understood as occurring in some labor market settings, al-

though it does not go by that name.29 For instance, tenure-track professors may compete

for a limited number of tenured positions, while junior employees in professional services

firms compete for a limited number of senior posts (under what are often termed “up

or out” contracts). In fact, our framework might prove readily adaptable to these labor

market settings, given that employees may learn over time about their ability to deliver

high quality outputs to the employer. For instance, by hiring more junior staff members

than there are available senior staff positions, and by foregoing hires of more seasoned

workers from outside the company, a firm might reduce the information rents associated

with workers’ private understandings of their own abilities.
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Möller, M., and M. Watanabe (2010): “Advance Purchase Discounts Versus Clear-

ance Sales,” The Economic Journal, 120(547), 1125–1148.

Myerson, R. B., and M. A. Satterthwaite (1983): “Efficient mechanisms for bi-

lateral trading,” Journal of Economic Theory, 29(2), 265–281.

Nocke, V., M. Peitz, and F. Rosar (2011): “Advance-purchase discounts as a price

discrimination device,” Journal of Economic Theory, 146(1), 141–162.

Pai, M. M., and R. Vohra (2013): “Optimal Dynamic Auctions and Simple Index

Rules,” Mathematics of Operations Research, 38(4), 682–697.

Pavan, A., I. Segal, and J. Toikka (2013): “Dynamic Mechanism Design: A Myer-

sonian Approach,” .

(2014): “Dynamic Mechanism Design: A Myersonian Approach,” Econometrica,

82(2), 601–653.

36



Rothstein, M. (1971): “An Airline Overbooking Model,” Transportation Science, 5(2),

180–192.

Said, M. (2012): “Auctions with dynamic populations: Efficiency and revenue maxi-

mization,” Journal of Economic Theory, 147(6), 2419–2438.

Shugan, S. M., and J. Xie (2000): “Advance Pricing of Services and Other Implications

of Separating Purchase and Consumption,” Journal of Service Research, 2(3), 227–239.

Simon, J. L. (1994): “Origins of the Airline Oversales Auction System,” Regulation, 2,

48–52.

Tirole, J. (1988): The Theory of Industrial Organization. The MIT Press, 1st edn.

Vickrey, W. (1972): “Airline Overbooking: Some Further Solutions,” Journal of Trans-

port Economics and Policy, 6, 257–270.

Xie, J., and S. M. Shugan (2001): “Electronic Tickets, Smart Cards, and Online

Prepayments: When and How to Advance Sell,” Marketing Science, 20(3), 219–243.

A Proofs of results

This appendix collects proofs not given in the main text.

Proof of Lemma 1

Proof. Let ΘT be the set of signals for which passengers purchase tickets, which may be

any measurable subset of [0, 1]. We need to show that there exists θ∗ ∈ [0, 1] such that

ΘT = [θ∗, 1]. First note that the stochastic process described by F and G necessarily

admits an “independent-shock” representation as follows (see Eso and Szentes (2007) and

Pavan, Segal, and Toikka (2014)). Define, for each (θ, ε) ∈ [0, 1]2, z (θ, ε) = G−1 (ε|θ).
That is, for each (θ, ε) ∈ [0, 1]2, z (θ, ε) is the unique value in the support of G (·|θ)
satisfying G (z (θ, ε) |θ) = ε. Suppose that ε̃ is uniformly distributed on [0, 1]. Then,

for each θ ∈ [0, 1], z (θ, ε̃) is distributed according to G (·|θ). Without loss of generality,

we focus on direct mechanisms at date 1, which induce truthtelling irrespective of the

decision to buy a ticket at date 1. Let qs(vj) be the probability a ticketed passenger

j is seated, conditional on s tickets being sold and his reported value being vj; and let

qs(vk) be the probability of being seated for an unticketed passenger k. Let V
s
(θj) be the

expected payoff (gross of the ticket price) to a ticketed passenger conditional on s tickets
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being purchased and let V s (θj) be the expected payoff to an unticketed passenger. Let r̃

be distributed according to a binomial distribution with parameters (n− 1, 1− F (ΘT )),

where F (ΘT ) is the probability that any other passenger purchases a ticket. Applying

Theorem 1 of Pavan, Segal, and Toikka (2014), we have that the expected payoff for a

passenger who purchases a ticket satisfies, for any signals θ′, θ′′ ∈ [0, 1] with θ′ < θ′′,

Er̃
[
V
r̃+1

(θ′′)
]

= Er̃
[
V
r̃+1

(θ′)
]

+

∫ θ′′

θ′
E(r̃,ε̃)

[
∂z(y, ε̃)

∂θ
qr̃+1(z (y, ε̃))

]
dy. (28)

The expected payoff for a passenger who does not purchase a ticket satisfies

Er̃
[
V r̃ (θ′′)

]
= Er̃

[
V r̃ (θ′)

]
+

∫ θ′′

θ′
E(r̃,ε̃)

[
∂z(y, ε̃)

∂θ
qr̃(z (y, ε̃))

]
dy. (29)

That higher signals imply higher values in the sense of first-order stochastic dominance

means that, for all (θ, ε), ∂z(θ,ε)
∂θ
≥ 0 . Our assumption that ticket holders are favored

implies that, for all s ∈ {0, . . . , n− 1} and all vi ∈ [v, v], qs(vi) ≤ qs+1(vi). Hence, for

θ′, θ′′ with θ′ < θ′′,∫ θ′′

θ′
E(r̃,ε̃)

[
∂z(y, ε̃)

∂θ
qr̃+1(z (y, ε̃))

]
dy ≥

∫ θ′′

θ′
E(r̃,ε̃)

[
∂z(y, ε̃)

∂θ
qr̃(z (y, ε̃))

]
dy. (30)

Now, suppose p is the price of the ticket and that

Er̃
[
V
r̃+1

(θ′)
]
− p ≥ Er̃

[
V r̃ (θ′)

]
(31)

so that a passenger with signal θ′ does better by purchasing the ticket at price p than by

not purchasing. Then Equations (28), (29), and (30) imply

Er̃
[
V
r̃+1

(θ′′)
]
− p ≥ Er̃

[
V r̃ (θ′′)

]
(32)

so that θ′′ also prefer does better to purchase the ticket at price p. Hence, given our

assumption that the passenger purchases a ticket whenever willing, if θ′ purchases, then

so does θ′′. This establishes that ticket sales have a threshold property: the fact that

this set is closed—i.e., it includes the threshold value θ∗—follows from the continuity of

Er̃
[
V
r̃+1

(·)
]

and Er̃
[
V r̃ (·)

]
, which is immediate from Equations (28) and (29).

Proof of Lemma 2

Proof. The proof is a minor adaptation of Gershkov, Goeree, Kushnir, Moldovanu, and

Shi (2012), and here we provide only a sketch. Let χi = 1 if i holds a ticket (i.e., i ≤ s)
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and χi = 0 otherwise (i.e., if i > s).30 We let (q̂, t̂) be a Bayesian incentive-compatible

mechanism and consider the set C of alternative allocation rules q satisfying

qsi (v) ≥ 0 ∀v, s, i∑
i

qsi (v) ≤ m ∀v, s

E
[
qs̃i (vi, ṽ−i)χi

]
= E

[
q̂s̃i (vi, ṽ−i)χi

]
∀vi, χi (33)

E
[
qs̃(ṽ)

]
= E

[
q̂s̃(ṽ)

]
. (34)

Let q∗ solve

min
q∈C

E
[
‖qs̃(ṽ)‖2

]
. (35)

By following exactly the same steps as in Gershkov, Goeree, Kushnir, Moldovanu, and

Shi (2012), one can show the existence of q∗ which satisfies, for each i,

qs∗i (·,v−i) is non-decreasing for all s and v−i.

That is, the probability with which i is awarded a seat is ex-post monotone in vi. By

standard arguments, this implies that q∗ is implementable in dominant strategies. Eq. (33)

implies q∗ yields the same interim expected utilities as q′, and Eq. (34) is used to show

that expected revenues are also the same (again following the steps in Gershkov, Goeree,

Kushnir, Moldovanu, and Shi (2012)).

Proof of Lemma 3

Proof. The passenger with the marginal signal is indifferent between purchasing and not.

Therefore, the expected payoff E[V
r̃+1

(θ∗)] − p must equal E[V r̃(θ∗)], where the number

of other ticket holders r̃ has binomial distribution with parameters (n − 1, 1 − F (θ∗)).

This gives

p =
n−1∑
r=0

(
n− 1

r

)
(1− F (θ∗))rF (θ∗)n−1−r [V

r+1
(θ∗)− V r(θ∗)]. (36)

30Clearly, each passenger knows whether he holds a ticket, i.e., whether he is ordered below or above
s, but faces a distribution over s conditional on whether he holds a ticket.
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Expected total profit is π = n(1 − F (θ∗))p + E[s̃Π
s̃

+ (n − s̃)Πs̃], where s̃ has binomial

distribution with parameters (n, 1− F (θ∗)). Therefore,

π = n(1− F (θ∗))p+
n∑
s=0

(
n

s

)
(1− F (θ∗))sF (θ∗)n−s[sΠ

s
+ (n− s)Πs]. (37)

From Eq. (5), n(1−F (θ∗))p = n(1−F (θ∗))E[V
r̃+1

(θ∗)]−n(1−F (θ∗))E[V r̃(θ∗)]. Rewriting

the two parts of this expression,

n(1− F (θ∗))E[V
r̃+1

(θ∗)] =
n∑
r=0

n!

r!(n− r)!
(1− F (θ∗))rF (θ∗)n−rrV

r
(θ∗), and

n(1− F (θ∗))E[V r̃(θ∗)] =
1− F (θ∗)

F (θ∗)

n∑
r=0

n!

r!(n− r)!
(n− r)(1− F (θ∗))rF (θ∗)n−rV r(θ∗).

Inserting n(1−F (θ∗))E[V
r̃+1

(θ∗)] and n(1−F (θ∗))E[V r̃(θ∗)] into the profit equation gives

Eq. (8).

Proof of Lemma 4

Proof. We consider a direct mechanism without any restrictions. Here, with an abuse

of notation, qi (θi, vi; θ−i, v−i) specifies, for each passenger i, the probability i is seated

given the sequence of own reports (θi, vi) and the reports of the other passenger (θ−i, v−i).

Let xi (θi, vi) = E(θ̃−i,ṽ−i)

[
qi

(
θi, vi; θ̃−i, ṽ−i

)]
. Let W (θ) be the expected payoff to a

passenger with signal θ who reports optimally in the direct mechanism (and whose only

information is his own type θ and his initial prior belief about the other passenger’s type),

and W (θ, v) the expected payoff when he receives signal θ and his value is v (again, given

that he does not update his beliefs about the other passenger’s information). First, note

that, because the passenger with signal θ can follow a strategy of reporting θ and then v,

we must have

W
(
θ
)
≥ W (θ) + xi (θ, v)

(
1− 1

2

)
(v − v) . (38)

Because the passenger with signal θ can follow a strategy of waiting and reporting only

at date 1, and at that point reporting value v, we have

W (θ) ≥ W (∅, v) + xi (∅, v)
1

2
(v − v) . (39)

40



Because a passenger who arrives at date 1 and has value v can report v, we must have31

W (∅, v) ≥ W (∅, v) + xi (∅, v) (v − v) . (40)

As a result, using that W (∅, v) ≥ 0, the expected contribution of passenger i to the air-

line’s profit is at most E
[
VS
(
θ̃, ṽ
)
xi

(
θ̃, ṽ
)]

, where VS (θ, v) = v− (v − v), VS (∅, v) =

v − 3 (v − v), and VS (θ, v) = v for all θ. The allocation proposed in the text maximizes

the sum of expected virtual surpluses VS across both passengers, and thereby attains

the maximum possible expected profit for the airline in an incentive-compatible mecha-

nism. It remains to consider the ticket price and date-1 payments which implement this

allocation. These are chosen so that, on path, an unticketed low-value passenger i pays

qi (∅, v; θ−i, v−i) v and a high-value passenger qi (∅, v; θ−i, v−i) v−qi (∅, v; θ−i, v−i) (v − v)

for the possibility of being seated. Also, a ticketed passenger i receives payments at date

1 equal to (1− qi (θi, vi; θ−i, v−i)) v. In particular, a ticketed passenger receives compen-

sation equal to v times the probability he loses his seat, conditional on reported values.

Via Eq. (5), this pins down the ticket price:

v − xi (θ, v)
1

2
(v − v)− xi (∅, v)

1

2
(v − v) . (41)

Given this ticket price and transfers, the only incentive constraint that requires some

consideration is that θ wishes to purchase a ticket at date 0. Note that, by construction

of ticket prices and compensation, the expected payoff for θ by obediently purchasing a

ticket and then reporting truthfully is

xi (∅, v)
1

2
(v − v) + xi (θ, v)

1

2
(v − v) . (42)

The deviation is unprofitable if and only if this is at least what can be obtained by not

purchasing a ticket, i.e., xi (∅, v) (v − v). Therefore, purchasing the ticket is incentive

compatible if and only if xi (θ, v) ≥ xi (∅, v). This is guaranteed by our assumptions that

f(θ) = g(∅) = 1/3 and g(v|θ) = g(v|∅) = 1/2.

Proof of Proposition 2

Proof. The proof proceeds by specifying an allocation q which maximizes the virtual

surplus Eq. (23) and which is implementable by a pricing mechanism which satisfies

the restrictions set out in Section 3. For reported values consistent with equilibrium

31We focus initially on interim incentive constraints, and then verify that the proposed optimal mech-
anism respects ex-post incentive constraints.
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ticket purchasing, the allocation is determined simply through a comparison of the virtual

surpluses. What must still be specified is the allocation when one of the passengers

deviates by reporting a value inconsistent with his decision to purchase or not to purchase

a ticket (the allocation in case two or more passengers make such reports is irrelevant

because we need not consider joint deviations from equilibrium play).

1. First, for any s and for any ticket holder j reporting vj above the support of G(·|θ̃ ≥
θ∗), and for any v−j, q

s
j (vj,v−j) = 1 while qsi (vj,v−j) = 0 for all i 6= j.

2. Second, for any s and for any ticket holder j reporting vj below the support of

G(·|θ̃ ≥ θ∗), and for any v−j, the allocation is the same as for passenger j reporting

the minimal value of the support of G(·|θ̃ ≥ θ∗).

3. Third, for any s and for any non-ticket holder k reporting vk above the support of

G(·|θ̃ < θ∗), and for any v−k, the allocation is the same as in case k reports the

maximum of the support of G(·|θ̃ < θ∗).

4. Finally, for any s and for any non-ticket holder k reporting vk below the support of

G(·|θ̃ < θ∗), and for any v−k, q
s
j (vk,v−k) = 0 and qsi (vk,v−k) = 0 for all i 6= k.

Using Condition (i) of the proposition, the allocations defined above satisfy, for any s,

any passenger i (whether or not he has purchased a ticket), and any v−i consistent with

equilibrium ticket purchasing, qsi (·,v−i) is non-decreasing over [v, v]. This guarantees that

the period-1 mechanism, defined by the above allocations and the transfers Eq. (15), is

ex-post incentive compatible irrespective of whether the passenger follows the equilibrium

strategy in purchasing (or not purchasing) a ticket. Second, Condition (ii), together with

the allocations defined above for out-of-equilibrium play, ensures that the allocation rule

gives precedence to ticket holders. Since the price satisfying Eq. (5) keeps the passenger

with signal θ∗ indifferent between purchasing and not purchasing a ticket, the same ar-

gument as in the proof of Lemma 1 implies that all passengers with signals above θ∗ are

willing to purchase tickets, while passengers with signals less than θ∗ are not.

Proof of Corollary 1

Proof. Let q∗ be a symmetric allocation specifying, for each passenger i, each v, a prob-

ability of flying q∗i (v) and maximizing the airline’s profit in a mechanism without ticket

sales (i.e., where passengers contract only at date 1). Pick θ∗ ∈ [0, 1) satisfying the condi-

tions in the Corollary. Consider now the pricing mechanism which is optimal conditional

on (i) selling tickets to passengers if and only if their signals exceed θ∗, and (ii) imple-

menting the symmetric allocation rule q∗ (which depends only on values reported at date
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1 and not on which passengers hold tickets). From Eq. (28) and Eq. (29), we see that,

given the passenger with the marginal signal θ∗ is indifferent between purchasing and not

purchasing a ticket, the passengers with all other signals in [0, 1] must be indifferent as

well. Hence, the optimal pricing mechanism with threshold θ∗ and allocation q∗ and the

mechanism without tickets both provide the same expected payoff to passengers. Since

total welfare is also the same for each mechanism, total profit must be identical as well.

Note, however, that by Condition (ii) of the Corollary, the allocation q∗ fails to maximize

the expression in Eq. (23). Hence, both the pricing mechanism that implements this allo-

cation and the optimal mechanism without tickets deliver a strictly lower profit than the

one achievable by selling tickets to passengers with signals above θ∗ and by implement-

ing an allocation which optimally distinguishes ticketed from unticketed passengers (as

described in the proof of Proposition 2).

Proof of Example 1

Proof. This follows from noticing that, for any θ∗ ∈ [0, 1], the expected virtual surplus

Eq. (23) can be maximized by an allocation rule which is symmetric and independent

of which passengers are ticketed. The optimal mechanism without ticket sales, where

passengers contract only date 1, gives passengers the same surplus as in the optimal

pricing mechanism with ticket sales to passengers with signals above θ∗. Hence it delivers

the airline the same profit.

Proof of Example 2

Proof.

1. Fix θ∗ > 0 and call the corresponding pricing mechanism “Mechanism A”. There

exists a threshold v#, such that, in the optimal pricing mechanism conditional on

θ∗, if all n passengers purchase tickets, a passenger j flies if and only if he is among

the m highest values, and his value vj exceeds v# (note that V S
(
v#
)

= 0). Now

define “Mechanism B” to be the alternative mechanism which sells tickets to all

passengers, and then allocates a seat to a passenger if and only if he is among the

m highest values, and his value vj exceeds v#. Passengers who do not purchase a

ticket do not fly, and the price of the ticket is set to ensure that the passenger with

the lowest date-0 signal expects a payoff zero from purchasing a ticket (and hence

is indifferent between purchasing and not).

Now, one can verify that the additional expected rent in Mechanism B is larger than

in Mechanism A by no more than nθ∗. On the other hand, whenever a is sufficiently
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large, expected welfare losses in Mechanism A exceed those in Mechanism B by an

amount exceeding nθ∗. To see this, note that, under Mechanism B, a passenger is

seated unless possibly (i) vj − 1 is less than the mth highest realized value of the

other passengers, or (ii) vj ≤ 1. However, under Mechanism A, there exists a# such

that the following holds. For all a ≥ a#, if a passenger k is unticketed, he is not

seated with probability 1 whenever vk <
a
2
. The corresponding efficiency loss then

becomes unboundedly large with a.

2. Given the absence of capacity constraints, we can focus on the case with n = 1. For

each θ∗ ∈ [0, 1), let q(v) and q(v) indicate whether the passenger is seated under

the optimal allocation when his value is v, and when he is ticketed and unticketed,

respectively. Following the same steps as in the derivation of the unrestricted mech-

anism in Appendix B, the airline’s expected profit, conditional on θ∗, can be shown

to equal

E(θ̃,ε̃)

 1θ̃≥θ∗q(θ̃ + aε̃)
(

2θ̃ + aε̃− 1
)

+
(
1− 1θ̃≥θ∗

)
q(θ̃ + aε̃)

(
2θ̃ + aε̃− 1

)  . (43)

The first-order necessary condition for an optimum is

Eε̃
[
−VS (θ∗ + aε̃) q (θ∗ + aε̃) + VS (θ∗ + aε̃) q (θ∗ + aε̃)

]
= 0. (44)

This yields θ∗ = 1
2
− a

4
. It can further be verified that the expected profit in Eq. (43)

is quasi-concave in θ∗, so that 1
2
− a

4
achieves the optimum.

3. First, suppose that 0 ≤ θ∗ < 1− γ − a and consider the optimal pricing mechanism

conditional on θ∗. As n → ∞, the probability that the flight is filled by ticket

holders with values exceeding 1− γ approaches 1 and hence the expected payoff of

the passenger with date-0 signal equal to zero approaches zero. The same conclusion

holds if instead the optimal date-1 spot mechanism is used (i.e., no tickets are sold),

in which case the allocation is identical under the two mechanisms (i.e., the spot

mechanism and the pricing mechanism with threshold for ticket purchases θ∗) with a

probability that approaches 1 as n→∞.32 This implies that the airline’s expected

profits per passenger converge under the two mechanisms.

Conversely, suppose θ∗ > 1 − γ + a, which we can take to be less than 1 (hence,

a < 1/2). Under the optimal pricing mechanism, a passenger whose signal is at least

32Under the pricing mechanism, the m ticketed passengers with the highest values are all seated with
probability approaching 1. With probability approaching 1, this set of passengers is also the set with the
highest overall values (including ticketed and unticketed passengers). Such passengers receive seats in the
optimal spot mechanism which ranks passengers in terms of the virtual surplus in the usual Myersonian
static auction.
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(1−γ+a+θ∗)/2 is seated with a probability that approaches 1 as n→∞. The same

is again true under the optimal spot mechanism, and the allocation rules under the

two mechanisms coincide with a probability that approaches 1 as n → ∞. Again

it holds that expected profits per passenger converge under the two mechanisms as

n→∞.

Now suppose instead that θ∗ = 1 − γ, for example. Then, ticketing affects the

allocation of seats with a probability that remains bounded above zero as n → ∞,

and the additional profits per passenger relative to the optimal spot mechanism

remains bounded above zero as well. This can be shown using the same logic as in

Corollary 1.

Proof of Proposition 3

Proof. Consider the following strategy profile. Ticketed passengers with value vj bid vj.

Unticketed passengers with value vk bid vj(vk). To show that this is a dominant-strategy

equilibrium, first consider a ticketed passenger with value vj when the profile of other bids

is b−j. Among those bids that exceed R, let bq−j denote the qth highest bid, set equal to

R in case the number of such bids is smaller than n. If j’s bid bj exceeds bq−j, then j will

be seated and receive no transfer. If he bids less than bq−j, he will volunteer his seat and

receive compensation in the amount of bq = bq−j. Passenger j wishes to volunteer his seat

at this price if and only if vj ≤ bq−j. Thus by bidding according to the specified strategy

profile, i.e., bj = vj, he volunteers his seat exactly when it is optimal to do so. Next

consider an unticketed passenger with value vk. Let bq−k denote the qth highest bid among

the other passengers whose bid exceeds R, with bq−k equaling R if there are fewer than q. If

k’s bid bk exceeds bq−k, then k will win a seat and pay vk(b
q
−k). If he bids less than bq−k, he

will lose and pay nothing. It is in the interest of passenger k to fly and pay vk(b
q
−k) if and

only if vk ≥ vk(b
q
−k). By bidding bk = vj(vk) as dictated by the strategy profile, he flies if

and only if vj(vk) ≥ bq−k, i.e., if and only if vk ≥ vk(b
q
−k), which is exactly when it is in his

interest to do so. Finally, to show that this dominant-strategy equilibrium implements

the optimal allocation of seats, it is enough to notice that the ranking of bids is the same

as the ranking of virtual surpluses (with bids below the reserve R being only for values

such that virtual surplus is negative). This follows directly from the construction, using

Condition (i) of Proposition 2, which ensures virtual surpluses are monotone in values

over the relevant range.
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B Unrestricted mechanism and multiple fare classes

In this Appendix we derive the unrestricted optimal mechanism and show how our analysis

can be extended to multiple fare classes.

Unrestricted mechanism

Suppose for simplicity that G (·|θ) has full support on [v, v], for all signals θ (the arguments

below, extend more generally, however). With no restriction on the space of possible

mechanisms, the airline finds it optimal to contract with all passengers arriving in the

market at date 0. Without loss of optimality, we consider direct mechanisms where each

passenger i reports his initial signal θi in case he arrives at date 0, and then reports his

value vi in the second period. We can think of the report of the signal as the passenger

choosing among the multiple fare classes available at date 0. We denote the null report,

where the passenger fails to report at date 0, by ∅.

Let ΩM denote a direct mechanism, comprising allocations q = (qi)
n
i=1 and transfers

t = (ti)
n
i=1 such that, for all θ = (θi)

n
i=1 and v, the probability each passenger is seated

is given by qi (θ,v) and the total payment by each payment over two periods is given

by ti (θ,v) (given the absence of discounting, the timing of payments does not affect

payoffs; we could equivalently consider date-0 payments, i.e., prices for each fare class in

a continuum, and compensation satisfying Proposition 1). The allocation of seats must

satisfy the same feasibility constraint introduced above: no more passengers may be seated

than the number of available seats.

Denote by WΩM (θi) the expected payoff of a passenger with signal θi given the oppor-

tunity to participate in the mechanism ΩM at date 0 (but with no other information about

his value or about the signals or values of other passengers). Recall the “independent-

shock” representation in the proof of Lemma 1. By the envelope theorem (see Pavan,

Segal, and Toikka (2013)), a necessary condition for the incentive compatibility of truth-

ful reporting of signals is that for all θi ≥ 0,

WΩM (θi) = WΩM (0) +

∫ θi

0

E
[
∂z(y, ε̃)

∂θi
qi

(
y, θ̃−i, z (y, ε̃i) , ṽ−i

)]
dy. (45)

We now conjecture that the value of WΩM (0) is determined by the value a passenger

with signal zero can obtain by deviating and reporting only at date 1. A passenger i

arriving at date 1 and truthfully reporting his value vi, given that other passengers report
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θ−i and v−i, earns a payoff

WΩM (∅, θ−i, vi,v−i) = WΩM (∅, θ−i, v,v−i) +

∫ vi

v

qi (∅, θ−i, y,v−i) dy. (46)

We may optimally choose WΩM (∅, θ−i, v,v−i) = 0 while ensuring the individual ratio-

nality of a passenger participating for the first time at date 1. A necessary condition for

date-0 participation by a passenger with the 0 signal is therefore

WΩM (0) ≥ E
[∫ ṽi

v

qi

(
∅, θ̃−i, y, ṽ−i

)
dy|θ̃i = 0

]
= E

[
1−G (ṽi|0)

g (ṽi|0)
qi

(
∅, θ̃−i, ṽi, ṽ−i

)
dy|θ̃i = 0

]
= E

[
1−G (ṽi|0)

g (ṽi|∅)
qi

(
∅, θ̃−i, ṽi, ṽ−i

)
dy|θ̃i = ∅

]
.

We conjecture that this is the only relevant participation constraint at date 0 and there-

fore that the inequality must bind in an optimal mechanism. Taking expectations and

integrating by parts, the airline’s expected profit is then equal to

n∑
i=1


(1− f (∅))E


(
z
(
θ̃i, ε̃i

)
− 1−F(θ̃i)

f(θ̃i)
∂z(θ̃i,ε̃i)

∂θi

)
×qi

(
θ̃, z

(
θ̃i, ε̃i

)
, ṽ−i

)
∣∣∣∣∣∣∣θ̃i ≥ 0


+f (∅)E

[(
ṽi − 1−G(ṽi|∅)

g(ṽi|∅)
− 1−f(∅)

f(∅)
1−G(ṽi|0)
g(ṽi|∅)

)
qi

(
θ̃, ṽi, ṽ−i

)
|θ̃i = ∅

]
 . (47)

We can now conjecture an optimal allocation rule along the same lines as for the single

fare class mechanisms. Let

VS (θi, εi) =

z (θi, εi)− 1−F (θi)
f(θi)

∂z(θi,εi)
∂θi

if θi ≥ 0,

z (θi, εi)− 1−G(z(θi,εi)|∅)
g(z(θi,εi)|∅)

− 1−f(∅)
f(∅)

1−G(z(θi,εi)|0)
g(z(θi,εi)|∅)

if θi = ∅
(48)

Let q∗ be the allocation which maximizes the virtual surplus VS. The following result

gives conditions under which this allocation is implementable by an appropriate system

of transfers.

Proposition 4. Suppose that VS (·, ·) as defined by Eq. (48) is non-decreasing in both

arguments. Then there exists a system of transfers t∗ that implements the allocation q∗.

The mechanism (q∗, t∗) is profit maximizing in the class of all possible mechanisms.

Proof. The payoffs WΩM (θ,v) to be earned in equilibrium are pinned down by the allo-

cation rule, the fact that the date-0 participation constraint binds at θi = 0, and that a
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passenger arriving at date 1 with value v expects zero surplus. We can define transfers

simply through the identity ti (θ,v) = qi (θ,v) θi−WΩM (θ,v), so that passengers receive

the intended payoffs provided they report truthfully. Using the fact each passenger’s prob-

ability of receiving the seat is non-decreasing in his value for it, the mechanism described

above can be shown to be ex-post incentive compatible at date 1. Incentive compatibil-

ity of truthful reporting of the signal at date 0, given that the passenger participates at

that date, also follows from the monotonicity of the allocation in both signals and values

(see Pavan, Segal, and Toikka (2013), for instance) and from the first-order stochastic

dominance property of the stochastic process. What is left to check is that all passengers

with signals in [0, 1] prefer to participate at date 0 rather than delaying participation to

date 1. This follows from essentially the same argument as in the proof of Lemma 1, after

noting that, for each reported value of a passenger i (holding fixed the reports of the other

passengers), the probability that the passenger receives the good, for each possible value

vi, is lower if he delays participation until date 1.

The virtual surplus for the unrestricted mechanism is closely related to those for the

single fare class mechanism studied above. The airline would like to distort downwards

the probability that a passenger with a low signal is seated so as to reduce the rents

that must be left to passengers with higher signals, and thereby dissuade them from

mimicking the distribution of reports by passengers with the lower signals. This idea

recalls other work on dynamic mechanism design. With the single fare class mechanism

studied above, the airline lacks the flexibility to distinguish the allocations for passengers

with different signals, but it faces an incentive to achieve a similar end by selling tickets

only to passengers with high signals (conferring a higher probability of being seated on

the holder).

The airline would also like to reduce the probability of flying for passengers who

only arrive to the market at date 1 in order to reduce the rents available to them. The

advantage in doing so is that it permits the airline to reduce the rent that must be left

to passengers who arrive at date 0 in order to persuade them to participate at that date.

This again parallels the airline’s incentive to limit the rents of non-ticket holders in the

single fare class mechanism.

The relationship between the virtual surplus VS (·, ·) for the unrestricted mechanism

and the virtual surpluses of the single fare class mechanism VS (·) and VS (·) for ticketed

and unticketed passengers turns out to be simple. Given the threshold for ticket purchases

θ∗, for each vi, we have

VS (vi) = E
[
VS
(
θ̃i, ṽi

)
|θ̃i ≥ θ∗, ṽi = vi

]
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while

VS (vi) = E
[
VS
(
θ̃i, ṽi

)
|θ̃i < θ∗, ṽi = vi

]
.

Multiple fare classes

The above suggests how our analysis can be extended to allow the airline to use two or

more fare classes. If L fare classes are permitted, then we consider pricing mechanisms

with thresholds θ∗1, . . . , θ
∗
L ∈ [0, 1], ordered from highest to lowest, such that all passen-

gers with signals in I1 = [θ∗1, 1] purchase class-1 tickets, those with signals in I2 = [θ∗2, θ
∗
1)

purchase class-2 tickets, and so forth, with passengers having signals in IL+1 = (−∞, θ∗L)

not purchasing any ticket. Assuming that a passenger in a higher class is favored in the

seating allocation in the sense introduced in Section 3, with all ticketed passengers fa-

vored over unticketed passengers, any pricing mechanism with L classes has this threshold

property.

We can then conjecture an allocation of seats to passengers with the highest non-

negative virtual surpluses, where these virtual surpluses are given, for each fare class l and

value vi by E
[
VS
(
θ̃i, ṽi

)
|θ̃i ∈ Il, ṽi = vi

]
. We can then look for conditions guaranteeing

that these allocations are monotone in vi for each fare class (and for unticketed passengers),

and which favor passengers in a higher fare class conditional on having the same value

vi. Such conditions ensure the existence of ticket prices and a compensation rule which

implements the proposed allocations.
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