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Abstract
We develop a systematic approach to continuous substi-
tutions on compact Hausdorff alphabets. Focussing on
implications of irreducibility and primitivity, we high-
light important features of the topological dynamics of
their (generalised) subshifts. We then reframe questions
from ergodic theory in terms of spectral properties of
a corresponding substitution operator. This requires an
extension of standard Perron–Frobenius theory to the
setting of Banach lattices. As an application, we identify
computable criteria that guarantee quasi-compactness
of the substitution operator. This allows unique ergod-
icity to be verified for several classes of examples. For
instance, it follows that every primitive and constant
length substitution on an alphabet with an isolated point
is uniquely ergodic, a result which fails when there are
no isolated points.
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1 INTRODUCTION

Substitutions on infinite alphabets and tilings with infinite local complexity (ILC) have been
steadily gaining attention in the study of symbolic dynamics and aperiodic order [14, 20, 23, 34,
41, 42]. Indeed, infinite alphabets must naturally be considered when recoding non-uniformly
recurrent sequences by returnwords [15], or when performing the balanced-pair and overlap algo-
rithms for a non-Pisot substitution [25]. In the context of automatic sequences, constant length
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substitutions on infinite alphabets are the natural setting for regular sequences — sequences
admitting a finitely generated 𝑘-kernel [4, Thm. 11] — as well as profinite automatic sequences,
for example, those defined over the 𝑝-adic integers ℤ𝑝 [34, Sec. 4]. It has also been shown that
(𝑋, 𝑇) is a self-induced minimal Cantor system if and only if it is conjugate to a substitution sub-
shift on a zero-dimensional alphabet whose substitution is primitive, recognisable and aperiodic
[14, Thms. 24 and 25].
Given their ubiquity, it is important to develop a systematic approach to study such substitu-

tions and their subshifts in terms of their dynamics, ergodic theory and spectral theory. Notable
studies in this direction include those by Queffélec [32], Ferenczi [17], Frank and Sadun [20] and
Durand, Ormes and Petite [14]. The aim of this work is both to establish a framework for further
study and to better understand in which ways the infinite alphabet landscape differs from the
familiar world of finite alphabets. One novelty of our approach is the incorporation of techniques
from the theory of positive operators on Banach lattices.
To obtain more general results in the infinite alphabet setting, it is necessary to impose some

standing assumptions. Our alphabets will be equipped with a compact Hausdorff topology with
the substitution being a continuous map. These assumptions are natural ones to impose so as to
retain some of the structure enjoyed in the finite alphabet setting. Interestingly,most of our results
do not require the alphabet to be equippedwith ametric, generalising the results and oftenmaking
the proofs conceptually simpler.
Alphabets, or labels, with compact Hausdorff topologies are also prevalent in the setting of

higher dimensional ILC tiling substitutions. These include the Conway–Radin pinwheel sub-
stitution [33], where infinitely many tiles appear up to translation, but up to rigid motion
there is just one tile, so that the prototile space is homeomorphic to a disjoint union of two
circles.
Our main focus will be on symbolic substitutions, which generate bi-infinite words. Such

symbolic substitutions can be made geometric, as so-called stone inflations of ℝ, by associat-
ing to each letter 𝑎 an interval tile of length 𝓁(𝑎) ⩾ 0 (although we often require that each
𝓁(𝑎) > 0). A stone inflation first inflates the support of a tile by a fixed inflation factor 𝜆 > 1
and then decomposes the inflated support exactly into the substituted tiles, meaning here that
𝜆𝓁(𝑎) = 𝓁(𝑎1) + 𝓁(𝑎2) +⋯ + 𝓁(𝑎𝑛), where the substitution of 𝑎 is 𝜚(𝑎) = 𝑎1𝑎2⋯𝑎𝑛. If such
a function 𝓁 exists, and is continuous on the alphabet, we call it a natural length function.
We find conditions on the substitution that imply existence (and uniqueness, up to scaling)
of a natural length function but also examples that do not permit one (Examples 4.7 and 4.8).
This is different to the finite alphabet setting, where substitutions always permit natural length
functions.
Many of the above cited works mention the difficult problem of establishing unique ergodicity

for substitution dynamical systems in the infinite alphabet setting. It is sometimes possible to
show this for a particular example, but finding general sufficient criteria is anothermatter. Beyond
the constant-length setting [32, 34], little is known.
One of the principal aims of this work is to establish the first general criterion for unique

ergodicity without requiring the substitution to have constant length. This entails considering
the substitution operator𝑀 on the space 𝐶() of continuous real-valued functions on the alpha-
bet. The space 𝐶() is a Banach lattice, allowing us to benefit from known results on positive,
mean ergodic and power convergent operators on Banach lattices [1, 16, 26, 37, 39]. Even with the
abundance of literature on such operators, we emphasise that the infinite-dimensional situation
is far from straightforward. In particular, primitivity no longer guarantees unique ergodicity; com-
pare [14, Prop. 31]. Moreover,𝑀 is a compact operator essentially only when the alphabet is finite

 14697750, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70123 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [26/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SUBSTITUTIONS ON COMPACT ALPHABETS 3 of 48

(Proposition 6.2), and hence, the classical Kreı̆n–Rutman theorem [29] for compact operators is
not applicable. We mention this specific theorem as it is one of the simplest generalisations of
Perron–Frobenius theory in the infinite dimensional setting.
However, similar results generalise to quasi-compact operators, where the spectral radius 𝑟 is a

pole of the resolvent and outside of the essential spectrum (see [31, Thm. 4.1.4] and the following
remark). More generally, unique ergodicity follows from the weaker condition of strong power
convergence of the operator 𝑇 = 𝑀∕𝑟, meaning that 𝑇𝑛𝑓 converges strongly for each 𝑓 ∈ 𝐶();
the result below follows from Theorem 5.22 and Corollary 5.23 (see also Theorem 6.7).

Theorem1.1. Let 𝜚 be a primitive substitution on a compactHausdorff alphabet with corresponding
subshift 𝑋𝜚 and substitution operator 𝑀. Let 𝑟 be the spectral radius of 𝑀. If 𝑇 = 𝑀∕𝑟 is strongly
power convergent, then 𝑋𝜚 is uniquely ergodic.

We show how strong power convergence of 𝑇 follows from certain conditions on the substi-
tution; see, for example, Theorem 6.18 in the constant length case. In the non-constant length
case, the stronger condition of quasi-compactness can be verified for large classes of examples by
applying a computable criterion detailed in Theorem 6.9. This condition appears to be typically
satisfied when the substitution is primitive and the alphabet has at least one isolated point. For
example, it easily follows from Theorem 6.9 that every primitive and constant length substitution
on an alphabet with an isolated point defines a quasi-compact operator and thus has uniquely
ergodic hull, see Example 6.11. Examples from [14] show that there are counter-examples to this
in alphabets with no isolated points. In the non-compact setting of substitutions on countable
alphabets, sufficient conditions for unique ergodicity are provided in [13].
Our examples show that a subtle range of behaviours can occur in the infinite alphabet setting:

whilst some have 𝑇 quasi-compact and uniformly power convergent, others demonstrate that it
is not uncommon for 𝑇 to fail to be uniformly power convergent (Example 6.19), even when 𝑇 is
strongly power convergent so that the associated subshift is uniquely ergodic. Moreover, the spec-
tral radius 𝑟 of𝑀, which is the infinite-dimensional analogue of the Perron–Frobenius eigenvalue
for finite matrices, need not be an algebraic number; see Remark 6.16.
The structure of this paper is as follows. In Section 2, we present general properties satisfied

by subshifts over compact alphabets. In Section 3, we define notions related to substitutions and
we present immediate consequences of continuity. We also discuss the associated substitution
subshift and investigate its language. The substitution operator is introduced in Section 4, and
its operator-theoretic and spectral properties are discussed. Section 5 deals with invariant mea-
sures on the subshift and its relation to strong power convergence of the (normalised) substitution
operator 𝑇. Here, we exploit a correspondence established in [20] in the fusion tiling formalism.
Applications of our results, including sufficient conditions for unique ergodicity of the subshift
and representative examples, are discussed in Section 6. Section 7 dealswith asymptotic behaviour
of discrepancy estimates for certain substitutions whose corresponding operator has a spectral
gap. Numerous examples are provided throughout the text to demonstrate our results. To sim-
plify the exposition, and because several results consider the existence of natural length functions,
we work in the setting of one-dimensional and symbolic substitutions, although many results
here (such as Theorems 5.19 and 6.18) have natural extensions, with essentially identical proofs,
to higher dimensions. This can be used, for example, to give a quick proof of unique ergodicity
of the hull of pinwheel tilings, although we leave discussion of higher dimensional examples to
future work.
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4 of 48 MAÑIBO et al.

2 TOPOLOGY AND DYNAMICS

Most of the results in this section are routine or simple exercises, and are likely already known in
the wider literature, for instance, in works such as [7]. Nevertheless, these results may be unfamil-
iar to the reader in the general setting of infinite alphabets and lay the groundwork for our main
focus, substitutions on compact Hausdorff alphabets. We therefore include them, often without
proof, in order to keep our work as self-contained as possible.
Let be a compact Hausdorff space that we call an alphabet andwhose elements we call letters.

Let+ =
⨆
𝑛⩾1𝑛 denote the set of all finite (non-empty) words over the alphabet, where𝑛

has the product topology and+ is topologised as the disjoint union. Hence,𝑛 is a clopen subset
of+ for each 𝑛 ⩾ 1. For ease of notation, we write

𝑢1𝑢2⋯𝑢𝑛 ∶= (𝑢1, 𝑢2, … , 𝑢𝑘).

Let ∗ = + ⊔0 = + ⊔ {𝜀}, where 𝜀 is the empty word. Concatenation is a binary operation
∗ ×∗ → ∗ given by (𝜀, 𝑢) ↦ 𝑢, (𝑢, 𝜀) ↦ 𝑢 and

(𝑢1⋯𝑢𝑛, 𝑣1⋯ 𝑣𝑚) ↦ 𝑢1⋯𝑢𝑛𝑣1⋯ 𝑣𝑚,

where 𝑢 = 𝑢1⋯𝑢𝑛 ∈ 𝑛 and 𝑣 = 𝑣1⋯ 𝑣𝑚 ∈ 𝑚.Wewrite 𝑢𝑣 as shorthand for the concatenation
of 𝑢 and 𝑣, which is a continuous operation. If there is a 𝑗 ⩾ 0 such that 𝑢𝑖 = 𝑣𝑗+𝑖 for all 1 ⩽ 𝑖 ⩽ 𝑛,
then we call 𝑢 a subword of 𝑣 and write 𝑢 ⊲ 𝑣. We have the continuous projection map 𝑝𝑖 ∶ 𝑛 →

 to the 𝑖th letter of a word.
Letℤ denote the set of bi-infinite sequences overwith the product topology, which is com-

pact by Tychonoff’s theorem. We use a vertical line | to denote the position between the −1st
and 0th element of a bi-infinite sequence, and so, we write 𝑤 = ⋯𝑤−2𝑤−1|𝑤0𝑤1⋯. For 𝑗 ⩽ 𝑘,
we let 𝑤[𝑗,𝑘] denote the subword 𝑤𝑗⋯𝑤𝑘. We define the projection 𝑝[𝑗,𝑘] ∶ ℤ → 𝑘−𝑗+1 by
𝑝[𝑗,𝑘](𝑤) = 𝑤[𝑗,𝑘]. This is also clearly a continuous function.
The function 𝜎∶ ℤ → ℤ given by 𝜎(𝑥)𝑖 = 𝑥𝑖+1 is a homeomorphism called the (left) shift

map. The pair (ℤ, 𝜎) is called the full shift over the alphabet . Let | ⋅ |∶ ∗ → ℕ0 = ℕ ∪ {0}

be the word-length function mapping 𝑢 ↦ 𝑛 for every 𝑢 ∈ 𝑛. The word-length function is
continuous because | ⋅ |−1({𝑛}) = {𝑢 ∈ ∗ ∣ |𝑢| = 𝑛} = 𝑛 is open in∗ for every 𝑛.

Definition 2.1. Let 𝑋 ⊆ ℤ. If 𝜎(𝑋) = 𝑋, we say that 𝑋 is shift-invariant or 𝜎-invariant. If 𝑋 is a
non-empty, closed, shift-invariant subspace ofℤ, then we call 𝑋 a subshift. We call 𝑋 aminimal
subshift if 𝑋 contains no proper subshift∅ ≠ 𝑌 ⊊ 𝑋.
Definition 2.2. Let  ⊆ ∗. For 𝑛 ∈ ℕ0, we let 𝑛 =  ∩𝑛. We call  a language if each 𝑛 ⊆
𝑛 is non-empty, closed (equivalently,  ⊆ ∗ is closed), and  is closed under taking subwords.
The subshift associated with  is the subset

𝑋 ∶= {𝑤 ∈ ℤ ∣ 𝑤[𝑗,𝑘] ∈  for all 𝑗 ⩽ 𝑘}.

Proposition 2.3. For any language , we have that 𝑋 is a subshift.

Definition 2.4. Let 𝑤 ∈ ℤ and let orb(𝑤) ∶= {𝜎𝑛(𝑤) ∣ 𝑛 ∈ ℤ} denote the orbit of 𝑤 under the
shift map 𝜎. We let𝑋𝑤 ∶= orb(𝑤) ⊆ ℤ denote the orbit closure of𝑤. Let𝑛(𝑤) denote the set of
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SUBSTITUTIONS ON COMPACT ALPHABETS 5 of 48

all 𝑛-letter subwords appearing in 𝑤. We write(𝑤) ∶=
⨆
𝑛⩾0𝑛(𝑤), seen as a subspace of∗.

We define 𝑛(𝑤) =𝑛(𝑤) and similarly the language of 𝑤 as (𝑤) =(𝑤).

Remark 2.5. Of course, we have that

(𝑤) = ⨆
𝑛⩾0

𝑛(𝑤)

and 𝑛(𝑤) = (𝑤) ∩𝑛, since each of the𝑛 are disjoint clopen subsets of∗.

Definition 2.6. For a subshift 𝑋 ⊆ ℤ, we let 𝑛(𝑋) denote the set of all 𝑛-letter subwords
appearing in elements of 𝑋, that is, 0(𝑋) = {𝜀} and

𝑛(𝑋) ∶= {𝑢 ∈ 𝑛 ∣ ∃𝑤 ∈ 𝑋, 𝑗 ⩽ 𝑘 such that 𝑢 = 𝑤[𝑗,𝑘]
}
.

We write (𝑋) ∶= ⨆𝑛⩾0 𝑛(𝑋), seen as a subspace of∗, and call (𝑋) the language of 𝑋.
The following results are useful and left as exercises to the reader.

Proposition 2.7. If 𝑤 ∈ ℤ, then (𝑤) is a language and, for a subshift 𝑋 ⊆ ℤ, we have that
(𝑋) is a language.
Proposition 2.8. For 𝑤 ∈ ℤ, we have that 𝑋𝑤 is a subshift with (𝑋𝑤) = (𝑤).
Remark 2.9. We assume in this section, without loss of generality, that all letters of  appear in
someword of the subshift𝑋. Indeed, by shift-invariance, the set of all letters that appear is given by
1(𝑋) = 𝑝[0,0](𝑋) ⊆ . Since𝑋 ⊆ ℤ is closed, we have that𝑋 is compact and thus so is1(𝑋) by
continuity of 𝑝[0,0]. So, we may assume that all letters appear by restricting the alphabet to 1(𝑋),
which is still compact and Hausdorff.

Recall that a topological dynamical system (𝑋, 𝑓) is called topologically transitive if for all non-
empty open sets 𝑈,𝑉 ⊆ 𝑋, there exists an 𝑛 ∈ ℤ such that 𝑓𝑛(𝑈) ∩ 𝑉 ≠ ∅.
The following lemmas are routine.

Lemma 2.10. Let 𝑋 ⊆ ℤ be a subshift. If there exists an element 𝑤 ∈ 𝑋 with a dense orbit, then
the subshift 𝑋 is topologically transitive.

Lemma 2.11. Let 𝑋 ⊆ ℤ be a subshift. If there exists an element 𝑤 ∈ 𝑋 with dense orbit, then
is separable.

Since𝑋 is compactHausdorff, by theBaire category theorem,wehave that𝑋 is Baire and thus of
second category.Hence (by an identical proof to [40, Prop. 1.1]), we have a converse to Lemma 2.10.

Proposition 2.12. Let 𝑋 ⊆ ℤ be a subshift. There exists an element 𝑤 ∈ 𝑋 with a dense orbit if
and only if the subshift 𝑋 is topologically transitive and is separable.
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6 of 48 MAÑIBO et al.

Definition 2.13. Let 𝑤 ∈ ℤ be a bi-infinite sequence over . We say that 𝑤 is repetitive if for
all 𝑛 ⩾ 1 and every non-empty open set𝑈 ⊆ 𝑛(𝑤), there exists𝑁 = 𝑁(𝑛,𝑈) ⩾ 1 such that every
𝑣 ∈ 𝑁(𝑤) contains a subword in 𝑈.
The above definition may be interpreted as saying that any given finite word appears, up to

some specified tolerance (determined by the open set 𝑈), with uniformly bounded gaps (within
any word of size 𝑁). The lemma below (properties 2 and 3) says that this is equivalent, for any
given tolerance, to all 𝑛-letter words being found in all 𝑁-letter words, for some 𝑁 depending on
the tolerance.

Proposition 2.14. Let 𝑤 ∈ ℤ be a bi-infinite sequence over and let us write 𝑛 = 𝑛(𝑤). The
following are equivalent:

(1) 𝑤 is repetitive;
(2) for all 𝑛 ⩾ 1 and every finite collection  = {𝑈𝑖}

𝓁
𝑖=1

of non-empty open subsets 𝑈𝑖 ⊆ 𝑛, there
exists an 𝑁 = 𝑁(𝑛, ) ⩾ 1 such that for all 𝑣 ∈ 𝑁 and for every 1 ⩽ 𝑖 ⩽ 𝓁, there is a subword
of 𝑣 in𝑈𝑖;

(3) for all 𝑛 ⩾ 1 and every open subset𝑈 ⊆ 𝑛 × 𝑛 containing the diagonal, there exists some𝑁 =

𝑁(𝑛,𝑈) ⩾ 1 so that, for every 𝑢 ∈ 𝑛 and 𝑣 ∈ 𝑁 , there is a subword 𝑢′ ⊲ 𝑣 with (𝑢, 𝑢′) ∈ 𝑈.
Proof. The implications (1 ⇒ 2) and (3 ⇒ 1) are trivial.
(2 ⇒ 3): Let 𝑈 ⊆ 𝑛 × 𝑛 be open and contain the diagonal. It is well known (and not hard to

prove) that, by compactness, wemay find𝑉 ⊆ 𝑛 × 𝑛 satisfying the same, with𝑉 = 𝑉−1 (where
𝑉−1 consists of pairs (𝑥, 𝑦), for (𝑦, 𝑥) ∈ 𝑉) and 𝑉◦𝑉 ⊆ 𝑈 (where (𝑢, 𝑤) ∈ 𝑉◦𝑉 if there is some
(𝑢, 𝑣) ∈ 𝑉 and (𝑣, 𝑤) ∈ 𝑉).
For 𝑢 ∈ 𝑛, let𝑉𝑢 ⊆ 𝑛 denote the set of 𝑢′ ∈ 𝑛 with (𝑢, 𝑢′) ∈ 𝑉. Then, let {𝑉𝑢𝑖 }𝓁𝑖=1 be a finite

subcover of {𝑉𝑢}𝑢∈. Take𝑁 ⩾ 1 according to property 2. Let 𝑢 ∈ 𝑛 and 𝑣 ∈ 𝑁 be arbitrary and
𝑖 such that 𝑢 ∈ 𝑉𝑢𝑖 . Hence, (𝑢, 𝑢𝑖) ∈ 𝑉. By property 2, we may find some 𝑢

′ ∈ 𝑉𝑢𝑖 with 𝑢
′ ⊲ 𝑣.

Then, (𝑢𝑖, 𝑢′) ∈ 𝑉 so (𝑢, 𝑢𝑖)◦(𝑢𝑖, 𝑢′) = (𝑢, 𝑢′) ∈ 𝑉◦𝑉 ⊆ 𝑈, as required. □

Remark 2.15. An alternative characterisation to the above is via open subsets of (rather than of
𝑛), or open sets containing the diagonal in ×, by comparing words letter-by-letter to define
the ‘tolerance’.
In this case, property 3 is easy to interpret when has a metric 𝑑. Then, we can take as 𝑈 the

pairs of words (𝑢, 𝑢′) so that 𝑑(𝑢𝑖, 𝑢′𝑖 ) < 𝜖 for each pair of letters 𝑢𝑖 ⊲ 𝑢 and 𝑢
′
𝑖
⊲ 𝑢′. The property

then says: for every 𝑛 ⩾ 1 and 𝜖 > 0, there is some 𝑁 = 𝑁(𝑛, 𝜖) ⩾ 1 so that, for every 𝑢 ∈ 𝑛 and
𝑣 ∈ 𝑁 , there is some subword 𝑢′ ⊲ 𝑣 with 𝑑(𝑢, 𝑢′) < 𝜖. This definition in the metric setting has
appeared previously, for instance, in the work of Frettlöh and Richard [23].

The following is well known for general invertible topological dynamical systems [24,
Rem. 2.12], and so, we state it without proof.

Proposition 2.16. Let 𝑋 ⊆ ℤ be a subshift. The subshift 𝑋 is minimal if and only if every element
𝑤 ∈ 𝑋 has a dense orbit.

Likewise, the following lemmas are simple exercises.
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SUBSTITUTIONS ON COMPACT ALPHABETS 7 of 48

Lemma 2.17. Let𝑋 ⊆ ℤ be a subshift. If𝑋 is minimal, every𝑤 ∈ 𝑋 has the same language and is
repetitive, with the same value of𝑁 = 𝑁(𝑛,𝑈) for each 𝑛 ⩾ 1 and non-empty open set𝑈 ⊆ 𝑛(𝑤).
Lemma 2.18. If 𝑤 ∈ ℤ is repetitive, then 𝑋𝑤 is minimal.

Putting together Proposition 2.16, Lemma 2.17 and Lemma 2.18 gives us the following.

Corollary 2.19. Let 𝑤 ∈ ℤ. The following are equivalent:

(1) 𝑋𝑤 is minimal;
(2) every element 𝑥 ∈ 𝑋𝑤 has a dense orbit;
(3) 𝑤 is repetitive;
(4) every element 𝑥 ∈ 𝑋𝑤 is repetitive.

3 SUBSTITUTIONS

Ourmain focus will be on subshifts coming from substitutions, to which we now turn. The theory
of substitutions on finite alphabets is well developed [8, 18, 32], and the reader is encouraged to
familiarise themselves with that setting in order to compare and contrast our results with the
classical theory. Where appropriate, we highlight these differences and subtleties.

Definition 3.1. Let 𝜚∶ → + be a continuous function. We call such a function a substitution
on. We say that 𝜚 is a substitution of constant length 𝑛 if 𝜚() ⊆ 𝑛.

Note that continuity of 𝜚 is automatically satisfied when  is finite (and thus given the dis-
crete topology). To give an idea of the variety of substitutions that satisfy this general definition,
consider the following examples on infinite alphabets.

Example 3.2. Take = ℕ∞ = ℕ0 ∪ {∞}, the one-point compactification of the natural numbers
ℕ0, with the substitution 𝜚∶ → + given by

𝜚∶

⎧⎪⎨⎪⎩
0 ↦ 0 0 0 1

𝑛 ↦ 0 𝑛−1 𝑛+1

∞ ↦ 0∞∞.

Example 3.3. Take  = 𝑆1 = {𝑧 ∈ ℂ ∣ |𝑧| = 1} as the unit circle in the complex numbers. For
fixed 𝛼 ∈ , we have the substitution 𝜚∶ → +

𝜚∶ 𝑧 ↦ 𝑧 𝛼𝑧,

where the image of 𝑧 contains itself and 𝛼𝑧, which is the product of 𝑧 with 𝛼.

Example 3.4. For an iterated function system {𝑓1, … , 𝑓𝑑} on a compact space 𝑋 with attractor 𝑌,
let = 𝑌, with the substitution 𝜚∶ → + given by

𝜚∶ 𝑎 ↦ 𝑓𝑤1(𝑎)(𝑎) ⋯ 𝑓𝑤𝑘(𝑎)(𝑎),

where the word 𝑤1(𝑎)⋯𝑤𝑘(𝑎) ∈ {1, … , 𝑑}
+ is locally constant on 𝑌.
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8 of 48 MAÑIBO et al.

Example 3.3 above is a constant length substitution because |𝜚(𝑧)| = 2 for all 𝑧 ∈ . In fact, we
will see that we have no choice but to make the substitution constant length when the alphabet is
 = 𝑆1. The next result shows that topological properties of the alphabet, namely connectedness,
can heavily restrict properties of substitutions on that alphabet. We see also that, even though our
alphabets are potentially infinite, continuity of the substitution and compactness of the alphabet
ensure that the images of letters under substitution are uniformly bounded in length.

Proposition 3.5. Let 𝜚∶ → + be a substitution. There exists 𝑘 ⩾ 1 such that for all 𝑎 ∈ ,|𝜚(𝑎)| ⩽ 𝑘. If the alphabet is connected, then 𝜚 is constant length.

Proof. The function | ⋅ |◦𝜚∶ → ℕ is continuous as it is the composition of two continuous
functions. It follows that |𝜚()| is compact by the compactness of and so is bounded. If is con-
nected, then so is |𝜚()| and hence there exists an 𝑛 ⩾ 1 such that for all 𝑎 ∈ , |𝜚(𝑎)| = 𝑛. □

Similarly, a substitution is, of course, constant length on any connected subset of the alphabet.
Given Proposition 3.5, we may define the length of a substitution by |𝜚| ∶= max𝑎∈ |𝜚(𝑎)| ∈ ℕ.
It is often the case that checking continuity of a substitution is easier if one can do it component-

wise. Indeed, Durand, Ormes and Petite gave an alternative equivalent definition of a substitution
[14] (there called a generalised substitution). Recall that 𝑝𝑖 ∶ 𝑛 →  is the canonical projection
function onto the 𝑖th component of the product𝑛.

Proposition 3.6. A function 𝜚∶ → + is continuous if and only if for every 𝑛 ⩾ 1, the subspace
𝜚−1(𝑛) ⊆  is open, and for every 1 ⩽ 𝑖 ⩽ 𝑛, the composition 𝑝𝑖◦𝜚∶ 𝜚−1(𝑛) →  is continuous.

Proof. Suppose that 𝜚∶ → + is continuous. As 𝑛 is an open subset of +, and 𝜚 is
continuous, it follows that 𝜚−1(𝑛) is open in . Then, as 𝑝𝑖 is continuous for every 1 ⩽
𝑖 ⩽ 𝑛, and restricting continuous functions to subspaces preserves continuity, it follows that
𝑝𝑖◦𝜚∶ 𝜚

−1(𝑛) →  is continuous.
For the other direction, it is enough to show that

𝜚|𝜚−1(𝑛) ∶ 𝜚
−1(𝑛) → +

is continuous for every 𝑛 ⩾ 1, as the (disjoint) sets 𝜚−1(𝑛) are open in. For any particular 𝑛, the
universal property of products says that 𝜚|𝜚−1(𝑛) is continuous if and only if 𝑝𝑖◦𝜚∶ 𝜚−1(𝑛) → 
is continuous for every 1 ⩽ 𝑖 ⩽ 𝑛, and so, we are done. □

By Proposition 3.5, one is then only required to check the compositions 𝑝𝑖◦𝜚 for a finite number
of the subalphabets 𝜚−1(𝑛) in order to confirm continuity of 𝜚.
A substitution naturally extends to a continuous function 𝜚∶ ∗ → ∗. We define 𝜚(𝜀) ∶= 𝜀

and for 𝑢 = 𝑢1⋯𝑢𝑛 ∈ 𝑛 ⊆ +, we define

𝜚(𝑢) ∶= 𝜚(𝑢1)⋯ 𝜚(𝑢𝑛)

by concatenation. Since 𝜚∶ ∗ → ∗ has the same domain and codomain, it may be iterated. By
continuity of 𝜚, all iterates 𝜚𝑘 for 𝑘 ∈ ℕ are also continuous and so are also substitutions. Words
of the form 𝜚𝑘(𝑎) are called 𝑘-superwords.
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SUBSTITUTIONS ON COMPACT ALPHABETS 9 of 48

Definition 3.7. Let 𝜚∶ → + be a substitution. We say that a word 𝑢 ∈ 𝑛 is generated by 𝜚 if
there exist 𝑎 ∈ , 𝑘 ⩾ 0 such that 𝜚𝑘(𝑎) contains𝑢 as a subword.We say that 𝜚 generates arbitrarily
long words if, for each 𝑛 ∈ ℕ, there is a word of length 𝑛 generated by 𝜚. In this case, the language
of 𝜚 is

(𝜚) = {𝑢 ∈ ∗ ∣ 𝑢 is generated by 𝜚},

and we call words in (𝜚) legal. The legal words of length 𝑛 are denoted by 𝑛(𝜚). The subshift
associated with 𝜚 is 𝑋𝜚 ∶= 𝑋(𝜚).

Note that the language includes closure points of words generated by 𝜚. If closure points were
not included, then the following lemma, stating that (𝜚) is a language, would fail, and thus, 𝑋𝜚
would also not be guaranteed to be a subshift.

Lemma 3.8. Let 𝑣 ∈ (𝜚). Then, 𝜚(𝑣) ∈ (𝜚) and 𝑢 ∈ (𝜚) for any 𝑢 ⊲ 𝑣. In particular, (𝜚) is a
language if 𝜚 generates arbitrarily long words.

Proof. Let 𝑌 be the set of generated words, so that (𝜚) = 𝑌. By continuity of 𝜚, we have that
𝜚((𝜚)) = 𝜚(𝑌) ⊆ 𝜚(𝑌). If 𝑢 ∈ 𝑌, then 𝑢 ⊲ 𝜚𝑛(𝑎) for some 𝑎 ∈  and 𝑛 ∈ ℕ0 and thus 𝜚(𝑢) ⊲
𝜚𝑛+1(𝑎) so that 𝜚(𝑌) ⊆ 𝑌. Hence, 𝜚(𝑌) ⊆ 𝑌 = (𝜚) and thus 𝜚((𝜚)) ⊆ (𝜚), as required.
The proof for closure under subwords is similar. Let 𝑌𝑛 and 𝑌𝑚 denote the sets of generated

words of length 𝑛 > 𝑚. Given some 0 ⩽ 𝑗 ⩽ 𝑛 − 𝑚, let 𝑝∶ 𝑛 → 𝑚 be the continuous map that
takes the 𝑗th subword of length𝑚. Then, 𝑝(𝑛(𝜚)) = 𝑝(𝑌𝑛) ⊆ 𝑝(𝑌𝑛) by continuity. Clearly, a sub-
word of a generatedword is generated, so 𝑝(𝑌𝑛) ⊆ 𝑌𝑚 = 𝑚(𝜚) and thus 𝑝(𝑛(𝜚)) ⊆ 𝑚(𝜚). Since
𝑛 > 𝑚 and 𝑗 were arbitrary, we see that (𝜚) is closed under taking subwords.
By definition, (𝜚) is closed, and by the above is closed under taking subwords. If 𝜚 generates

arbitrarily long words then each 𝑛(𝜚) ≠ ∅ and thus is a language. □

Corollary 3.9. Let 𝜚∶ → + be a substitution. Then, 𝜚(𝑋𝜚) ⊆ 𝑋𝜚.

Proof. Let𝑤 ∈ 𝑋𝜚, so every subword of𝑤 is legal. Let 𝑢 ⊲ 𝜚(𝑤). Then, 𝑢 ⊲ 𝜚(𝑣) for some 𝑣 ⊲ 𝑤, the
latter implying 𝑣 ∈ (𝜚). By Lemma 3.8, we have 𝜚(𝑣) ∈ (𝜚). By the same lemma, since 𝑢 ⊲ 𝜚(𝑣),
we have 𝑢 ∈ (𝜚). Since 𝑢 ⊲ 𝜚(𝑤) was arbitrary, we see that 𝜚(𝑤) ∈ 𝑋𝜚, as required. □

Corollary 3.10. Let 𝜚∶ → + be a substitution that generates arbitrarily long words. The asso-
ciated space 𝑋𝜚 ⊆ ℤ is a subshift (in particular, 𝑋𝜚 ≠ ∅). Conversely, if there exists some 𝑘 ⩾ 1 so
that |𝜚𝑛(𝑎)| < 𝑘 for all 𝑛 ∈ ℕ and 𝑎 ∈ , then 𝑋𝜚 = ∅.
Proof. If |𝜚𝑛(𝑎)| < 𝑘 for all 𝑎 ∈  and 𝑛 ∈ ℕ, then𝑘(𝜚) = ∅ and hence𝑋𝜚 = ∅. Otherwise,(𝜚)
is a language by Lemma 3.8 and 𝑋𝜚 is a subshift by Proposition 2.3. □

Corollary 3.11. Let 𝜚∶ → + be a substitution with associated subshift𝑋𝜚. If there exists a letter
𝑎 ∈  such that lim𝑛→∞ |𝜚𝑛(𝑎)| = ∞, then 𝑋𝜚 ≠ ∅ is a subshift.

One might expect the converse of the above to hold by some compactness argument; it, of
course, holds for finite or connected alphabets. However, it is possible to engineer an example
where this is not the case.
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10 of 48 MAÑIBO et al.

Example 3.12. Let = ℕ∞ × ℕ∞, whereℕ∞ = ℕ0 ∪ {∞} is the one-point compactification ofℕ0.
Define a substitution 𝜚∶ → + by

𝜚(𝑛,𝑚) =

⎧⎪⎨⎪⎩
(0, 0), if 𝑛 = 0,𝑚 = 0,

(𝑛,𝑚 − 1), if𝑚 > 0,

(𝑛 − 1, 𝑛)(0, 𝑛), if 𝑛 > 0 and𝑚 = 0,

where∞− 1 ∶= ∞. By Proposition 3.6, 𝜚 is continuous. One quickly sees that

lim
𝑖→∞

𝜚𝑖(𝑛,𝑚) = (0, 0)𝑛+1 if 𝑛,𝑚 ≠∞;
lim
𝑖→∞

𝜚𝑖(∞,𝑚) = (∞,∞)(0,∞) if𝑚 ≠∞;
lim
𝑖→∞

𝜚𝑖(𝑛,∞) = (𝑛,∞).

For every 𝑘 ∈ ℕ, the letter (𝑘, 0) eventually grows to length 𝑘 + 1 under iterated substitution,
meaning that 𝑋𝜚 is non-empty by Corollary 3.10. In fact,

𝑋𝜚 = {⋯ (0, 0)(0, 0)|(0, 0)(0, 0)⋯}.
However, every letter is eventually constant under substitution, so no letter grows without bound.

Example 3.13. It may be that not all letters of  appear in 𝑋𝜚 = 𝑋((𝜚)), even if # < ∞ and
the alphabet cannot be reduced to give the same subshift. Indeed, consider the substitution

𝜚∶

{
𝑎 ↦ 𝑎,

𝑏 ↦ 𝑎𝑏.

It is easy to see that (𝜚) = {𝑎𝑛, 𝑎𝑛𝑏 ∣ 𝑛 ∈ ℕ0}. The only bi-infinite element admitted by this lan-
guage is the periodic word containing only 𝑎, and the substitution cannot be restricted to a smaller
alphabet that gives the same.
We see that (𝑋𝜚) = {𝑎𝑛 ∣ 𝑛 ∈ ℕ0} and (as also for the previous example) it is possible for

(𝑋𝜚) ⊆ (𝜚) to be a strict inclusion. However, for the sufficiently well-behaved substitutions
of main interest here (such as primitive substitutions, but also see Proposition 3.16), the full
language, and in particular the full alphabet, is realised by 𝑋𝜚.

Remark 3.14. For 𝐶 ⊆ , let 𝑠(𝐶) be the set of letters in substitutes of elements of 𝐶, that is,
𝑠(𝐶) ∶= {𝑎 ⊲ 𝜚(𝑐) ∣ 𝑐 ∈ 𝐶, 𝑎 ∈ }.

One may always restrict to a letter surjective substitution, in the sense that  = 𝑠(). Indeed,
consider the eventual range

 =⋂
𝑛∈ℕ

𝑠𝑛().

This is a nested intersection of non-empty compact sets and thus ≠ ∅. Since 𝑠() = , the sub-
stitution is well defined and letter surjective on. All elements of the shift𝑋𝜚 contain only letters
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SUBSTITUTIONS ON COMPACT ALPHABETS 11 of 48

in . Indeed, let 𝑎 ⊲ 𝑤 ∈ 𝑋𝜚 for 𝑎 ∈  and let 𝑌𝑛 be the set of words of length 𝑛 generated by
𝜚. Since 𝑎 ⊲ 𝑣 for 𝑣 ∈ (𝜚) and 𝑣 arbitrarily long, we have that 𝑎 ⊲ 𝑣 ∈ 𝑌𝑛 for 𝑛 arbitrarily large.
Since the length of the substitution is bounded (Proposition 3.5), we have that all letters of 𝑌𝑛 are
in 𝑠𝑘(), where 𝑘 can be made arbitrarily large by choosing 𝑛 sufficiently large. It follows that
𝑎 ∈ 𝑠𝑘() = 𝑠𝑘() for 𝑘 arbitrarily large and hence 𝑎 ∈ , so all elements of the shift contain
only letters of. This does not mean, however, that restricting the substitution to does not give
a smaller subshift, as seen in the next example.

Example 3.15. Consider the finite substitution

𝜚∶

⎧⎪⎨⎪⎩
𝑎 ↦ 𝑏𝑐,

𝑏 ↦ 𝑏𝑏,

𝑐 ↦ 𝑐𝑐.

One may restrict the substitution to its eventual range  = {𝑏, 𝑐}, which generates the subshift
of two periodic elements of all 𝑏s and all 𝑐s. However, 𝜚𝑛+1(𝑎) = 𝑏2𝑛𝑐2𝑛 , and thus, we have the
non-periodic element⋯ 𝑏𝑏𝑏𝑐𝑐𝑐⋯ ∈ 𝑋𝜚 in the subshift of the original substitution.

The following result identifies those substitutions whose languages (and in particular full
alphabets) are fully realised in the subshift. A result of this form is only of interest when 𝜚 gener-
ates arbitrarily long words since, otherwise, (1) and (2) fail whilst the subshifts in the equalities of
(3) and (4) are not defined in this case.

Proposition 3.16. Let 𝜚 a substitution that generates arbitrarily long words. The following are
equivalent:

(1) for every 𝑛 ∈ ℕ and non-empty open subset 𝑈 ⊆ , there is some word generated by 𝜚 of length
2𝑛 + 1 whose central letter is in𝑈;

(2) for all 𝑎 ∈  and 𝑛 ∈ ℕ, there is a legal word of length 2𝑛 + 1 whose central letter is 𝑎;
(3) 1(𝑋𝜚) = 1(𝜚) = ;
(4) (𝑋𝜚) = (𝜚).
Proof. (1 ⇒ 2): Let 𝑎 ∈  be arbitrary. By assumption, for each open set𝑈 ⊆  containing 𝑎, we
may construct a word 𝑣𝑈 of length 2𝑛 + 1 that is generated by 𝜚 and has a letter of𝑈 at its centre.
By compactness of2𝑛+1, there is a subnet of (𝑣𝑈) that converges to someword 𝑣. By construction,
𝑣 has 2𝑛 + 1 letters, contains 𝑎 at its centre and is the limit of a net of words generated by 𝜚. Thus,
𝑣 is in the closure of the generated words, so is legal, as required.
(2 ⇒ 3): By definition, 1(𝜚) =  (since 𝑎 ⊲ 𝜚0(𝑎) = 𝑎). To see that every letter 𝑎 ∈  appears

in𝑋𝜚, by using the assumption, wemay find a sequence (𝑣𝑛) of legal words of length 2𝑛 + 1whose
central letters are all 𝑎. By compactness of, we may choose a subsequence 𝑆1 of (𝑣𝑛) that con-
verges at positions−1 and+1, say to𝑎−1 and𝑎1, respectively. Similarly,wemay find a subsequence
𝑆2 of 𝑆1 that also converges at positions 𝑎−2 and 𝑎2. Continuing in this way, we construct an infi-
nite word𝑤 = {𝑎𝑖}𝑖∈ℤ and subsequences 𝑆𝑛 of legal words that converge to𝑤[−𝑛,𝑛] when restricted
to the word of length 2𝑛 + 1 about the origin. Since (𝜚) is closed, we see that 𝑤[−𝑛,𝑛] ∈ (𝜚). As
these cover all of 𝑤, it follows that 𝑤 ∈ 𝑋𝜚, since then any finite subword of 𝑤 is a subword of
some 𝑤[−𝑛,𝑛], which is legal. As 𝑎 = 𝑤0 we have that 𝑎 ∈ 1(𝑋𝜚), as required.
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12 of 48 MAÑIBO et al.

(3 ⇒ 4): We show that 𝜚𝑛(𝑎) ∈ (𝑋𝜚) for each 𝑎 ∈  and 𝑛 ∈ ℕ0. By assumption, for each 𝑎 ∈, there is some𝑤 ∈ 𝑋𝜚 so that 𝑎 ⊲ 𝑤. Then, 𝜚𝑛(𝑎) ⊲ 𝜚𝑛(𝑤), and 𝜚𝑛(𝑤) ∈ 𝑋𝜚 by Corollary 3.9. We
see that (𝑋𝜚) contains all generated words. Since languages are always closed (Proposition 2.7),
we see that (𝜚) ⊆ (𝑋𝜚). The reverse inclusion is trivial, by definition of 𝑋𝜚.
(4 ⇒ 1): Let 𝑈 ⊆  be non-empty and open and 𝑛 ∈ ℕ arbitrary. Take any 𝑎 ∈ 𝑈. Choose any

𝑤 ∈ 𝑋𝜚 with 𝑤0 = 𝑎, which we may do using shift-invariance and the fact that, in particular, our
assumption implies that1(𝑋𝜚) = 1(𝜚) = . Then,𝑤[−𝑛,𝑛] is legal, of length 2𝑛 + 1 andhas𝑤0 =
𝑎. Since the legal words are in the closure of the generated words, it follows that we may find a
generated word 𝑣 with 𝑣0 ∈ 𝑈. □

Remark 3.17. If the equivalent conditions of the above result are satisfied, then 𝜚 is letter surjective.
Indeed, in this case, any given𝑎 ∈  is legal, so for arbitrary open𝑈 ⊆  containing𝑎, we can find
some superword 𝜚𝑘(𝑏) = 𝜚(𝜚𝑘−1(𝑏)) containing a letter of 𝑈. In particular, there is some 𝑏𝑈 ∈ 
with 𝜚(𝑏𝑈)𝑖 ∈ 𝑈. By compactness of, there is a convergent subnet of (𝑏𝑈), which by continuity
has limit 𝑏 satisfying 𝑎 ⊲ 𝜚(𝑏). However, being letter surjective is not sufficient, as demonstrated
by Example 3.13.

Remark 3.18. In the case that  is infinite, it is not necessarily true that we may find any given
𝑎 ∈  in the interior of a word generated by 𝜚 in the above result. For example, consider  =

ℕ0 ∪ {∞} and

𝜚∶

{
𝑛 ↦ 0 𝑛+1

∞ ↦ 0∞.

It is not hard to see that every letter of  appears in some word of 𝑋𝜚. In particular, we have
the fixed point 𝑥 = 𝜚∞(∞ | 0) ∈ 𝑋𝜚; that is, we can build the point 𝑥 as the limit of nested sub-
words (𝑢(𝑛))𝑛⩾0 centred at the origin by defining 𝑢(0) = ∞ | 0 and 𝑢(𝑛) = 𝜚𝑛(∞) | 𝜚𝑛(0) for 𝑛 ⩾ 0.
However,∞ appears only as the final term of superwords of the form 𝜚𝑛(∞).

The above proposition gives necessary and sufficient conditions for the language of the subshift
to agree with the legal words. The next result concerns this set of legal words, which, a priori,
requires taking a closure of the generated words for each 𝑛. Fortunately, as long as all letters
grow without bound under substitution, then, once we know the two-letter legal words, we can
construct all other legal words by substituting these and the letters.
Lemma 3.19. Let 𝜚∶ → + be a substitution such that |𝜚𝑛(𝑎)|→∞ as 𝑛 → ∞ for every 𝑎 ∈ .
For a subset𝑈 ⊆ ∗, let 𝑆𝑛(𝑈) ⊆ 𝑛 denote the subwords of length 𝑛 of words from𝑈. Then,

𝑛(𝜚) =
𝑃⋃
𝑗=0

𝑆𝑛(𝜚
𝑗( ∪ 2(𝜚))), (1)

where 𝑃 may be taken as any number with |𝜚𝑃(𝑎)| ⩾ 𝑛 for all 𝑎 ∈ .
Proof. Firstly, there exists some 𝑃 ∈ ℕ with |𝜚𝑃(𝑎)| ⩾ 𝑛 for all 𝑎 ∈ . Indeed, consider

𝑚 = {𝑎 ∈  ∣ |𝜚𝑚(𝑎)| ⩽ 𝑛 − 1} ⊆ .
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SUBSTITUTIONS ON COMPACT ALPHABETS 13 of 48

Then𝑚 = (| ⋅ |◦𝜚𝑚)−1{1, … , 𝑛 − 1} and hence is compact. Since words grow under application
of 𝜚, we have that 𝑚 ⊇ 𝑚+1. If each 𝑚 ≠ ∅, then by Cantor’s intersection theorem, there is
some 𝑥 ∈ 𝑚 for each 𝑚. This contradicts the substitution growing on 𝑥. It follows that some
𝑃 = ∅ or, equivalently, |𝜚𝑃(𝑎)| ⩾ 𝑛 for each 𝑎 ∈ .
We define

𝑍 =

∞⋃
𝑗=0

𝑆𝑛(𝜚
𝑗( ∪ 2(𝜚))),

which agrees with the union of the lemma except that we take an infinite union. Clearly, 𝑍 con-
tains all length 𝑛 words generated by 𝜚. Moreover, since the substitution of a legal word is legal
(Lemma 3.8), we have that 𝑍 ⊆ 𝑛. It follows that 𝑍 = 𝑛.
We claim that the above union defining 𝑍 does not change by truncating at 𝑗 = 𝑃. Indeed,

suppose that 𝑣 ∈ 𝑛(𝜚) with 𝑣 ⊲ 𝜚𝑘(𝑢) for 𝑘 > 𝑃 and 𝑢 ∈  ∪ 2(𝜚). Then, 𝑣 ⊲ 𝜚𝑃(𝜚𝑘−𝑃(𝑢)). As
any word of the form 𝜚𝑃(𝑎) has length at least 𝑛, it follows that there is some one- or two-letter
subword 𝑢′ ⊲ 𝜚𝑘−𝑃(𝑢) with 𝑣 ⊲ 𝜚𝑃(𝑢′). Since substitutions and subwords of legal words are legal,
we have that 𝑢′ ∈  ∪ 2(𝜚) and thus 𝑣 ∈ 𝑆𝑛(𝜚𝑃( ∪ 2(𝜚))).
It follows that 𝑍 is the finite union in the statement of the lemma. Since ∪ 2(𝜚) is compact,

the same follows for 𝑍, which is thus closed. Hence, 𝑛 = 𝑍 = 𝑍, as required. □

Remark 3.20. Technically, the  term of Equation (1) needs to be included in general, since it is
possible that a letter does not appear in any two-letter legal word. However, in examples where the
substitution grows without bound, if every legal letter also appears in the subshift (i.e. it satisfies
the equivalent conditions of Proposition 3.16), then it must appear in a legal two-letter word, and
thus, we may simplify the statement to

𝑛(𝜚) =
𝑃⋃
𝑗=0

𝑆𝑛(𝜚
𝑗(2(𝜚))).

In fact, it may be simplified further in this case. In Proposition 3.21, we will see that every element
of𝑋𝜚 is the image under substitution of another, up to a shift. It easily follows that every legal one-
or two-letter word is a subword of the substitute of another. Hence, the above is a nested union,
and so, we may write instead:

𝑛(𝜚) = 𝑆𝑛(𝜚𝑃(2(𝜚))).
The following result shows that for every element of 𝑋𝜚, there is a corresponding ‘superword’

decomposition (substitutive pre-image up to an appropriate shift):

Proposition 3.21. Let 𝜚∶ → + be a substitution with associated subshift𝑋𝜚. For every𝑤 ∈ 𝑋𝜚,
there exists an element 𝑥 ∈ 𝑋𝜚 and an integer 0 ⩽ 𝑖 ⩽ |𝜚(𝑥0)| − 1 such that 𝜎𝑖(𝜚(𝑥)) = 𝑤.
Proof. We present an analogue of the usual proof from the finite alphabet setting. Let𝑤 ∈ 𝑋𝜚 and
𝑣𝑛 = 𝑤[−𝑛,𝑛]. Since 𝑣𝑛 is legal, there is a net of generated words converging to 𝑣𝑛. Thus, for each
𝑛, we have a directed set 𝛬𝑛, superwords 𝜚𝑘(𝑛,𝑚)(𝑡(𝑛,𝑚)) for 𝑘(𝑛,𝑚) ∈ ℕ and 𝑡(𝑛,𝑚) ∈  and
subwords 𝑢(𝑛,𝑚) ⊲ 𝜚𝑘(𝑛,𝑚)(𝑡(𝑛,𝑚)) so that 𝑢(𝑛,𝑚) → 𝑣𝑛 as𝑚 → ∞ in 𝛬𝑛.
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14 of 48 MAÑIBO et al.

We may consider the subwords 𝑢(𝑛,𝑚) as centred over the origin, so that convergence
𝑢(𝑛,𝑚) → 𝑣𝑛 as 𝑚 → ∞ holds letter-wise, at each position. Similarly, we may position the sub-
words 𝑞(𝑛,𝑚) ∶= 𝜚𝑘(𝑛,𝑚)−1(𝑡(𝑛,𝑚)) over the origin so that 𝑢(𝑛,𝑚) ⊲ 𝜎𝑖(𝑛,𝑚)𝜚(𝑞(𝑛,𝑚)), for 0 ⩽
𝑖(𝑛,𝑚) < 𝓁, where𝓁 is the number of letters in the substitute of the origin letter of 𝑞(𝑛,𝑚). Indeed,
we may shift 𝑞(𝑛,𝑚) so that 𝑢(𝑛,𝑚)0 is in the image of the origin letter of 𝑞(𝑛,𝑚) after substitu-
tion. We may pass to subnets of each 𝛬𝑛 so that 𝑖(𝑛,𝑚) = 𝑖𝑛 is constant in𝑚, and then restrict to
values of 𝑛 ∈ ℕ0 so that all remaining 𝑖𝑛 = 𝑖 are constant.
We thus construct subwords 𝑞(𝑛,𝑚) so that letters at positions [−𝑛, 𝑛] of 𝜎𝑖𝜚(𝑞(𝑛,𝑚)) converge

to those of 𝑤. Using compactness, choose a subnet 𝑆0 of 𝑞(𝑛,𝑚) that converges at position 0, say
to 𝑥0. By continuity, we have that 0 ⩽ 𝑖 ⩽ |𝜚(𝑥0)| − 1. Similarly, we may choose a subnet 𝑆1 of 𝑆0
that also converges at positions−1 and 1, say to letters 𝑥−1 and 𝑥1, respectively. Inductively define
subnets in this way so that 𝑆𝑛 converges at all positions 𝑗 ∈ [−𝑛, 𝑛] to letters 𝑥𝑗 .
By construction (and continuity), the bi-infinite element 𝑤′ = {𝑥𝑗}𝑗∈ℤ satisfies 𝜎𝑖(𝜚(𝑤′)) = 𝑤.

We now need to show that every subword of 𝑤′ is legal. Since, by Lemma 3.8, subwords of legal
words are legal, it suffices to show that 𝑤′

[−𝑛,𝑛]
is legal for each 𝑛. By construction, we have the

net 𝑆𝑛, which converges letter-wise on positions [−𝑛, 𝑛] to 𝑤[−𝑛,𝑛]. This net consists of subwords
of superwords 𝜚𝑘(𝑛,𝑚)−1(𝑡(𝑛,𝑚)), so it follows that𝑤[−𝑛,𝑛] is in the closure of the generated words
and thus is legal, as required. □

3.1 Primitivity

The following definition is adapted from the work of Durand, Ormes and Petite [14], modified so
that the condition only needs to be checked for a single power 𝑝. This definition is essentially the
same as the one given by Frank and Sadun [20], just in a slightly different setting.

Definition 3.22. Let 𝜚∶ → + be a substitution. We say that 𝜚 is primitive if, for every non-
empty open set 𝑈 ⊆ , there exists a 𝑝 = 𝑝(𝑈) ⩾ 0 such that, for all 𝑎 ∈ , some letter of 𝜚𝑝(𝑎)
is in 𝑈.

This is easily seen to be equivalent to the definition in [14].

Lemma 3.23. The substitution 𝜚 is primitive if and only if, for every non-empty open set 𝑈 ⊆ ,
there exists a 𝑝 = 𝑝(𝑈) ⩾ 0 such that, for all 𝑎 ∈  and for all 𝑗 ⩾ 𝑝, some letter of 𝜚𝑗(𝑎) is in𝑈.

Proof. Suppose that 𝜚 is primitive and let 𝑈 ⊆  be a given open set. Let 𝑝 be such that for all
𝑎 ∈ , some letter of 𝜚𝑝(𝑎) is in 𝑈 and let 𝑗 ⩾ 𝑝. Let 𝑎 be a letter in and let 𝑏 be the first letter
of 𝜚𝑗−𝑝(𝑎). Then, 𝜚𝑝(𝑏) ⊲ 𝜚𝑝(𝜚𝑗−𝑝(𝑎)) = 𝜚𝑗(𝑎). By primitivity, 𝜚𝑝(𝑏) ⊲ 𝜚𝑗(𝑎) contains a letter in𝑈.
The other direction is trivial. □

The following is an analogue of Proposition 2.14 on repetitivity, in the sense that it gives an
equivalent primitivity condition described by finding all letters of within all 𝑝-superwords, up
to some given tolerance.

Proposition 3.24. The following are equivalent:

(1) 𝜚 is primitive;
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SUBSTITUTIONS ON COMPACT ALPHABETS 15 of 48

(2) for every finite collection = {𝑈𝑖}
𝓁
𝑖=1

of open subsets𝑈𝑖 ⊆ , there exists a 𝑝 = 𝑝( ) ⩾ 0 such
that for all 𝑎 ∈  and 1 ⩽ 𝑖 ⩽ 𝓁, some letter of 𝜚𝑝(𝑎) is in𝑈𝑖;

(3) for every open𝑈 ⊆  × containing the diagonal, there is some 𝑝 ⩾ 0 so that, for all 𝑎, 𝑏 ∈ ,
we have that 𝑏′ ⊲ 𝜚𝑝(𝑎) for some 𝑏′ ∈  with (𝑏, 𝑏′) ∈ 𝑈.

Proof. (1⇒ 2): This follows trivially from Lemma 3.23.
(2⇒ 3): Let 𝑈 ⊆  × be open and contain the diagonal and take 𝑉 ⊆  × with 𝑉 = 𝑉−1

and 𝑉◦𝑉 ⊆ 𝑈. Similar to before we take the open cover {𝑉𝑎}𝑎∈ of, where 𝑎′ ∈ 𝑉𝑎 if (𝑎, 𝑎′) ∈
𝑉. By compactness, we may find a finite subcover {𝑉𝑎𝑖 }

𝓁
𝑖=1
. Take 𝑝 ⩾ 0 according to property 2

and let 𝑎, 𝑏 ∈ . We have that 𝑎 ∈ 𝑉𝑎𝑖 for some 𝑖, so (𝑎𝑖, 𝑎) ∈ 𝑉 and thus also (𝑎, 𝑎𝑖) ∈ 𝑉. By
property 2, we have that 𝑎′ ⊲ 𝜚𝑝(𝑏) for some 𝑎′ ∈ 𝑉𝑎𝑖 so that (𝑎𝑖, 𝑎

′) ∈ 𝑉. We have that (𝑎, 𝑎′) =
(𝑎, 𝑎𝑖)◦(𝑎𝑖, 𝑎

′) ∈ 𝑉◦𝑉 ⊆ 𝑈, as required.
(3⇒ 1): Let 𝑈 ⊆  be an arbitrary, non-empty open subset and let 𝑉 = ( ×) ⧵ ({𝑎} × ( ⧵

𝑈)), where 𝑎 ∈ 𝑈 is arbitrary. Then, 𝑉 ⊆  × is open and contains the diagonal. Take 𝑝 ⩾ 0
according to property 3 and let 𝑏 ∈  be arbitrary. Then there is some 𝑎′ ⊲ 𝜚𝑝(𝑏)with (𝑎, 𝑎′) ∈ 𝑉.
The latter implies that 𝑎′ ∈ 𝑈, as required. □

Remark 3.25. Similar to Remark 2.15, property 3 above has an intuitive interpretation when is
a metric space: for all 𝜖 > 0, there is some 𝑝 = 𝑝(𝜖) ⩾ 0 so that, for all 𝑎 ∈ , every letter 𝑏 ∈ 
is 𝜖-close to a letter of 𝜚𝑝(𝑎).

In the following result (and elsewhere), to avoid trivialities, we assume that 𝜚 is not the trivial
substitution 𝜚(𝑎) = 𝑎 on a one-letter alphabet, which technically would be primitive according to
Definition 3.22.

Proposition 3.26. Let 𝜚∶ → + be a primitive substitution. Then, for all 𝑛 ⩾ 1, there exists a
𝑝 ⩾ 0 such that for all 𝑎 ∈ , |𝜚𝑝(𝑎)| ⩾ 𝑛. Consequently, for all 𝑎 ∈ , one has lim𝑖→∞ |𝜚𝑖(𝑎)| = ∞.

Proof. If  is a singleton, then, since 𝜚 is not the trivial substitution of length 1, 𝜚(𝑎) is given
by 𝑛 copies of 𝑎 for the unique 𝑎 ∈ , so that |𝜚𝑘(𝑎)| = 2𝑘. Otherwise,  contains at least two
distinct points and thus, since is Hausdorff, two non-empty disjoint open subsets 𝑈1, 𝑈2 ⊂ .
By Proposition 3.24, there exists 𝑝 ∈ ℕ so that 𝜚𝑝(𝑎) contains a letter in both 𝑈1 and 𝑈2 for all
𝑎 ∈ , in particular |𝜚𝑝(𝑎)| ⩾ 2 and hence |𝜚𝑘𝑝(𝑎)| ⩾ 2𝑘. □

As a consequence of Corollary 3.11, 𝑋𝜚 must then also be non-empty.

Corollary 3.27. If 𝜚 is primitive, then 𝑋𝜚 ≠ ∅ is a subshift.

It is clear that Property 1 of Proposition 3.16 holds for primitive substitutions. Indeed, take an
arbitrary non-empty open subset𝑈 ⊆  and 𝑎 ∈ . For some 𝑛 ⩾ 1, we have |𝜚𝑛| ⩾ 3, so 𝜚𝑛(𝑎) =
𝑥𝑣𝑦 for 𝑥, 𝑦 ∈  and 𝑣 ∈ +. Consider 𝑗 ⩾ 𝑝 and 𝜚𝑛+𝑗(𝑎) = 𝜚𝑗(𝑥)𝜚𝑗(𝑣)𝜚𝑗(𝑦). By primitivity, 𝜚𝑗(𝑣)
contains a letter 𝑢 ∈ 𝑈. By taking 𝑗 sufficiently large, we may ensure that |𝜚𝑗(𝑥)|, |𝜚𝑗(𝑦)| ⩾ 𝑛, so
that there is a word 𝑣′ ⊲ 𝜚𝑗(𝑎) of length 2𝑛 + 1 centred around 𝑢 and is generated by 𝜚, as required.
Since all letters grow without bound, Remark 3.20 has the following consequence.

Corollary 3.28. Let 𝜚 be a primitive substitution. Then, for all 𝑛 ∈ ℕ0,

𝑛(𝜚) = 𝑛(𝑋𝜚) = 𝑆𝑛(𝜚𝑃(2(𝜚))),
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16 of 48 MAÑIBO et al.

where 𝑆𝑛(𝑈) denotes the 𝑛-letter subwords of words from 𝑈 ⊆ ∗ and 𝑃 is any number satisfying|𝜚𝑃(𝑎)| ⩾ 𝑛 for all 𝑎 ∈ .
For any non-empty open set of legal words 𝑈 (rather than just a set of letters), it will be useful

to find a power 𝑝 such that every 𝑝-superword 𝜚𝑝(𝑎) contains a word in 𝑈 as a subword.

Proposition 3.29. Let 𝜚 be primitive and 𝑈 ⊆ 𝑛(𝜚) be non-empty and open. Then there exists a
power 𝑝 ⩾ 0 such that, for every 𝑎 ∈ , there is a subword of 𝜚𝑝(𝑎) in𝑈.
Proof. Since 𝑈 is open, we can find a generated word 𝑢 ∈ 𝑈 so that 𝑢 = 𝑝𝑖(𝜚𝑘(𝑏)), where 𝑝𝑖 is
the projection to the length 𝑛 subword beginning at the index 𝑖. Again, using that 𝑈 is open, and
continuity of 𝑝𝑖◦𝜚𝑘 (which is well defined on an open subset of), we have an open subset𝑉 ⊆ 
for which 𝑝𝑖◦𝜚𝑘(𝑣) ∈ 𝑈 for all 𝑣 ∈ 𝑉. By primitivity, there is some 𝑝 ⩾ 0 so that 𝜚𝑝(𝑎) contains an
element of 𝑉 for all 𝑎 ∈ . Then, for arbitrary 𝑎 ∈ , we have 𝜚𝑝+𝑘(𝑎) contains a word of 𝜚𝑘(𝑉),
whose 𝑖th subword of length 𝑛 belongs to 𝑈, as required. □

Primitivity of 𝜚 is a strong condition and gives us that 𝑋𝜚 is minimal; hence, every element has
a dense orbit and is repetitive.

Theorem 3.30. Let 𝜚∶ → + be a substitution with associated subshift𝑋𝜚. If 𝜚 is primitive, then
𝑋𝜚 is a minimal subshift.

Proof. Let𝑈 ⊆ 𝑛(𝜚) be any open subset. By Proposition 3.29, there is some 𝑝 ⩾ 0 such that, for all
𝑎 ∈ , there is a subword of 𝜚𝑝(𝑎) in 𝑈. Take any 𝑤 ∈ 𝑋𝜚. By Proposition 3.21, there exists some
𝑤′ ∈ 𝑋𝜚 such that 𝜚𝑝(𝑤′) = 𝜎𝑖(𝑤), where 0 ⩽ 𝑖 ⩽ |𝜚𝑝| − 1. So, the word 𝜚𝑝(𝑤0), and hence a word
in 𝑈, appears within a uniformly bounded distance of the origin in 𝑤, and hence, 𝑤 is repetitive.
Thus, by Corollary 2.19, 𝑋𝑤 is minimal. It is clear that 𝑋𝑤 = 𝑋𝜚, since the above shows that any
non-empty open 𝑈 ⊆ 𝑛(𝜚) contains a subword of any 𝑤 ∈ 𝑋𝜚. □

It is interesting to note therefore that by the above and Propositions 2.12 and 2.16, if the alphabet
 is non-separable, then all substitutions on are non-primitive.

Corollary 3.31. If 𝜚 is primitive, then is separable.

Remark 3.32. In the case when  is zero-dimensional and metrisable, Theorem 3.30 is already
known under an equivalent assumption [14]. In this work, it was shown that the family of
primitive substitution subshifts is in one-to-one correspondence with minimal self-induced Can-
tor systems. The self-induced property implies the dichotomy result that, for this family, the
topological entropy ℎtop(𝑋𝜚) is either 0 or∞; see [14, Prop. 3].

3.2 Realising set substitutions with compact alphabets

Suppose that 𝑆 is a set, and we have a function 𝜚∶ 𝑆 → 𝑆+. It is natural to ask whether we may
extend 𝜚 to a continuous substitution on a compact Hausdorff alphabet. In the finite case, this
is clear, by using the discrete topology on 𝑆. Combinatorial substitutions with 𝑆 countable have
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SUBSTITUTIONS ON COMPACT ALPHABETS 17 of 48

already been studied, for example, in the work of Ferenczi [17]. As we have seen, such a sub-
stitution on a compact alphabet would necessarily be of bounded length. Given this necessary
restriction, we may, in fact, always find such a compactification.

Theorem 3.33. Let 𝜚∶ 𝑆 → 𝑆+ with |𝜚| < ∞. Then, there is a compact Hausdorff alphabet ,
a dense inclusion 𝜄 ∶ 𝑆 ↪  and a substitution 𝜚∶ → + so that 𝜚(𝜄𝑎) = 𝜄𝜚(𝑎) for all 𝑎 ∈ 𝑆.
Moreover, we may choose 𝜄 so that 𝜄(𝑆) is the set of isolated points of.
Proof. Since𝐿 ∶= |𝜚| < ∞, wemaywrite 𝜚∶ 𝑆 → 𝑆 ⊔ 𝑆2 ⊔⋯ ⊔ 𝑆𝐿. Equip𝑆with the discrete topol-
ogy and let 𝜄 ∶ 𝑆 ↪ 𝛽𝑆 be its Stone–Čech compactification. Then, 𝜄 naturally embeds 𝑆𝑛 into (𝛽𝑆)𝑛
for each 𝑛 ∈ ℕ, so we may regard 𝜚 as a map

𝜚∶ 𝑆 → 𝛽𝑆 ⊔ (𝛽𝑆)2 ⊔⋯ ⊔ (𝛽𝑆)𝐿.

This is continuous, since all maps from discrete spaces are. As a finite disjoint union of com-
pact Hausdorff spaces, we have that 𝛽𝑆 ⊔ (𝛽𝑆)2 ⊔⋯ ⊔ (𝛽𝑆)𝐿 is compact Hausdorff. Hence, by the
universal property of the Stone–Čech compactification, we may extend 𝜚 to a continuous map

𝜚∶ 𝛽𝑆 → 𝛽𝑆 ⊔ (𝛽𝑆)2 ⊔⋯ ⊔ (𝛽𝑆)𝐿.

This is nothing other than a continuous substitution of maximal length 𝐿 on the compact, Haus-
dorff alphabet 𝛽𝑆. This compactification makes 𝜄(𝑆) ⊆ 𝛽𝑆 a dense subspace of isolated points, as
required. □

Note that the approach in the above proof, using the Stone–Čech compactification, allows us
to compactify any continuous substitution on a topologised alphabet that is Hausdorff (which
will contain the original alphabet as a dense subspace). Although the above answers our question
on realising arbitrary (infinite) set substitutions with continuous, compact substitutions, it is far
from ideal for typical examples, since the Stone–Čech compactification is usually unwieldy. For
example, 𝛽ℕ0 has cardinality 2𝔠, where 𝔠 is the cardinality of the continuum. In practice, there are
oftenmore obvious compactifications. For example, the substitution 𝜚∶ 𝑛 ↦ 0 𝑛+1 on ℕ0may be
clearly extended to the one-point compactification, by defining∞↦ 0∞, and it is easily checked
that this is primitive; see [17, 20].

4 THE SUBSTITUTION OPERATOR AND NATURAL LENGTH
FUNCTIONS

For a substitution 𝜚, a continuous and non-zero 𝓁∶ → ℝ⩾0 is called a natural length function
for 𝜚 if, for all 𝑎 ∈ , ∑

𝑏⊲𝜚(𝑎)

𝓁(𝑏) = 𝜆 ⋅ 𝓁(𝑎), (2)

where the notation
∑
𝑏⊲𝜚(𝑎) enumerates over each 𝑏-entry of 𝜚(𝑎), including multiplicities. Here,

𝜆 ⩾ 0 is called the inflation factor. In practice, we really want 𝜆 > 1 in order to represent an infla-
tion, and 𝓁(𝑎) > 0 for all 𝑎 ∈  in order to represent tiles as closed intervals with positive length.
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18 of 48 MAÑIBO et al.

For a primitive (or, more generally, irreducible) substitution, both of these properties derive from
Equation (2) (in addition to non-negativity and non-triviality of 𝓁), see Theorem 4.26. However,
the results will be easier to develop in the above slightly generalised setting.
Geometrically, we thus have an associated inflation rule where all letters 𝑎 ∈  are assigned

to a tile of length 𝓁(𝑎), depending continuously on their location in, so that under substitution
these tiles are inflated by a factor of 𝜆 and then perfectly dissected into other tiles, each with
original lengths defined by 𝓁. Fixed points of the substitution 𝜚 (if they exist) then give rise to
self-similar tilings of ℝ.

4.1 The substitution operator

Definition 4.1. We let 𝐸 = 𝐶() denote the Banach space of continuous functions 𝑓∶ → ℝ,
which is equipped with norm ‖𝑓‖ ∶= sup{|𝑓(𝑎)| ∣ 𝑎 ∈ }. Call an element 𝑓 ∈ 𝐸 positive (resp.
strictly positive) if 𝑓(𝑎) ⩾ 0 (resp. 𝑓(𝑎) > 0) for all 𝑎 ∈ . Let𝐾 denote the positive cone of positive
elements, and 𝐾>0 denote the set of strictly positive elements. Given 𝑓, g ∈ 𝐸, we write 𝑓 ⩽ g if
𝑓(𝑎) ⩽ g(𝑎) for all 𝑎 ∈ 𝐴, that is, g − 𝑓 ∈ 𝐾. Given this partial order, 𝐸 is a Banach lattice; see
[39]. We have the order interval [𝑓, g] = {𝑧 ∈ 𝐸 ∣ 𝑓 ⩽ 𝑧 ⩽ g}.
The dual of 𝐸 is the Banach lattice 𝐸′ of continuous homomorphisms 𝜙∶ 𝐸 → ℝ, which has

norm ‖𝜙‖ ∶= sup‖𝑓‖⩽1 |𝜙(𝑓)|. We sometimes write ⟨𝜙, 𝑓⟩ ∶= 𝜙(𝑓). For an operator 𝑀∶ 𝐸 → 𝐸,
the dual operator𝑀′ is defined by (𝑀′𝜙)(𝑓) ∶= ⟨𝜙,𝑀𝑓⟩. The dual cone 𝐾′ ⊂ 𝐸′ is defined as the
set of 𝜙 ∈ 𝐸′ for which 𝜙(𝑓) ⩾ 0 whenever 𝑓 ∈ 𝐾.

By the Riesz–Markov–Kakutani representation theorem, there is a bijection between continu-
ous linear functionals 𝜙 on 𝐸 = 𝐶() and regular signed finite Borel measures 𝜇 on, where we
identify

⟨𝜙, 𝑓⟩⟷ ∫ 𝑓d𝜇,

for continuous ‘test functions’ 𝑓 ∈ 𝐸. Positive functionals on 𝐸 (which are necessarily contin-
uous), that is, the elements of 𝐾′, may be identified with the (unsigned) regular finite Borel
measures on.
Remark 4.2. Because of the above correspondence, allmeasures herewill be assumed to be regular.
For example, when we speak of unique ergodicity in Section 6.1, it is meant that there is a unique
regular Borel probability measure. Note that a Borel probability measure on a compact Hausdorff
alphabet is automatically regular in most cases of interest, including when has a countable
base for its topology, or when is metrisable.

Given any ‘length function’ 𝑓 ∈ 𝐸 (not necessarily one that satisfies Equation (2)), it is still
meaningful to talk of the ‘length’ of the substitute of a tile 𝑎 ∈ , by summing the lengths of the
letters of 𝜚(𝑎). So, we define

𝑀𝜚 ∶= 𝑀∶ 𝐸 → 𝐸, (𝑀𝑓)(𝑎) ∶=
∑
𝑏⊲𝜚(𝑎)

𝑓(𝑏), (3)

where 𝜚(𝑎) is seen as a multiset (so we sum including multiplicities as in Equation (2)).
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SUBSTITUTIONS ON COMPACT ALPHABETS 19 of 48

To find a natural length function is thus to find a positive eigenvector of𝑀, which we call the
substitution operator. Note that𝑀 only depends on the substitution considered as a multi-valued
map, that is, it does not depend on the order of letters of each superword.

Remark 4.3. We note that an analogous operator called the transition map was introduced in [19,
20] in the geometric setting for fusion tilings. Before this, such an operator has already been used
to determine statistical properties of generalised pinwheel tilings in [35].

Example 4.4. Let be finite andwith the discrete topology. A basis for𝐸 is given by the indicator
functions 𝟙𝑎 for 𝑎 ∈ , where 𝟙𝑎(𝑎) = 1 and 𝟙𝑎(𝑏) = 0 for 𝑎 ≠ 𝑏 ∈ . Then,

(𝑀𝟙𝑎)(𝑏) =
∑
𝑐⊲𝜚(𝑏)

𝟙𝑎(𝑐) =
∑
𝑎⊲𝜚(𝑏)

𝟙𝑎(𝑎) = 𝑀𝑎𝑏,

where𝑀𝑎𝑏 is the number of occurrences of 𝑎 in 𝜚(𝑏). So, we may write

𝑀𝟙𝑎 =
∑
𝑏∈

𝑀𝑎𝑏 ⋅ 𝟙𝑏,

and hence, with respect to this basis, 𝑀 is represented by the matrix (𝑀)𝑏𝑎. It follows that the
substitution operator𝑀 is represented by the transpose of theAbelianisation or substitutionmatrix
of the substitution in the finite letter setting.

It is easy to see that 𝑀𝑛 is the operator that replaces a length function 𝑓 with its sum over
𝑛-superwords.

Lemma 4.5. For 𝑛 ∈ ℕ, we have (𝑀𝑛𝑓)(𝑎) =
∑
𝑏⊲𝜚𝑛(𝑎) 𝑓(𝑏). That is,𝑀𝜚𝑛 =

(
𝑀𝜚

)𝑛.
Proof. The above is true for 𝑛 = 1 by definition of𝑀. Suppose that it holds for 𝑛 ∈ ℕ. Then,

(𝑀𝑛+1𝑓)(𝑎) = 𝑀
⎛⎜⎜⎝𝑏 ↦

∑
𝑐⊲𝜚𝑛(𝑏)

𝑓(𝑐)
⎞⎟⎟⎠(𝑎) =

∑
𝑏⊲𝜚(𝑎)

∑
𝑐⊲𝜚𝑛(𝑏)

𝑓(𝑐) =
∑

𝑐⊲𝜚𝑛+1(𝑎)

𝑓(𝑐),

so the result also holds for 𝑛 + 1 and thus for all 𝑘 ∈ ℕ by induction. □

Clearly 𝑀 is linear and positive, which is to say that 𝑀(𝐾) ⊆ 𝐾. Moreover, 𝑀 is a bounded
operator, since, for all 𝑎 ∈ , we have |𝑀(𝑓)(𝑎)| = |∑𝑏⊲𝜚(𝑎) 𝑓(𝑏)| ⩽ max |𝜚(𝑎)| ⋅max |𝑓| = |𝜚| ⋅‖𝑓‖, where the length |𝜚| of the substitution is bounded by Proposition 3.5. In fact, we have the
following formula for the operator norm of𝑀𝑛. Let 𝟙 be the constant function 𝑎 ↦ 1.

Corollary 4.6. For 𝑛 ∈ ℕ, the operator norm of𝑀𝑛 is given by

‖𝑀𝑛‖ = ‖𝑀𝑛(𝟙)‖ = |𝜚𝑛|.
Proof. As𝑀𝑛 is a positive operator, for ‖𝑓‖ ⩽ 1, the norm ‖𝑀𝑛𝑓‖ is maximised by the constant
function 𝟙, for which (𝑀𝑛𝟙)(𝑎) = |𝜚𝑛(𝑎)| by Lemma 4.5. □
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20 of 48 MAÑIBO et al.

In the finite setting, the existence of a positive non-zero length function follows from Perron–
Frobenius theory. Surprisingly, this does not hold for all substitutions on compact alphabets:

Example 4.7. Consider again the substitution of Example 3.12 on the alphabet  = ℕ∞ × ℕ∞,
for which (𝑛,𝑚) ↦ (𝑛,𝑚 − 1) for 𝑚 > 0, (𝑛, 0) ↦ (𝑛 − 1, 𝑛)(0, 𝑛) for 𝑛 > 0 and (0, 0) ↦ (0, 0). It
is not hard to show that this substitution has no continuous, positive, non-zero length function 𝓁.
Dropping continuity of 𝓁, one finds that𝑀𝓁 = 𝜆𝓁 implies that 𝜆 = 1 and

𝓁(𝑛,𝑚) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑛 + 1)𝛼1, if 𝑛,𝑚 ≠∞,
𝛼2, if 𝑛 = ∞,𝑚 = 0,

𝛼3, if 𝑛 = 0,𝑚 = ∞,

𝛼2 − 𝛼3, if 𝑛 = 𝑚 = ∞,

𝛽𝑛, if𝑚 = ∞,

where 𝛼1, 𝛼2 ⩾ 𝛼3 and 𝛽𝑛 are arbitrary non-negative numbers, with at least one strictly positive.
Note that 𝓁 is unbounded if 𝛼1 ≠ 0, and if 𝛼1 = 0, then 𝓁 = 0 on a dense subset of.
Example 4.8. The substitution in the above example was primarily motivated by its pathological
non-growth property, perhaps making it less surprising that it does not have a continuous length
function.However, it can be easilymodified to be growing in length on all letters but still admitting
no continuous length function. We double up the substitution on (0, 0) and triple it on all other
letters: on ℕ0 × ℕ0 we define

𝜚∶

⎧⎪⎨⎪⎩
(0, 0) ↦ (0, 0)(0, 0),

(𝑛,𝑚) ↦ (𝑛,𝑚 − 1)(𝑛,𝑚 − 1)(𝑛,𝑚 − 1) for𝑚 > 0,

(𝑛, 0) ↦ (𝑛 − 1, 𝑛)(𝑛 − 1, 𝑛)(𝑛 − 1, 𝑛)(0, 𝑛)(0, 𝑛)(0, 𝑛) otherwise,

which uniquely defines the substitution 𝜚 on  = ℕ∞ × ℕ∞ by continuity. Since all letters in
ℕ0 × ℕ0 eventually map to (0, 0), it is clear that 𝓁(0, 0) ≠ 0, otherwise 𝓁 = 0 by continuity, so
also 𝓁(𝑛,𝑚) ≠ 0 for all (𝑛,𝑚) ∈ ℕ0 × ℕ0. Since (0, 0) ↦ (0, 0)(0, 0), the inflation constant must
be 𝜆 = 2. But for (𝑛,𝑚) ∈ ℕ0 × ℕ0, with𝑚 > 0, we have

2𝓁(𝑛,𝑚 + 1) = 𝜆𝓁(𝑛,𝑚 + 1) = 𝓁(𝑛,𝑚) + 𝓁(𝑛,𝑚) + 𝓁(𝑛,𝑚) ⇒ 𝓁(𝑛,𝑚 + 1) =
3

2
𝓁(𝑛,𝑚) ≠ 0,

so 𝓁 is unbounded, contradicting continuity. Thus, this substitution admits no continuous and
non-zero length function.

Although the above shows that not all substitutions have a natural length function, it seems
reasonable to conjecture this for primitive substitutions.

Question 4.9. Let 𝜚 be a primitive substitution on a compact, Hausdorff alphabet. Does 𝜚 admit
a continuous natural length function?

We are not currently able to resolve the above question in full generality. However, we will find
some conditions under which this holds. In the remainder of this subsection, we will consider
general properties of the Banach space 𝐸, the operator𝑀 and implications of primitivity.
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SUBSTITUTIONS ON COMPACT ALPHABETS 21 of 48

Remark 4.10. Because is compact Hausdorff, it is Tychonoff, that is, Hausdorff and completely
regular. This means that for any closed set 𝐶 ⊆  and 𝑎 ∉ 𝐶, there exists a continuous function
𝑓∶ → [0, 1] with 𝑓(𝑎) = 1 and 𝑓(𝐶) = {0}, which will be used in several proofs below.

Proposition 4.11. The substitution 𝜚 is primitive if and only if, for all non-zero 𝑓 ∈ 𝐾, there exists
some 𝑝 ∈ ℕ with𝑀𝑝(𝑓) ∈ 𝐾>0.

Proof. Let 𝜚 be primitive and 0 ≠ 𝑓 ⩾ 0. Let 𝑈 = 𝑓−1(0,∞), which is open and non-empty. By
primitivity, there exists some 𝑝 ∈ ℕ so that for any 𝑎 ∈ , we have that 𝜚𝑝(𝑎) contains some 𝑏 ∈
𝑈, which is to say that 𝑓(𝑏) > 0. Since 𝑓 ⩾ 0 and 𝑓(𝑏) > 0 for some 𝑏 ∈ 𝜚𝑛(𝑎), it follows from
Lemma 4.5 that (𝑀𝑝𝑓)(𝑎) > 0 for all 𝑎 ∈ .
Conversely, suppose that the given condition on 𝑀 holds and that 𝑈 ⊂  is open and non-

empty. Let 𝐶 =  ⧵ 𝑈, 𝑎0 ∈ 𝑈 be arbitrary and 𝑓∶ → [0, 1] be continuous with 𝑓(𝑎0) = 1
and 𝑓(𝐶) = {0} (Remark 4.10). By assumption, there exists some 𝑝 ∈ ℕ so that 𝑀𝑝(𝑓) > 0. By
Lemma 4.5, for every 𝑎 ∈ , we have that∑

𝑏⊲𝜚𝑝(𝑎)

𝑓(𝑏) > 0.

Since 𝑓 ⩾ 0 and 𝑓(𝑏) = 0 for all 𝑏 ∉ 𝑈, this implies that 𝑏 ∈ 𝑈 for some 𝑏 ⊲ 𝜚𝑝(𝑎), as
required. □

We recall properties of positive cones for general Banach lattices from [37]. A positive cone
𝐾 ⊂ 𝐸 is called proper if𝐾 ∩ (−𝐾) = {0}, generating if 𝐸 = 𝐾 − 𝐾 and normal if ‖𝑥 + 𝑦‖ ⩾ ‖𝑦‖ for
all 𝑥, 𝑦 ∈ 𝐾. The ordered Banach space (𝐸, 𝐾) is said to have the decomposition property [1] if, for
all 𝑥, 𝑦 and 𝑧 ∈ 𝐾 with 𝑧 ⩽ 𝑥 + 𝑦, there exist 𝑏1, 𝑏2 ∈ 𝐾 with 𝑧 = 𝑏1 + 𝑏2 and 𝑏1 ⩽ 𝑥, 𝑏2 ⩽ 𝑦.

Definition 4.12. A subset 𝐴 ⊂ 𝐸 is called total if the linear span of 𝐴 is dense in 𝐸.

Definition 4.13. A point 𝑓 ∈ 𝐸 is called quasi-interior to 𝐾 if the order interval [0, 𝑓] is a total
subset of 𝐸.

For the next results, we go back to our setting where 𝐸 = 𝐶() and 𝐾 is the positive cone of
non-negative functions. The proof of the following is routine, so we omit it.

Lemma 4.14. We have that 𝐾 ⊂ 𝐸 is a closed, proper, generating and normal cone, with interior
int(𝐾) = 𝐾>0. The Banach space (𝐸, 𝐾) has the decomposition property.

Every interior point of 𝐾 is quasi-interior [37], and the converse holds if int(𝐾) ≠ 0, which is
clearly the case here by Lemma 4.14. For a proof of the following lemma, we refer the reader to
[39].

Lemma 4.15. A point 𝑓 ∈ 𝐸 is quasi-interior to 𝐾 if and only if 𝑓 ∈ int(𝐾).

Corollary 4.16. The substitution 𝜚 is primitive if and only if, for every non-zero 𝑓 ∈ 𝐾, one has that
𝑀𝑝(𝑓) is quasi-interior to 𝐾 for some 𝑝 ∈ ℕ.
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22 of 48 MAÑIBO et al.

We recall from [37] that an operator𝑀 is strongly positive if for each 0 ≠ 𝑥 ∈ 𝐾, there is some
𝑛 = 𝑛(𝑥) ∈ ℕ such that 𝑀𝑛(𝑥) is quasi-interior to 𝐾. Then, Proposition 4.11 may be restated as
follows.

Corollary 4.17. The substitution 𝜚 is primitive if and only if𝑀 is strongly positive.

The strongly positive condition implies theweaker property of the operator𝑀 (and every power
𝑀𝑛) being (ideal) irreducible, meaning that, for every ideal 𝐼 of 𝐸 with 𝑀(𝐼) ⊆ 𝐼, we have that
𝐼 = {0} or 𝐼 = 𝐸. For the notion of an ideal of a Banach lattice, we refer the reader to [39, II.2],
although note [39, III.1 Exp. 1] that for 𝐸 = 𝐶(𝑋), with 𝑋 a compact Hausdorff space, we have a
bijective correspondence

closed subsets 𝐶 of 𝑋⟷ ideals 𝐼𝐶 = {𝑓 ∈ 𝐸 ∣ 𝑓(𝐶) = {0}}.

As we will see shortly, irreducibility is a powerful property for ensuring essential uniqueness and
positivity of natural length functions.

Definition 4.18. Let 𝜚 be a substitution on a compact alphabet. We say that 𝜚 is irreducible if
it cannot be restricted to a strictly smaller closed and non-empty subset of , that is, there does
not exist a non-empty closed 𝐶 ⊊  such that 𝜚(𝑐) contains only letters in 𝐶, for all 𝑐 ∈ 𝐶.

Proposition 4.19. A substitution 𝜚 is irreducible if and only if the substitution operator 𝑀
is irreducible.

Proof. Suppose that 𝜚(𝑐) ⊆ 𝐶+ for all 𝑐 ∈ 𝐶, for some closed subset 𝐶 ⊆ . Let 𝑓 ∈ 𝐼𝐶 , so that
𝑓(𝑐) = 0 for all 𝑐 ∈ 𝐶. Then, (𝑀𝑓)(𝑐) = 𝑓(𝑐1) +⋯ + 𝑓(𝑐𝑛) = 0, where 𝑐1⋯ 𝑐𝑛 = 𝜚(𝑐) ∈ 𝐶

+ for 𝑐 ∈
𝐶. Thus, 𝑀(𝐼𝐶) ⊆ 𝐼𝐶 . If 𝑀 is irreducible, we must have that 𝐼𝐶 = {0} or 𝐸, so that 𝐶 =  or ∅,
as required.
Conversely, suppose that 𝑀(𝐼𝐶) ⊆ 𝐼𝐶 . We claim that 𝜚 may be restricted to 𝐶. Indeed, if we

have 𝑏 ⊲𝑀𝑛(𝑐), for 𝑐 ∈ 𝐶 but 𝑏 ∈  ⧵ 𝐶, then consider a function 𝑓∶ → [0, 1] with 𝑓(𝑐) = 0
for all 𝑐 ∈ 𝐶 and 𝑓(𝑏) = 1 (Remark 4.10). Then, 𝑓 ∈ 𝐼𝐶 but𝑀(𝑓) ∉ 𝐼𝐶 , since (𝑀𝑓)(𝑐) = 𝑓(𝑐1) +
⋯ + 𝑓(𝑐𝑛) ⩾ 1, where 𝑐1⋯ 𝑐𝑛 = 𝜚(𝑐) contains a copy of 𝑏. It follows that 𝜚 restricts to 𝐶. If 𝜚 is
irreducible, it then follows that 𝐼𝐶 = {0} or 𝐸, as required. □

Remark 4.20. If 𝜚 is primitive, then clearly 𝜚 is irreducible. Likewise, since powers of primitive
substitutions are primitive, we see that each 𝜚𝑘 is irreducible. Note that Proposition 4.19 is con-
sistent with the finite alphabet setting where a substitution is sometimes called irreducible if for
every pair of letters 𝑎, 𝑏 ∈ , there exists a power 𝑘 such that 𝑏 is in 𝜚𝑘(𝑎), which is equivalent to
the substitution matrix being irreducible.

Proposition 4.21. Every substitution 𝜚 restricts to an irreducible substitution on a non-empty,
closed sub-alphabet.

Proof. This is analogous the proof that every dynamical systemhas aminimal subsystem.Consider
the familyΠ of non-empty closed sub-alphabets 𝐶 ⊆ , which are also closed under substitution.
Then,Π ≠ ∅ (since ∈ Π) and partially ordered under set inclusion. Moreover, every chain (𝐶𝑖)
has a lower bound, namely 𝐶 =

⋂
𝐶𝑖 . Indeed, 𝐶 is closed and non-empty by Cantor’s intersection
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SUBSTITUTIONS ON COMPACT ALPHABETS 23 of 48

theorem. If 𝑐 ∈ 𝐶, then 𝑐 belongs to each 𝐶𝑖; since these are each closed under substitution, it
must hold that 𝜚(𝑐) = 𝑐1⋯ 𝑐𝑛 with each 𝑐𝑗 belonging to every 𝐶𝑖 and thus to 𝐶, so 𝐶 is also closed
under substitution. Hence, Π has a minimal element 𝐶 ⊆  by Zorn’s Lemma. But this means
that 𝐶 is a closed alphabet and 𝜚 is irreducible over 𝐶, as required. □

4.2 The spectrum of𝑴

The spectrum of the operator𝑀 is the set

𝜎(𝑀) = {𝜆 ∈ ℂ ∣ 𝜆𝕀 − 𝑀 is not invertible}.

We call 𝑅(𝜆) = (𝜆𝕀 − 𝑀)−1 the resolvent operator, which is a holomorphic (operator-valued) func-
tion on ℂ ⧵ 𝜎(𝑀). We call 𝜆0 ∈ 𝜎(𝑀) a pole of the resolvent (of order 𝑝 ∈ ℕ) if there exists a
punctured neighbourhood of 𝜆0 such that the coefficient corresponding to −𝑝 of the Laurent
expansion of 𝑅(𝜆) is non-zero and all other coefficients for 𝑛 < −𝑝 are zero [43, Sec. 8]. A pole
is called simple if it is of order 𝑝 = 1. It is often very useful to know that 𝜆 ∈ 𝜎(𝑀) is a pole of the
resolvent; in particular, this implies that 𝜆 is an eigenvalue (see, e.g. [43, Thm. 5.8-A]):

Lemma 4.22. If 𝜆 ∈ 𝜎(𝑀) is a pole of the resolvent, then 𝜆 is isolated in 𝜎(𝑀) and is an eigenvalue
of𝑀.

For the rest of the paper, we let 𝑟 = 𝑟(𝑀) denote the spectral radius of𝑀, defined as 𝑟 = sup{|𝜆| ∣
𝜆 ∈ 𝜎(𝑀)}. This is the natural generalisation of the Perron–Frobenius leading eigenvalue in the
finite alphabet setting. Gelfand’s formula gives us that

𝑟 = lim
𝑛→∞

𝑛
√‖𝑀𝑛‖ and 𝑟 ⩽ 𝑛

√‖𝑀𝑛‖ for all 𝑛 ∈ ℕ. (4)

Lemma 4.23. We have the following for all 𝑛 ∈ ℕ:

min
𝑎∈ |𝜚𝑛(𝑎)| ⩽ 𝑟𝑛 ⩽ max𝑏∈ |𝜚𝑛(𝑏)|.

Proof. The upper bound follows from Equation (4) and Corollary 4.6. For the lower bound, sup-
pose that 𝑐 ∶= min𝑎∈ |𝜚𝑛(𝑎)|. We claim that 𝑐𝑘 ⩽ ‖𝑀𝑘𝑛‖ for all 𝑘 ∈ ℕ, which is to say that each
𝑘𝑛-superword contains at least 𝑐𝑘 letters. By definition, this holds for 𝑘 = 1. Suppose that it holds
for some given 𝑘. We have |𝜚(𝑘+1)𝑛(𝑎)| = |𝜚𝑛(𝜚𝑘𝑛(𝑎))| for all 𝑎 ∈  so, since 𝜚𝑘𝑛 contains at least
𝑐𝑘 letters, each of which substitutes under 𝜚𝑛 to at least 𝑐 letters (by the definition of 𝑐), we obtain
the claimed upper bound for all 𝑘 by induction. Applying Equation (4):

𝑟 = lim
𝑘→∞

𝑘
√‖𝑀𝑘‖ = lim

𝑘→∞

𝑘𝑛
√‖𝑀𝑘𝑛‖ ⩾ 𝑘𝑛

√
𝑐𝑘 = 𝑛

√
𝑐. □

Note, in particular, that 𝑟 ⩾ 1 for any substitution. The peripheral spectrum of𝑀 is the subset
of the spectrum of maximummodulus:

𝜎per(𝑀) = {𝜆 ∈ 𝜎(𝑀) ∣ |𝜆| = 𝑟}.
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24 of 48 MAÑIBO et al.

We say that 𝜆 ∈ 𝜎(𝑀) is in the point spectrum if 𝜆 is an eigenvalue of 𝑀 and let 𝜎pper(𝑀) denote
the set of elements in the peripheral point spectrum. Since𝑀 is a positive operator, the spectral
radius 𝑟 will always belong to the peripheral spectrum [37, Prop. 1], although it is not always in
the peripheral point spectrum (Examples 4.7 and 4.8). For the rest of the paper, we let 𝑇 denote
the operator

𝑇 ∶= 𝑀∕𝑟.

Likewise, its dual operator is denoted by 𝑇′ = 𝑀′∕𝑟∶ 𝐸′ → 𝐸′. Such normalisation is typical in
operator theory, as many spectral and convergence results require 𝑟(𝑇) = 1.

Definition 4.24. We call 𝜙 ∈ 𝐸′ an eigenmeasure if 𝑇′𝜙 = 𝜙 with 𝜙 ∈ 𝐾′ and ‖𝜙‖ = 1.
Note that eigenmeasures always exist (see Remark 5.9).

4.3 Uniqueness and consequences of a natural length function

Natural length functions will be of most use when strictly positive. These always have as inflation
factor the spectral radius:

Proposition 4.25. For any substitution 𝜚, if 𝓁 ∈ 𝐾>0 is a strictly positive eigenvector of𝑀, then its
eigenvalue is the spectral radius 𝜆 = 𝑟 ⩾ 1.

Proof. Since 𝓁 > 0, by compactness, there are 𝑐, 𝐶 > 0 with 𝑐𝟙 ⩽ 𝓁 ⩽ 𝐶𝟙. Iteratively applying
the substitution operator, 𝑐𝑀𝑛(𝟙) ⩽ 𝜆𝑛𝓁 ⩽ 𝐶𝑀𝑛(𝟙) for all 𝑛 ∈ ℕ. Taking norms and applying
Corollary 4.6,

𝑐‖𝑀𝑛‖ ⩽ 𝜆𝑛‖𝓁‖ ⩽ 𝐶‖𝑀𝑛‖, thus 𝑐1∕𝑛 𝑛
√‖𝑀𝑛‖ ⩽ 𝜆‖𝓁‖1∕𝑛 ⩽ 𝐶1∕𝑛 𝑛

√‖𝑀𝑛‖.
Since 𝑐, 𝐶 and ‖𝓁‖ > 0, the lower and upper bounds have limits equal to 𝑟 by Gelfand’s formula
and 𝜆 = 𝑟. □

We now turn to irreducible substitutions, where we see that natural length functions must be
strictly positive and essentially unique.

Theorem 4.26. Suppose that 𝜚 is irreducible and has a natural length function 𝓁 ∈ 𝐾. Then, 𝓁 ∈
𝐾>0, has inflation factor 𝜆 = 𝑟 the spectral radius and every other natural length function is a scalar
multiple of 𝓁. Moreover, 𝓁 is the only eigenvector of𝑀 with eigenvalue 𝑟, up to scalar multiplication.

Proof. Firstly, we prove that every positive eigenvector of 𝑀, for an irreducible substitution,
is strictly positive. Indeed, let 𝐶 ∶= {𝑎 ∈  ∣ 𝓁(𝑎) = 0}. Then, 𝐶 is closed, by continuity of 𝓁.
Moreover, for 𝑐 ∈ 𝐶 with 𝜚(𝑐) = 𝑐1𝑐2⋯ 𝑐𝑛,

0 = 𝜆𝓁(𝑐) = 𝓁(𝑐1) + 𝓁(𝑐2) +⋯ + 𝓁(𝑐𝑛),
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SUBSTITUTIONS ON COMPACT ALPHABETS 25 of 48

so that each 𝓁(𝑐𝑖) = 0, as 𝓁 ∈ 𝐾. It follows that 𝜚maps letters of 𝐶 into words over 𝐶. Since 𝓁 ≠ 0,
we have that 𝐶 ≠  and thus 𝐶 = ∅, by irreducibility of 𝜚, so that 𝓁(𝑎) > 0 for all 𝑎 ∈ .
Then, every natural length function for 𝜚 is strictly positive, and thus, by Proposition 4.25, has

inflation factor 𝜆 = 𝑟. Suppose that 𝓁 and 𝓁′ are two such eigenvectors of𝑀. By strict positivity,
compactness and scaling 𝓁 if necessary, wemay assume without loss of generality that 𝓁′ ⩽ 𝓁. We
define

𝑐 ∶= sup
{
𝜉 ⩾ 0 ∣ 𝓁 − 𝜉 ⋅ 𝓁′ ⩾ 0

}
.

Again, by compactness and continuity, we have that 𝓁′′ ∶= 𝓁 − 𝑐 ⋅ 𝓁′ ∈ 𝐾 and 𝓁′′(𝑎) = 0 for some
𝑎 ∈ . We also have 𝑀𝓁′′ = 𝑟𝓁′′. Since, by the above, all eigenvectors are strictly positive, we
must have that 𝓁′′ = 0, that is 𝓁 = 𝑐𝓁′, as required.
Finally, suppose that𝓁′ is another (not necessarily positive) eigenvector of𝑀, with eigenvalue 𝑟.

For sufficiently large 𝑐 > 0, we have that𝓁′ + 𝑐𝓁 is strictly positive. Since this is still an eigenvector
with eigenvalue 𝑟, by the above 𝓁′ + 𝑐𝓁 = 𝐶𝓁 for some constant 𝐶. But then 𝓁′ = (𝐶 − 𝑐)𝓁, as
required. □

As well as essential uniqueness and strict positivity of natural length functions for irreducible
substitutions, we are also guaranteed that their inflation factors have 𝜆 = 𝑟 > 1, unless the
substitution is non-growing for trivial reasons:

Proposition 4.27. Let 𝜚 be an irreducible substitution and suppose that |𝜚(𝑏)| ⩾ 2 for some 𝑏 ∈ .
Then, for some 𝑛 ∈ ℕ, we have that |𝜚𝑛(𝑎)| ⩾ 2 for all 𝑎 ∈  and, in particular, 𝑟 > 1.

Proof. We first show that, for all 𝑎 ∈ , we have |𝜚𝑛(𝑎)| ⩾ 2 for some 𝑛 ∈ ℕ (but perhaps with
𝑛 depending on 𝑎). If not, then we have a sequence (𝑎𝑛)𝑛 in , with 𝑎1 = 𝑎 and 𝑎𝑛+1 = 𝜚(𝑎𝑛).
Consider the closure 𝐶 of the set {𝑎𝑛}𝑛∈ℕ. Since |𝜚(𝑎𝑛)| = 1 for any 𝑛, the same holds for all 𝑐 ∈ 𝐶,
by continuity. By construction 𝐶 ≠ ∅ and because |𝜚(𝑏)| ⩾ 2, we have that 𝐶 ≠ . Finally, again,
by continuity, 𝜚maps letters of 𝐶 to other letters in 𝐶, contradicting irreducibility.
Let 𝑋𝑛 = {𝑎 ∈  ∣ |𝜚𝑛(𝑎)| = 1}. By continuity of 𝜚𝑛, each 𝑋𝑛 is closed, and clearly, 𝑋𝑛+1 ⊆ 𝑋𝑛.

Suppose that 𝑋𝑛 ≠ ∅ for all 𝑛 ∈ ℕ. Then, by Cantor’s intersection theorem, there exists some
𝑎 ∈  that is a member of each 𝑋𝑛. But this contradicts |𝜚𝑛(𝑎)| ⩾ 2 for all 𝑎 ∈ , for sufficiently
large 𝑛 depending on 𝑎. Thus, 𝑋𝑛 = ∅ for some 𝑛, so that |𝜚𝑛(𝑎)| ⩾ 2 for all 𝑎 ∈  and 𝑛 not
depending on 𝑎. By Lemma 4.23, we have that 𝑟 > 1. □

Remark 4.28. Henceforth, we will always assume that our substitutions satisfy |𝜚(𝑎)| ⩾ 2 for some
𝑎 ∈ , and hence 𝑟 > 1 for any irreducible substitution.
Next, we see that existence of a natural length function ensures certain bounds for letter growth

of superwords, and occurrences of letters in superwords belonging to open subsets:

Lemma 4.29. Suppose that 𝜚 is irreducible and admits some natural length function 𝓁 (necessarily
with inflation constant 𝜆 = 𝑟 > 1). There are constants 𝛼, 𝛽 > 0 so that, for all 𝑎 ∈ ,

𝛼𝜆𝑛 ⩽ |𝜚𝑛(𝑎)| ⩽ 𝛽𝜆𝑛.
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26 of 48 MAÑIBO et al.

If 𝜚 is primitive, then for any open subset 𝑈 ⊂ , there exist 𝛼(𝑈), 𝛽(𝑈) > 0 and 𝑝 ∈ ℕ so that, for
all 𝑎 ∈ ,

𝛼(𝑈)𝜆𝑛 ⩽ #{𝑏 ⊲ 𝜚𝑛(𝑎) ∣ 𝑏 ∈ 𝑈} ⩽ 𝛽(𝑈)𝜆𝑛 for all 𝑛 > 𝑝. (5)

Note that # {𝑏 ⊲ 𝜚𝑛(𝑎) ∣ 𝑏 ∈ 𝑈} counts the occurrences of 𝑏 in 𝜚𝑛(𝑎) from the set 𝑈
with multiplicities.

Proof. By Theorem 4.26, we have that 𝓁 > 0 has inflation constant 𝜆 = 𝑟. We have that 𝑟 > 1 by
Proposition 4.27 (and Remark 4.28).
By compactness, we have constants 𝑐, 𝐶 > 0 so that 𝑐𝟙 ⩽ 𝓁 ⩽ 𝐶𝟙. Thus,

𝑐|𝜚𝑛(𝑎)| = 𝑀𝑛(𝑐 ⋅ 𝟙)(𝑎) ⩽ 𝑀𝑛(𝓁)(𝑎) = 𝜆𝑛𝓁(𝑎) ⩽ 𝜆𝑛𝐶, hence |𝜚𝑛(𝑎)| ⩽ (𝐶
𝑐

)
𝜆𝑛.

Analogously, we have an upper bound of
(
𝑐

𝐶

)
𝜆𝑛 ⩽ |𝜚𝑛(𝑎)|, as required.

Now suppose that 𝜚 is primitive and 𝑈 ⊂  is open. There exists a function 𝑓 ∈ 𝐸 with 𝑓 ⩾ 0,‖𝑓‖ = 1 and 𝑓(𝑏) = 0 for all 𝑏 ∉ 𝑈 (Remark 4.10). By Proposition 4.11, ℎ ∶= 𝑀𝑝(𝑓) ∈ 𝐾>0 for
some 𝑝 ∈ ℕ. So, by compactness, ℎ ⩾ 𝜅𝟙 for some constant 𝜅 > 0. Hence, for all 𝑎 ∈ ,

#{𝑏 ⊲ 𝜚𝑛+𝑝(𝑎) ∣ 𝑏 ∈ 𝑈} ⩾ (𝑀𝑛+𝑝(𝑓))(𝑎) = (𝑀𝑛(ℎ))(𝑎) ⩾ 𝜅𝑀𝑛(𝟙)(𝑎) ⩾ 𝜅𝛼𝜆𝑛,

where the first inequality again follows fromLemma 4.5. The lower bound of Equation (5) follows,
whilst the upper bound follows trivially from that for |𝜚𝑛(𝑎)|. □

Since ‖𝑇𝑛‖ = 1

𝑟𝑛
‖𝑀𝑛‖, we get the following immediate consequence.

Corollary 4.30. Let 𝜚 be irreducible and suppose that it admits a natural length function. Then, the
operator 𝑇 is power bounded, that is, for some 𝛽 > 0, ‖𝑇𝑛‖ ⩽ 𝛽 for all 𝑛 ∈ ℕ.
Note that the examples in Examples 4.7 and 4.8 that both do not admit a length function are

both reducible (with 𝐶 = {(0, 0)} as the closed subalphabet).

Remark 4.31. Whilst we are not always assured the existence of a natural length function, there
is always at least a system of approximate natural length functions. For any substitution 𝜚, there
exists a sequence (𝑥𝑛)𝑛∈ℕ of 𝑥𝑛 ∈ 𝐾, with each ‖𝑥𝑛‖ = 1, for which (𝑇 − 𝑟𝐼)𝑥𝑛 → 0 uniformly
as 𝑛 → ∞ (i.e. ‖(𝑇 − 𝑟𝐼)𝑥𝑛‖→ 0 as 𝑛 → ∞). This result follows from [31, Prop. 4.1.1] (see, for
instance, the proof of [12, Prop. 1], which also applies to Banach lattices).

5 EXISTENCE OF NATURAL LENGTH FUNCTIONS AND UNIQUE
ERGODICITY

In this section, we will find conditions that assure the existence of a natural length func-
tion. One can associate to this a geometric inflation rule 𝜚 and build the corresponding tiling
dynamical system.
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SUBSTITUTIONS ON COMPACT ALPHABETS 27 of 48

To motivate this, assume that 𝜚 admits a natural length function 𝓁 > 0. We then build the
corresponding geometric hull Ω (also known as the tiling space) and equip it with the contin-
uous translation action by ℝ. The resulting geometric self-similarity is a useful structure. For
instance, one may then apply the general machinery of fusion tilings of Frank and Sadun [20]
to relate translation-invariant measures on (Ω,ℝ) to sequences of measures on the alphabet 
that are compatible with the dual operator 𝑇′. These can then be related (see Theorem 5.22) to
shift-invariant measures on 𝑋𝜚 by viewing (Ω,ℝ) as a suspension flow. In this way, we may find
conditions for unique ergodicity in terms of the substitution operator. This will then be applied in
Section 6 to also find sufficient conditions in terms of the substitution.
For completeness, we recall some of the notions above regarding the geometric realisation of

tiling spaces from a subshift and length function; compare [8, Sec. 5]:

Definition 5.1. Let (𝑋, 𝜎) be a subshift over a compact alphabet and 𝓁∶ → ℝ>0 be continu-
ous. This defines prototiles (𝐼𝑎, 𝑎), given by intervals 𝐼𝑎 ∶= [0,𝓁(𝑎)] also carrying the label 𝑎 ∈ .
A tile is a translate (𝐼𝑎 + 𝑥, 𝑎) of a prototile. A tiling  = {𝔱𝑖 ∣ 𝑖 ∈ ℤ} is a set of tiles 𝔱𝑖 = (𝐼𝑎𝑖 + 𝑥𝑖, 𝑎𝑖))
whose supports cover ℝ, where distinct tiles intersect at most on their boundaries and, given
that the tiles are indexed in order (i.e. each 𝔱𝑖 is to the immediate left of 𝔱𝑖+1), the associated bi-
infinite sequence⋯𝑎−1|𝑎0𝑎1⋯ ∈ ℤ of labels of tiles is an element of𝑋 (by shift-invariance, the
choice of indexing giving the central letter is inconsequential). The geometric hull (or tiling space)
is the set of all such tilings, which carries a natural (compact, Hausdorff) topology which, loosely
speaking, considers two tilings to be ‘close’ if they have patches covering large intervals about the
origin whose tiles may be paired to be close in support and with close labels in. More explicitly,
there is a natural identificationΩ ≅ 𝑌 ∶= (𝑋𝜌 × ℝ)∕ ∼with the equivalence relation generated by
(𝑥,𝓁(𝑥0)) ∼ (𝜎(𝑥), 0); elements of the form [(𝑥, 0)] are those tilings  with (proto)tile (𝐼(𝑥0), 𝑥0)
containing the origin on its left endpoint and the other tiles following the sequence 𝑥 in the obvi-
ous way. Any other [(𝑥, 𝑡)] is identified with the shift  − 𝑡 of this tiling. We have a continuous
ℝ-action onΩ, by translating tilings, and the above identification defines a topological conjugacy
with 𝑌, with action 𝑡 ⋅ [(𝑥, 𝑠)] = [(𝑥, 𝑠 − 𝑡)]. We call (𝑌, ℝ) the suspension flow over (𝑋𝜚, 𝜎) with
continuous roof function 𝑓(𝑥) ∶= 𝓁(𝑥0).

Remark 5.2. Note the importance of 𝓁 being continuous in this definition. If 𝓁 were not con-
tinuous, the identification 𝑌 → Ω would not be continuous, for instance. One might imagine
elements𝑥, 𝑦 ∈ 𝑋whose tiles are all pairwise close in but so that the tilings associated to [(𝑥, 0)],
[(𝑦, 0)] ∈ 𝑌 have tiles with close labels 𝑥0 and 𝑦0 yet very different supports.

Remark 5.3. In this more general setting, the transversal Ξ of Ω consists precisely of the points
identified with elements of the form [(𝑥, 0)] in 𝑌. This is unambiguous as the length function 𝓁
is uniformly bounded away from 0. Unlike in the finite local complexity (FLC) setting, Ξ need not
be totally disconnected.

5.1 Operator convergence, length functions and eigenmeasures

In this section, we consider convergence notions for 𝑇 = 𝑀∕𝑟, and the consequences for the
length function and 𝑇′ -eigenmeasures. As already noted in Remark 4.2, all measures will be
assumed to be regular and we identify them with elements of 𝐾′ by the Riesz–Markov–Kakutani
representation theorem.
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28 of 48 MAÑIBO et al.

Remark 5.4. In the finite alphabet case, the measures 𝜇 here are in correspondence with row vec-
tors, with one coordinate for each element of, which ‘integrate’ a weighted sum of letters by the
inner product. Then, 𝜇(𝑀𝑓) = 𝜆𝜇(𝑓) for all 𝑓 ∈ 𝐸 (i.e. 𝜇𝑇 = 𝜇) just means that 𝜇 is a left eigen-
vector of the substitution operator 𝑀 (i.e. a right eigenvector of the substitution matrix). In the
uniquely ergodic case, the entries of this row vector may be considered as the relative frequencies
of each tile.

Definition 5.5. Given a bounded linear operator 𝑇∶ 𝐸 → 𝐸 with 𝑟(𝑇) = 1, we define its 𝑛th
Cesàro mean as

𝐴𝑛(𝑓) =
1

𝑛

𝑛−1∑
𝑖=0

𝑇𝑖(𝑓).

We call 𝑇 Cesàro bounded if ‖𝐴𝑛‖ is bounded. We call 𝑇 mean ergodic if
𝑃(𝑓) ∶= lim

𝑛→∞
(𝐴𝑛𝑇)(𝑓) ∈ 𝐸

exists for every 𝑓 ∈ 𝐸. We say that 𝑇 is uniformly ergodic if the above sequence of operators con-
verges in the uniform operator topology [16]. That is, for every 𝜖 > 0 and for sufficiently large
𝑛 ∈ ℕ, we have ‖𝐴𝑛(𝑓) − 𝑃(𝑓)‖ < 𝜖 for every 𝑓 ∈ 𝐸 with ‖𝑓‖ ⩽ 1; equivalently†, 𝐴𝑛 → 𝑃 in the
Banach space of bounded operators on 𝐸.
Similarly, we say that 𝑇 is strongly power convergent if 𝑃(𝑓) ∶= lim𝑛→∞ 𝑇𝑛(𝑓) exists for all 𝑓 ∈

𝐸. We call 𝑇 uniformly power convergent [28] if 𝑇𝑛 converges (necessarily to 𝑃) in the uniform
operator topology.

Remark 5.6. It is not hard to see that if 𝑇 is uniformly (resp. strongly) power convergent, then it is
power bounded and uniformly (resp. mean) ergodic. Similarly, 𝑃∶ 𝐸 → 𝐸 is clearly a projection
to the subspace of 𝐸 fixed by 𝑇. Note that convergence properties extend those of primitive non-
negative matrices on finite-dimensional vector spaces, that is, (𝑀∕𝑟)𝑛 → 𝑃 where 𝑟 is the Perron–
Frobenius eigenvalue; see [32]. In the finite-dimensional case, any power bounded operator (thus,
any operator with spectral radius 1) is uniformly ergodic.

Obviously, constant length substitutions always admit natural length functions, taking 𝓁 = 𝟙.
The theorem below shows that in many cases of interest (such as for primitive substitutions),
natural length functions exist when the peripheral point spectrum is non-empty. Throughout, we
will say that 𝑓 ∈ 𝐸 is essentially unique with property P, if every other element of 𝐸 with property
P is a scalar multiple of 𝑓.

Theorem 5.7. Let 𝜚 be irreducible, with renormalised substitution operator 𝑇 = 𝑀∕𝑟. Suppose that
one of the following holds:

(A) 𝑇′ admits an eigenmeasure 𝜙 satisfying 𝜙(𝑓) > 0 for all 𝑓 ∈ 𝐾 with 𝑓 ≠ 0 and 𝜎𝑝per(𝑇) ≠ ∅;
(B) 1 is a pole of the resolvent of 𝑇;
(C) 𝜚 is primitive and 𝜎𝑝per(𝑇) ≠ ∅.

† By the uniform boundedness principle, 𝑃 is also a bounded operator on 𝐸.
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SUBSTITUTIONS ON COMPACT ALPHABETS 29 of 48

Then, 𝜚 admits a natural length function 𝓁 ∈ 𝐾. We have that 𝓁 is an essentially unique eigenvector
of𝑀 with eigenvalue 𝑟. We also have that 𝓁 ∈ 𝐾>0 and is an essentially unique eigenvector of𝑀 in
𝐾. Moreover, if C holds, then 𝑟 > 1 (resp. 1) is the only element in the peripheral spectrum of𝑀 (resp.
𝑇).

Proof. Note that 𝑇 is irreducible if and only if 𝜚 is (Proposition 4.19), as irreducibility is preserved
under normalisation. Condition A implies the result directly by [39, Thm. V.5.2]. Condition B
implies the result by case (ii) of the corollary following [39, Thm. V.5.2].
Next, we show that condition C implies condition A. The positive cone 𝐾 is normal and has

non-empty interior. It then follows from [37, Cor., p. 1015] that the dual 𝑇′ ∶ 𝐸′ → 𝐸′ of 𝑇 admits
an eigenmeasure 𝜙 ∈ 𝐾′; see also [38]. Suppose that 𝜚 is primitive. By Proposition 4.11 and com-
pactness, for any non-zero 𝑓 ⩾ 0, there is some 𝑝 ∈ ℕ and 𝑐 > 0 for which (𝑇𝑝𝑓)(𝑎) > 𝑐 for all
𝑎 ∈ . Then,

⟨𝜙, 𝑓⟩ = ⟨(𝑇′)𝑝𝜙, 𝑓⟩ = ⟨𝜙, 𝑇𝑝𝑓⟩ > 0.
Indeed,𝜙 ≠ 0 andhence is non-trivial on 𝟙 (and thus on any𝑓 ∈ 𝐾>0) since each such functionhas
𝑓 ⩾ 𝜅𝟙 for some 𝜅 > 0. Supposing that 𝜎𝑝per(𝑇) ≠ ∅, we have that A holds, as required. Moreover,
1 is then the only element of the peripheral point spectrum by [39, Prop. V.5.6].
That 𝓁 has eigenvalue 𝑟, is essentially unique with eigenvalue 𝑟, essentially unique in 𝐾 and

𝓁 ∈ 𝐾>0 all follows from Theorem 4.26. □

Remark 5.8. Note that primitivity cannot be dropped in the final statement of the above theorem,
as demonstrated by the irreducible substitution 𝜚(𝑎) = 𝑏𝑏, 𝜚(𝑏) = 𝑎𝑎 on the finite alphabet =

{𝑎, 𝑏}.

Remark 5.9. By [37, Cor., p. 1015], as used in the proof of Theorem 5.7, every substitution 𝜚 admits
at least one eigenmeasure𝜙. It is easily seen from the proof of Theorem 5.7 that𝜙 > 0 (i.e.𝜙(𝑓) > 0
for all non-zero 𝑓 ∈ 𝐾) if 𝜚 is primitive.

Conditions A and C of Theorem 5.7 beg the question of when the peripheral point spectrum of
𝑇 is non-empty. Before we proceed, we need the following auxiliary results. Recall that a sequence
(𝑥𝑛)𝑛 in a Banach space 𝐸 is said to converge weakly to 𝑥 if 𝜇(𝑥𝑛 − 𝑥) → 0 as 𝑛 → ∞ for all 𝜇 ∈ 𝐸′.
For linear subspaces 𝐹 ⊆ 𝐸 and 𝐺 ⊆ 𝐸′ , we say that 𝐹 separates points in 𝐺, if, for every non-zero
𝜇 ∈ 𝐺, there exists 𝑓 ∈ 𝐹 such that 𝜇(𝑓) ≠ 0.
Lemma5.10 [16, Lem. 8.16]. Let𝑇 be a bounded operator on a Banach space𝐸. If𝑇 is mean ergodic,
then 𝑇 is necessarily Cesàro bounded and 1

𝑛
𝑇𝑛𝑓 → 0 (i.e. strongly) for every 𝑓 ∈ 𝐸.

Lemma 5.11 [16, Thm. 8.20]. Let T be Cesàro bounded and suppose 1

𝑛
𝑇𝑛𝑓 → 0 weakly for every

𝑓 ∈ 𝐸. 𝑇 is mean ergodic if, and only if, fix(𝑇) separates fix(𝑇′).

The following gives a seemingly rather weak general condition that ensures the existence of a
natural length function.

Proposition 5.12. A substitution 𝜚 with 𝑇 mean ergodic admits a natural length function with
stretching factor 𝜆 = 𝑟.
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30 of 48 MAÑIBO et al.

Proof. The operator 𝑇 is necessarily bounded (since it comes from a substitution), and hence,
mean ergodicity andLemma 5.10 imply that𝑇𝑛𝑓∕𝑛 → 0 strongly, and thusweakly, for every𝑓 ∈ 𝐸
and that 𝑇 is Cesàro bounded. From Lemma 5.11, it follows that f ix(𝑇) separates f ix(𝑇′). Since
eigenmeasures always exist (Remark 5.9), we must have that f ix(𝑇) is non-trivial and thus 𝑃(𝑓) ≠
0 for some 𝑓 ∈ 𝐸.
We now show that there must be a positive fixed vector of 𝑇. As a pointwise limit of the positive

operators 𝐴𝑛, the projection 𝑃 to the fixed points of 𝑇 must also be a positive operator. Write
𝑓 = 𝑓+ − 𝑓−, where 𝑓+, 𝑓− ∈ 𝐾. Since 𝑃(𝑓+ − 𝑓−) = 𝑃(𝑓+) − 𝑃(𝑓−) = 𝑓 ≠ 0, at least one of the
positive functions 𝑃(𝑓+) or 𝑃(𝑓−) is non-zero. Since 𝑓 ∈ fix(𝑇), one has 𝑇𝑓+ − 𝑇𝑓− = 𝑇𝑓 = 𝑓 =
𝑓+ − 𝑓−. Since the decomposition into the positive and negative parts is unique, one necessarily
has 𝑃(𝑓+) = 𝑇𝑓+ = 𝑓+ and 𝑃(𝑓−) = 𝑇𝑓− = 𝑓−. By the discussion above, at least one of 𝑃(𝑓+) or
𝑃(𝑓−) is a non-zero positive element fixed by 𝑇, so that 𝜚 admits a natural length function with
stretching factor 𝑟. □

A reducible substitution need not admit a strictly positive natural length function, a simple
example being the substitution 𝜚(𝑎) = 𝑎𝑎𝑎, 𝜚(𝑏) = 𝑏𝑏 over  = {𝑎, 𝑏}. However, as we saw in
Theorem 4.26, for an irreducible substitution, any natural length function must have stretching
factor 𝜆 = 𝑟 andmust be strictly positive and unique, up to rescaling. The result below shows that
irreducibility is a necessary and sufficient condition for this strict positivity and uniqueness, and
analogously for eigenmeasures.

Proposition 5.13. Let 𝜚 be a substitution with𝑇mean ergodic. Then, the following are equivalent.

(1) 𝜚 is irreducible.
(2) f ix(𝑇) is one dimensional and spanned by a strictly positive 𝓁 ∈ 𝐾>0.
(3) f ix(𝑇′) is one dimensional and spanned by a strictly positive 𝜇 ∈ 𝐾′

>0
, where 𝐾′

>0
is the set of

𝜇 ∈ 𝐸′ for which 𝜇(𝑓) > 0 for all non-zero 𝑓 ∈ 𝐾.

Proof. Since 𝑇 is mean ergodic, f ix(𝑇) ≠ {0} by Proposition 5.12. Then, the semi-group of pos-
itive operators 𝑆 = {𝑇𝑛} satisfies the conditions of [39, Prop. III.8.5], giving precisely the above
equivalent conditions. □

5.2 Fusion tilings, invariant measures and power convergence

Frank and Sadun’s notion of fusion tilings [20] allows for a generalised setting in which we can
see that invariant measures on the dynamical system (Ω,ℝ) are in one-to-one correspondence
with sequences of volume-normalised and transition-consistent measures on the sets 𝑛 of 𝑛-
supertiles; see the discussion below for definitions. In this section, we recall this correspondence
and we reformulate volume-normalisation and transition-consistency in our setting. With this,
one can show that invariant measures are in one-to-one correspondence with sequences (𝜇𝑛)

∞
𝑛=0

of elements in 𝐾′ with 𝑇′𝜇𝑛 = 𝜇𝑛−1, see Proposition 5.18 below.
This allows one to apply the results in the previous section to determine conditions for unique

ergodicity. We show that a sufficient condition for this is strong power convergence of 𝑇 and irre-
ducibility (which also guarantees the existence, uniqueness and strict positivity of𝓁). This extends
the classical result for primitive substitutions over finite alphabets. We recall some definitions
below regarding the general fusion framework in [19, 20].
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SUBSTITUTIONS ON COMPACT ALPHABETS 31 of 48

We assume that our substitution has natural length function 𝓁 > 0 with inflation factor 𝜆 =
𝑟 > 1. This defines geometric (labelled) prototiles, see Definition 5.1. The set of these prototiles is
denoted by 0. Substitution naturally acts on prototiles; the 𝑛th iterate of substitution applied to
the prototile associated to 𝑎 ∈  has support [0, 𝑟𝑛𝓁(𝑎)], where 𝑟𝑛𝓁(𝑎) is also the sum of lengths
of the constituent prototiles (since 𝓁 is a natural length function). Geometric substitution (also
denoted by 𝜚) also acts on tiles, finite patches and tilings in the obvious way.
An 𝑛-supertile is a patch of the form 𝜚𝑛(𝑝) for a prototile 𝑝 ∈ 0, which also carries the label

𝑎 ∈  of 𝑝 (this labelling is usually unnecessary, namely when the substitution 𝜚∶ → +

is injective, but is needed otherwise). Since supertiles grow without bound, the geometric sub-
stitution rule is automatically van Hove, that is, the ratio of the measure of the boundaries of
𝑛-supertiles and the volume of the supertile goes to zero as 𝑛 → ∞. We let 𝑛 denote the space of
𝑛-supertiles, which we can tacitly identify with. In particular, anymeasurable subset 𝐼 ⊆  can
be seen as a subset of 𝑛 for any 𝑛. Thus, we may also canonically identify any 𝑓 ∈ 𝐶(𝑛) with a
function in 𝐸 ∶= 𝐶(), which we will often do without comment.
Let Ω = Ω(0) denote the geometric hull associated to 𝑋𝜚, with length function 𝓁. We similarly

consider the spacesΩ(𝑛) of the same elements ofΩ, but whose tiles are translates of elements in𝑛
instead of0. One can then define the subdivisionmap𝜔(𝑛) ∶ Ω(𝑛) → Ω(𝑛−1), which simply breaks
every 𝑛-supertile into the constituent (𝑛 − 1)-supertiles; up to rescaling, this corresponds simply
to the substitution map 𝜚∶ Ω → Ω. It quickly follows from Proposition 3.21 that, for each tiling
 ∈ Ω(𝑛), there is some  ′ ∈ Ω(𝑛+1) with 𝜔(𝑛+1)( ′) =  (equivalently, 𝜚∶ Ω → Ω is surjective)
and we call  ′ a supertiling of  . We say that 𝜚 is recognisable if the choice of supertiling is unique,
that is, 𝜚∶ Ω → Ω is injective (equivalently, the subdivision map 𝜔(𝑛) is injective for all 𝑛 ∈ ℕ,
see [20, Sec. 2]).

Remark 5.14. There exists substitutions over compact alphabets that are aperiodic but are not
recognisable; see [14, Ex. 28] for an example. The substitution above is an example of a profinite
substitution [34], and is, in fact, conjugate to the dyadic odometer (and hence uniquely ergodic).

The following is the restriction of the definitions in [20, Sec. 4] to our setting.

Definition 5.15. A regular Borel measure 𝜇𝑛 on 𝑛 (which we may identify with a (positive)
element of 𝐾′ ⊂ 𝐶(𝑛)′) is called volume-normalised if one has

∫ 𝓁(𝑛)(𝑎) d𝜇𝑛(𝑎) ∶= 𝜇𝑛(𝓁
(𝑛)) = 1, (6)

where 𝓁(𝑛)(𝑎) ∶= 𝑀𝑛𝓁(𝑎) = 𝑟𝑛𝓁(𝑎) is simply the geometric length of the 𝑛-supertile correspond-
ing to 𝑎 ∈ . Let (𝑛) be the set of volume-normalised measures on 𝑛. A pair (𝜇𝑛, 𝜇𝑁) ∈(𝑛) ×(𝑁) is called transition consistent if one has

𝜇𝑛 = (𝑀
′)𝑁−𝑛(𝜇𝑁), equivalently 𝜇𝑛 = 𝜇𝑁◦𝑀

𝑁−𝑛, (7)

where𝑀 and𝑀′ are the substitution and the dual substitution operators, respectively.

The following is a correspondence result for tiling spaces generated by fusion rules. For us, the
version for 𝑑 = 1 suffices.
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32 of 48 MAÑIBO et al.

Theorem 5.16 [20, Thm. 4.2]. Let be a van Hove and recognisable fusion rule inℝ𝑑, where is a
compact metric space. LetΩ be the corresponding tiling space withℝ𝑑-action. Then, there is a one-
to-one correspondence between the set of ℝ𝑑-invariant measures on Ω and the space of sequences
{𝜌𝑛} of transition-consistent and volume-normalised measures on 𝑛.
We now continue to reinterpret Equations (6) and (7). Using instead notation similar to [20],

for any continuous function 𝑓 ∈ 𝐸 ∶= 𝐶(),

𝜇𝑛(𝑓) = ∫ 𝑓(𝑎) d𝜇𝑛(𝑎) = ∫𝑀
𝑁−𝑛𝑓(𝑎) d𝜇𝑁(𝑎) = (𝜇𝑁◦𝑀

𝑁−𝑛)(𝑓).

Note that 𝜇
𝑁
(𝑀𝑁−𝑛𝑓), for 𝑓∶ 𝑛 → ℝ, is simply given by considering 𝑓 as a function defined

over 𝑁-supertiles, by first taking the function 𝑁 → ℝ which, on an 𝑁-supertile 𝑎, sums 𝑓 over
𝑎’s constituent 𝑛-supertiles (which follows from the definition of 𝑀𝑁−𝑛), and then integrating
this with 𝜇

𝑁
. Again, we may identify each 𝑛 with, which rescales 𝑛-supertiles by 𝑟−𝑛. Due to

this rescaling, let us alternatively identify a continuous function 𝑓∶ 𝑛 → ℝ with the function
𝑓∶ → ℝ, where 𝑓(𝑎) ∶= 𝑟−𝑛𝑓(𝑎) (where, for 𝑓(𝑎), we are, in fact, identifying 𝑎 with its 𝑛-
supertile), and similarly identify a measure 𝜇𝑛 on 𝑛 with 𝜇𝑛 = 𝑟−𝑛𝜇𝑛 = 𝑓 ↦ 𝜇𝑛(𝑓). Then, the
volume normalisation and transition consistency conditions in Equations (6) and (7) become the
conditions

𝜇𝑛(𝓁) = 1, for all 𝑛 (8)

𝜇𝑛 = (𝑇
′)𝑁−𝑛(𝜇𝑁) for all 𝑛 < 𝑁. (9)

Note that, since 𝑇(𝓁) = 𝓁, volume normalisation follows from 𝜇
0
(𝓁) = 1 and transition con-

sistency. Let ̃(𝑛) denote the measures on 𝑛 that are volume normalised with the above
identification, that is, those measures 𝜇 ∈ 𝐾′ with 𝜇(𝓁) = 1. For a fixed 𝑛 < 𝑁, the following is
defined in [20]:

Δ𝑛,𝑁 = (𝑀
′)𝑁−𝑛(𝑁).

Then, by Equations (8) and (9), we may identify this with

Δ̃𝑛,𝑁 = (𝑇
′)𝑁−𝑛̃(𝑁) =

{
𝜇 ∈ (𝑇′)𝑁−𝑛(𝐾′) ∣ 𝜇(𝓁) = 1

}
. (10)

Let us now drop the tildes and use the above as our definition of Δ𝑛,𝑁 :

Δ𝑛,𝑁 ∶=
{
𝜇 ∈ (𝑇′)𝑁−𝑛(𝐾′) ∣ 𝜇(𝓁) = 1

}
.

We then define

Δ𝑛 ∶=
⋂
𝑁⩾𝑛

Δ𝑛,𝑁 and Δ∞ ∶= lim
←��

Δ𝑛 =
{
{𝜇𝑛} ∣ 𝜇𝑛 ∈ Δ𝑛, 𝑇

′(𝜇𝑛) = 𝜇𝑛−1
}
, (11)

using the notation {𝜇𝑛} for a sequence of measures, as in [20].

Remark 5.17. In Theorem 5.16, it is assumed in its original formulation in [20] that each 𝑛
is a compact metric space, equivalently here that  is metrisable. However, the assumption of
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SUBSTITUTIONS ON COMPACT ALPHABETS 33 of 48

metrisability is easily shown to be unnecessary. Since laying out the details here would be time-
consuming and largely just represent very similar arguments, we leave it as a simple exercise to
the reader to check that the results and arguments in [20] naturally extend to the case of a general
compact, Hausdorff alphabet with no metric.

By the previous discussion, the next result is a restatement of Theorem 5.16 for substitutions on
compact Hausdorff alphabets.

Proposition 5.18. For 𝜚 recognisable, there is a bijection between the set of translation-invariant
Borel probability measures onΩ and elements of Δ∞ in Equation (11).

Theorem 5.19. For 𝜚 recognisable, the tiling dynamical system (Ω,ℝ) is uniquely ergodic if and
only if Δ∞ is a singleton. If 𝜚 is not recognisable, (Ω,ℝ) is uniquely ergodic if Δ∞ is a singleton.

Proof. The first statement follows trivially from Proposition 5.18 in the recognisable case. If 𝜚 is
not recognisable, we may consider an abstract hull where recognisability is forced, as follows. In
definingΩ, onemaymodify the definition of tilings in the geometric hull to be instead hierarchies
of tilings  = (𝑛)∞𝑛=0, where each 𝑛 ∈ Ω(𝑛) and 𝜚(𝑛) = 𝑛−1. In otherwords, we define elements
of the hull as instead sequences of tilings, supertilings, 2-supertilings, and so on, so that the tiles of
𝑛 may be grouped into those of 𝑛+1 consistently with respect to the substitution. So, we consider
the ‘extended geometric hull’ Ω′ of such elements, which we may identify with

Ω′ = lim
←��
(Ω(0)

𝜚
←� Ω(1)

𝜚
←� ⋯),

which also provides the topology on Ω′; translation acts in the obvious way. Substitution
(𝑛)∞𝑛=0 ↦ (𝜚(𝑛))∞𝑛=0 = (𝑛+1)∞𝑛=0 then acts as a homeomorphism onΩ′, building recognisability
into the system. The proof of Proposition 5.18 from [20] essentially only requires recognisability
to identify elements of the hull with consistent supertiling sequences, so Proposition 5.18 applies
toΩ′ and we may identify its invariant measures with Δ∞. ButΩ′ naturally factors ontoΩ, by the
map (𝑛)𝑛 ↦ 0, and factors of uniquely ergodic dynamical systems are still uniquely ergodic, so
the result follows. □

Remark 5.20. Clearly, eachΔ𝑛 = Δ0 is the eventual range of𝐾′ under themap 𝑇′, restricted to 𝜇 ∈
𝐾′with𝜇(𝓁) = 1. Since𝑇′must be surjective on this eventual range,wehave thatΔ∞ is a singleton
if and only if Δ0 is. Then, if (Ω,ℝ) is uniquely ergodic, the unique invariant measure corresponds
to a unique volume normalised eigenmeasure of 𝑇′. However, the converse is not true.

Example 5.21. Consider the irreducible (but non-primitive) substitution

𝜚∶

{
𝑎 ↦ 𝑏𝑏,

𝑏 ↦ 𝑎𝑎.

The corresponding operator is 𝑇∶ ℝ2 → ℝ2 ∶ (𝑥, 𝑦) ↦ (𝑦, 𝑥), which is Markov, meaning that
𝑇(𝟙) = 𝟙 (as the substitution is constant length). Then, the fixed subspace of𝑇′ is one-dimensional
and generated by ( 1

2
, 1
2
). However, Δ∞ is two dimensional, consisting of the sequences (𝛼, 𝛽) ←

(𝛽, 𝛼) ← (𝛼, 𝛽) ← ⋯, where 𝛼 + 𝛽 = 1 for 𝛼, 𝛽 ⩾ 0 (𝑋𝜚 consists of two periodic points, of all 𝑎s
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34 of 48 MAÑIBO et al.

and all 𝑏s). The operator 𝑇 is irreducible and mean ergodic but is not strongly power convergent
since 𝑇2𝑛 = 𝐼 and 𝑇2𝑛+1 = 𝑇.

Our main result of this section is the following sufficient condition for unique ergodicity in
terms of the normalised substitution operator 𝑇.

Theorem 5.22. Let 𝜚 be an irreducible substitution on a compact Hausdorff alphabet  with 𝑇
strongly power convergent. Then 𝜚 admits a natural length function 𝓁 ∈ 𝐾 with inflation factor 𝜆 =
𝑟 > 1. Moreover, this is an essentially unique natural length function and 𝓁(𝑎) > 0 for all 𝑎 ∈ .
With respect to this length function, (Ω,ℝ) is uniquely ergodic.

Proof. By Proposition 5.13, we have an essentially unique natural length function 𝓁 > 0, with
inflation factor 𝜆 = 𝑟, and the projection operator 𝑃, to which 𝑇𝑛 converges strongly (though not
necessarily uniformly), must be of rank 1.
Suppose that a volume normalised and transition consistent sequence {𝜇𝑛} is given and let 𝑓 ∈

𝐸 = 𝐶() be arbitrary. From transition consistency,

𝜇0(𝑓) = (𝑇
′)𝑛(𝜇𝑛)(𝑓) = 𝜇𝑛(𝑇

𝑛𝑓).

Since 𝑇 is strongly power convergent, lim𝑛→∞ 𝑇𝑛𝑓 → 𝑃𝑓 = 𝑐𝓁 for some 𝑐 ∈ ℝ. It follows that

𝜇0(𝑓) = 𝜇𝑛(𝑇
𝑛𝑓) = 𝜇𝑛(𝑐𝓁 + 𝑣𝑛) = 𝑐𝜇𝑛(𝓁) + 𝜇𝑛(𝑣𝑛) = 𝑐 + 𝜇𝑛(𝑣𝑛),

where 𝑣𝑛 → 0 uniformly over as 𝑛 → ∞. Since 𝓁 > 0, we have that 𝜅𝓁 ⩾ 𝟙 for some 𝜅 > 0, and
since each 𝜇𝑛 is positive, we have that ‖𝜇𝑛‖ = 𝜇𝑛(𝟙) ⩽ 𝜅𝜇𝑛(𝓁) = 𝜅 for all 𝑛. Thus, since 𝑣𝑛 → 0

uniformly as 𝑛 → ∞ and the norms of the 𝜇𝑛 are bounded, it follows that 𝜇𝑛(𝑣𝑛) → 0 as 𝑛 → ∞

and 𝜇
0
(𝑓) = 𝑐. Since the volume normalised and transition consistent sequence was arbitrary, Δ0

is a singleton, so Δ∞ is too (Remark 5.20), thus (Ω,ℝ) is uniquely ergodic by Theorem 5.19. □

There is an explicit form for the measures of cylinder sets in Ω in terms of a sequence
{
𝜇𝑛
}
∈

Δ∞, which is given in terms of measures on sets of patches that generate the topology on Ω. For
the exact formulation, we refer the reader to [20, Sec. 4].

5.3 Invariant measures and suspension flows

To end this section, we go back to the relation between the ℝ-invariant measures on (Ω,ℝ) and
the 𝜎-invariant measures on (𝑋𝜚, 𝜎) via the suspension flow (𝑌, ℝ).
Let (𝑌) be the set of ℝ-invariant probability measures on 𝑌 and let (𝑋) be the set of 𝜎-

invariant measures on the subshift. Since the roof function 𝑓 is bounded away from zero, it is well
known [5, 9] that there is a one-to-one correspondence 𝐿∶ (𝑋) →(𝑌), given by

𝜇 ∶= 𝐿(𝜇) =
(𝜇 × 𝜇Leb)|𝑌
∫𝑋 𝑓(𝑥) d𝜇(𝑥)

.

This leads to the following immediate consequence.
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SUBSTITUTIONS ON COMPACT ALPHABETS 35 of 48

Corollary 5.23. Let 𝜚 be a substitution on a compact Hausdorff alphabet that is recognisable and
admits a natural length function 𝓁 that is strictly positive and has inflation factor 𝜆 > 1. Then,
there is a one-to-one correspondence between the elements of Δ∞ and the set(𝑋𝜚) of 𝜎-invariant
probability measures on 𝑋𝜚. If 𝜚 is not recognisable, then 𝑋𝜚 is uniquely ergodic if Δ∞ is a singleton.

6 APPLICATIONS

Using the operator-theoretic perspective above, we will establish two classes of substitutions that
are uniquely ergodic. We begin with examples that have a type of quantitative coincidence prop-
erty, that appears to apply very generally to primitive substitutions on alphabets  containing
an isolated point. Afterwards, we will consider constant length substitutions whose columns
generate uniformly equicontinuous semigroups.

6.1 Quasi-compact substitutions and unique ergodicity

In this section, we will give a simple condition on 𝜚 that ensures the operator 𝑇 to be
quasi-compact, allowing us to deduce strong properties of the substitution.

Definition 6.1. An operator 𝐶∶ 𝐸 → 𝐸 is called compact if the image of the unit ball under 𝐶 is
relatively compact.

Proposition 6.2. If # = ∞ and 𝜚 is letter surjective, then𝑀 is not compact.

Proof. Since  is Hausdorff and # = ∞, there exists an infinite sequence 𝑈1, 𝑈2, . . . of non-
empty, disjoint open subsets of. Since 𝜚 is letter surjective, for each𝑈𝑖 , we may pick some 𝑝𝑖 ∈
𝑈𝑖 and 𝑎𝑖 ∈ with 𝑝𝑖 ⊲ 𝜚(𝑎𝑖). For each 𝑖 ∈ ℕ, wemay find a continuousmap g𝑖 ∶ → [0, 1]with
g𝑖(𝑝𝑖) = 1 and g𝑖(𝑎) = 0 for 𝑎 ∉ 𝑈𝑖 (Remark 4.10). For 𝑛 ∈ ℕ, define 𝑓𝑛 ∶ → [0, 1] by 𝑓𝑛(𝑎) ∶=
g1(𝑎) +⋯ + g𝑛(𝑎). Then, each 𝑓𝑛 belongs to the unit ball of 𝐸 but we claim that (𝑀(𝑓𝑛))𝑛 has no
convergent subsequence. Indeed, given arbitrary 𝑛 ∈ ℕ, we note that ‖𝑀(𝑓𝑛) −𝑀(𝑓𝑖)‖ ⩾ 1 for
𝑖 < 𝑛, since

(𝑀(𝑓𝑛) − 𝑀(𝑓𝑖))(𝑎𝑛) = 𝑀(𝑓𝑛 − 𝑓𝑖)(𝑎𝑛) = 𝑀(g𝑖+1)(𝑎𝑛) +⋯ +𝑀(g𝑛)(𝑎𝑛) ⩾ 𝑀(g𝑛)(𝑎𝑛) ⩾ 1.

The last inequality follows from the fact that we have 𝑝𝑛 ⊲ 𝜚(𝑎𝑛), so that 𝑀(g𝑛)(𝑎𝑛) = g𝑛(𝑥1) +

⋯ + g𝑛(𝑥𝑘) ⩾ 1, where 𝜚(𝑎𝑛) = 𝑥1𝑥2⋯𝑥𝑘 and g𝑛(𝑥𝑖) = 1 for 𝑥𝑖 = 𝑝𝑛. □

Recall fromRemark 3.14 that any substitution can be restricted to a letter surjective substitution
(although perhaps not without reducing the subshift), and from Remark 3.17 that any substitu-
tion that realises the whole alphabet in the subshift is letter surjective. So, essentially, all infinite
substitutions of interest here have non-compact substitution operators. However, we are able to
identify cases where 𝑇 satisfies a weaker condition called quasi-compactness. Quasi-compactness
is a very powerful property here, since it ensures the existence of a continuous length function
and unique ergodicity in the primitive case, as we will see below.
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36 of 48 MAÑIBO et al.

Definition 6.3. An operator 𝑇 with 𝑟(𝑇) = 1 is called quasi-compact if there exists some compact
operator 𝐶 and power 𝑛 ∈ ℕ for which ‖𝑇𝑛 − 𝐶‖ < 1.
The above definition can be reformulated as follows. Let(𝐸) be theBanach algebra of bounded

linear operators on 𝐸. We have the Banach subalgebra(𝐸) ⩽ (𝐸) of compact operators and the
Calkin algebra (𝐸)∕(𝐸). Now, there are several notions of ‘essential spectrum’ for the opera-
tor 𝑇, which are inequivalent (but nonetheless give the same notion of essential spectral radius).
One is that 𝜆 ∈ ℂ is in the essential spectrum if 𝑇 − 𝜆Id is non-invertible in the Calkin algebra,
equivalently [6], 𝑇 − 𝜆Id is not Fredholm (an operator is Fredholm if its range is closed and both
its kernel and cokernel are finite-dimensional). An alternative (which gives a different essential
spectrum in general) is to take the Browder spectrum [11], that is, those 𝜆 ∈ ℂ for which one of
the following holds: range(𝑇 − 𝜆Id) is not closed in 𝐸, dim

(⋃
𝑟⩾0 ker ((𝑇 − 𝜆Id)𝑟)

)
= ∞ or 𝜆 is an

accumulation point of 𝜎(𝑇). In any case, the essential spectral radius 𝑟ess(𝑇) is then the supremum
of moduli of elements in the chosen essential spectrum. Equivalently, there is a Gelfand formula:
onemay define the operator norm ‖[𝑇]‖Cal in theCalkin algebra as the infimumof operator norms‖𝑇 − 𝐶‖ over all compact operators𝐶. Then, 𝑟ess(𝑇) = lim𝑛→∞ 𝑛

√‖[𝑇𝑛]‖Cal, which is a decreasing
sequence. Then, clearly, for 𝑟(𝑇) = 1, we have that 𝑇 is quasi-compact if and only if 𝑟ess(𝑇) < 1.
From [11, Lem. 17] (see also [30, Thm. 1]):

Lemma 6.4. We have that 𝜆 ∈ 𝜎(𝑇) lies outside the Browder spectrum if and only if 𝜆 is a pole of
the resolvent (𝜆𝕀 − 𝑇)−1 of finite rank.

Lemma 6.5. Let 𝑇 be a positive, quasi-compact operator with 𝑟(𝑇) = 1. Then 1 ∈ 𝜎(𝑇) is a pole of
the resolvent of 𝑇 of finite rank and thus 𝑇 has a non-trivial fixed vector.

Proof. Since 𝑇 is positive, 𝑟(𝑇) = 1 ∈ 𝜎(𝑇), which cannot be in the Browder spectrum because
𝑟ess(𝑇) < 1 by quasi-compactness. By Lemma 6.4, 1 is a pole of the resolvent of finite rank, which
is an eigenvalue by Lemma 4.22. □

If 𝑇 is additionally irreducible, then in our setting of 𝐸 = 𝐶() and by Theorem 5.7, the fixed
subspace of 𝑇 in Lemma 6.5 is one-dimensional and spanned by some 𝓁 > 0. If each power 𝜚𝑘 is
irreducible, which includes the case that 𝜚 is primitive, thenwe have the following stronger result.

Proposition 6.6. Suppose that 𝜚𝑘 is irreducible for each 𝑘 ∈ ℕ (e.g. 𝜚 is primitive) and that 𝑇 is
quasi-compact. Then, {𝑟(𝑇)} = {1} = 𝜎per(𝑇) = 𝜎

𝑝
per(𝑇) and 𝑇 is uniformly power convergent. If 𝜚 is

primitive, then 𝑟(𝑇) = 1 is a simple pole of the resolvent.

Proof. As discussed above, 𝑇 admits a fixed vector in 𝐾>0. Then, 1 is the only element of the
peripheral spectrum, and 𝑇 is uniformly power convergent, by [1, Prop. 5], whose results apply
since (𝐸, 𝐾) has the decomposition property (Lemma 4.14). If 𝜚 is primitive, then 1 is a simple
pole of the resolvent, by [26, Thm. 11]: the results of [26, Sec. 5] are given for ‘strictly positive
operators’, but all hold more generally for strongly positive operators (which holds for 𝜚 primitive,
by Proposition 4.11), as stated in the introduction of that section. □

Theorem 6.7. Suppose that 𝜚 is primitive or, more generally, that 𝜚𝑘 is irreducible for all 𝑘 ∈ ℕ. If
𝑇 is quasi-compact, the following properties hold:
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SUBSTITUTIONS ON COMPACT ALPHABETS 37 of 48

(1) {𝑟(𝑇)} = {1} = 𝜎per(𝑇) = 𝜎
𝑝
per(𝑇);

(2) 𝑇 is uniformly power convergent;
(3) 𝑀 admits an essentially unique eigenvector in 𝐾, which is a strictly positive natural length

function with stretching factor 𝜆 = 𝑟 > 1;
(4) the tiling dynamical system (Ω,ℝ) is uniquely ergodic;
(5) the subshift (𝑋𝜚, 𝜎) is uniquely ergodic.

Proof. The statements (1) and (2) follow from Proposition 6.6, whereas (3) follows from Theo-
rem 5.7. The statement (4) follows from (2),(3) and Theorem 5.22 and then (5) follows from (4)
and Corollary 5.23. □

Remark 6.8. The previous theorem is reminiscent of the Ruelle–Perron–Frobenius theorem for
Markov shifts Σ𝐴 [10]. In this setting, the operator in question is the transfer operator 𝐿𝜙 for a
Hölder continuous potential 𝜙∶ Σ𝐴 → ℝ. In the case of topologically mixing Markov shifts over a
finite alphabet, the unique equilibriummeasure is given by ℎ d𝜇, where 𝐿𝜙ℎ = 𝜆ℎ and 𝐿′𝜙𝜇 = 𝜆𝜇,
where 𝜆 > 0. Here, 𝜆 is the Perron–Frobenius eigenvector of the transitionmatrix𝐴 of theMarkov
shift, andℎ and𝜇 are the corresponding (essentially unique) eigenfunction (resp. eigenfunctional)
of 𝐿𝜙 (resp. of 𝐿′𝜙).
The case of countable Markov shifts (CMS) is more involved, and the extension of the above

result relies on recurrence properties of𝐴 (which is now an infinite 0−1matrix) and, more gener-
ally, those of the potential function 𝜙 considered; see [27, 36] for background. The main difficulty
in the study of CMSs is the non-compactness of the shift space.
A family of substitutions over (parametrised) compactifications of ℕ0 are studied in [21]. One

can choose the parameters so that the restriction𝑀|𝑉 of the substitution operator to the subspace
𝑉 =

⟨
{𝟙𝑛}𝑛∈ℕ0

⟩
⊂ 𝐶() can be seen as a transition matrix 𝐴 of a CMS. It would be interesting to

see whether, in this subclass, there are connections between properties of the substitutive subshift
with operator𝑀 and the CMSwith transitionmatrix𝐴 = 𝑀|𝑉 . We suspect that 𝜚 satisfies the con-
dition of Theorem 6.7 if, and only if,Σ𝐴 satisfies a Ruelle–Perron–Frobenius theorem and admits a
(unique) equilibriummeasure. For results along this vein in the setting of substitutions on count-
able (discrete topology) alphabets, we refer the reader to [13]. In particular, [13, Thms. 3.23 3.33]
provide conditions for the existence of a unique shift invariant probability measure.

Note that primitivity and quasi-compactness are both abelian properties, whence if the result
above holds for 𝜚, it also holds for any substitution derived from 𝜚 by rearranging letters in the
images 𝜚(𝑎). We now introduce the following combinatorial criteria (which are abelian in the
sense of the description above) that guarantee 𝑇 to be quasi-compact. For convenience, we let
𝑟 = 𝑟(𝑀) for the rest of the paper.

Theorem 6.9. Let 𝜚 be an arbitrary substitution. For 𝑃 ⊆  and 𝑘 ∈ ℕ, we define

𝐶𝑘(𝑃) ∶= max
𝑎∈ #{𝑏 ⊲ 𝜚

𝑘(𝑎) ∣ 𝑏 ∉ 𝑃}.

For finite 𝑃 ⊆  and 𝑘 ∈ ℕ,

(1) if 𝑃 consists of only isolated points then 𝐶𝑘(𝑃) is an upper bound for the essential spectral radius
of𝑀𝑘;

(2) otherwise, 2𝐶𝑘(𝑃) is an upper bound for the essential spectral radius of𝑀𝑘 .
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38 of 48 MAÑIBO et al.

In particular, if 𝐶𝑘(𝑃) < 𝑟𝑘 and 𝑃 consists of only isolated points, or if 2𝐶𝑘(𝑃) < 𝑟𝑘 , then 𝑇 is quasi-
compact.

Proof. We first consider the case that 𝑃 is a finite set of isolated points. Consider the operator
𝑉∶ 𝐸 → 𝐸 given by

(𝑉𝑓)(𝑎) =

{
𝑓(𝑎) if 𝑎 ∈ 𝑃,
0 otherwise.

Clearly, 𝑉 is a compact operator, since it maps onto the subspace of functions supported on 𝑃,
which is of finite dimension equal to #𝑃. We define 𝐶 ∶= 𝑇𝑘◦𝑉. This is a compact operator, since
the composition of any bounded operator with a compact operator is compact. Then,

((𝑇𝑘 − 𝐶)(𝑓))(𝑎) = (𝑇𝑘(𝐼 − 𝑉)(𝑓))(𝑎) =
1

𝑟𝑘

⎛⎜⎜⎝
∑

𝑏⊲𝜚𝑘(𝑎) with 𝑏∉𝑃

𝑓(𝑏)
⎞⎟⎟⎠.

Then, over all ‖𝑓‖ = 1, the normof (𝑇𝑘 − 𝐶)(𝑓) clearlymaximised by the constant function𝑓 = 𝟙,
for which

‖(𝑇𝑘 − 𝐶)(𝟙)‖ = 1

𝑟𝑘
max
𝑎∈

⎛⎜⎜⎝
∑

𝑏⊲𝜚𝑘(𝑎) with 𝑏∉𝑃

1
⎞⎟⎟⎠ =

𝐶𝑘(𝑃)

𝑟𝑘
.

Since 𝑟ess(𝑇𝑘) is bounded above by the spectral radius of 𝑇𝑘 − 𝐶, which, in turn, is bounded above
by ‖𝑇𝑘 − 𝐶‖, we have that 𝐶𝑘(𝑃)∕𝑟𝑘 is an upper bound for the essential spectral radius of 𝑇𝑘,
equivalently𝐶𝑘(𝑃) is an upper bound for the essential spectral radius of𝑀. If𝐶𝑘(𝑃) < 𝑟𝑘, it follows
that 𝑇 is quasi-compact.
Now suppose that 𝑃 is finite but contains non-isolated points. Then, the operator𝑉 above is not

continuous and needs to be adjusted. Choose open sets 𝑈𝑝, one for each 𝑝 ∈ 𝑃, so that 𝑝 ∈ 𝑈𝑝
and 𝑈𝑝 ∩ 𝑈𝑞 = ∅ for 𝑝 ≠ 𝑞. For each 𝑝 ∈ 𝑃, there exists a continuous function 𝜓𝑝 ∶ → [0, 1]

for which 𝜓𝑝(𝑝) = 1 and 𝜓𝑝(𝑎) = 0 for 𝑎 ∉ 𝑈𝑝 (Remark 4.10). We define 𝑉∶ 𝐸 → 𝐸 by

(𝑉𝑓)(𝑎) =
∑
𝑝∈𝑃

𝑓(𝑝) ⋅ 𝜓𝑝(𝑎) =

{
𝑓(𝑝) ⋅ 𝜓𝑝(𝑎) for 𝑎 ∈ 𝑈𝑝,
0 if 𝑎 ∉

⋃
𝑝∈𝑃 𝑈𝑝,

where in the latter equality, we use that the 𝑈𝑝 are disjoint. It is easy to see that 𝑉 is continu-
ous, and it is compact since 𝑉(𝐸) is contained in the #𝑃-dimensional subspace spanned by the
functions 𝜓𝑝. Thus, 𝐶 ∶= 𝑇𝑘◦𝑉 is also a compact operator and 𝑇𝑘 − 𝐶 is given by

((𝑇𝑘 − 𝐶)(𝑓))(𝑎) = (𝑇𝑘(𝐼 − 𝑉)(𝑓))(𝑎) =
1

𝑟𝑘

∑
𝑏⊲𝜚𝑘(𝑎)

(𝑓(𝑏) − (𝑉𝑓)(𝑏)).

Notice that for 𝑏 ∈ 𝑃, we have 𝑉𝑓(𝑏) = 𝑓(𝑏) so that 𝑓(𝑏) − (𝑉𝑓)(𝑏) = 0 and thus the above
sum may be taken over 𝑏 ∉ 𝑃. For 𝑏 ∉ 𝑃 and ‖𝑓‖ ⩽ 1, we have that |𝑓(𝑏) − 𝑉𝑓(𝑏)| ⩽ |𝑓(𝑏)| +

 14697750, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70123 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [26/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SUBSTITUTIONS ON COMPACT ALPHABETS 39 of 48

|𝑉𝑓(𝑏)| ⩽ 2. Hence,
‖(𝑇𝑘 − 𝐶)(𝑓)‖ ⩽ 1

𝑟𝑘
max
𝑎∈

⎛⎜⎜⎝
∑

𝑏⊲𝜚𝑘(𝑎) with 𝑏∉𝑃

2
⎞⎟⎟⎠ =

2𝐶𝑘(𝑃)

𝑟𝑘
.

Then, analogously to the first case, 2𝐶𝑘(𝑃) is an upper bound for the essential spectral radius of
𝑀 and 𝑇 is quasi-compact if 2𝐶𝑘(𝑃) < 𝑟𝑘. □

Note that, in the finite alphabet case, 𝑇 is always compact (i.e., 𝑟ess(𝑇) = 0), and hence always
quasi-compact, so the above result is of interest only in the infinite alphabet case. The bound
𝑟 ⩾ min𝑎∈ 𝑛

√|𝜚𝑛(𝑎)| for all 𝑛 from Lemma 4.23 makes the above checkable for many interesting
examples:

Example 6.10. Consider the substitution

𝜚∶

{
0 ↦ 0 1,

𝑛 ↦ 0 𝑛−1 𝑛+1,

defined on = ℕ∞. Let 𝑃 = {0}. Then, every 1-supertile contains at most two letters not in 𝑃, so
we need to show that 𝑟 = 𝑟1 > 𝐶1(𝑃) = 2. From the first power of the substitution alone, we can
only conclude from Lemma 4.23 that 𝑟 ⩾ 2, whereas we need a strict inequality. We therefore con-
sider 𝜚2. We have |𝜚2(0)| = |01002| = 5, |𝜚2(1)| = |0101013| = 7 and |𝜚2(𝑛)| = |010(𝑛 − 2)(𝑛 +
1)0𝑛(𝑛 + 2)| = 8 for 𝑛 > 1, so that min𝑎∈ |𝜚2(𝑎)| = 5 and hence 𝑟 ⩾√5 > 2, by Lemma 4.23.
It follows that 𝑇 is quasi-compact. For illustrative purposes, we also note that one could take
𝑃 = {0, 1} and 𝑘 = 2. We have that each 𝜚2(𝑎) contains at most four elements not in 𝑃, and
4 < 5 ⩽ 𝑟2, thus 𝐶2(𝑃) = 4 < 𝑟2.

Example 6.11. Let 𝜚 be any substitution of constant length 𝐿 for which 𝜚𝑘(𝑎) contains a letter
in some finite subset 𝑃 ⊆ , for any 𝑎 ∈ . If 𝑃 consists of isolated points, then 𝜚 satisfies the
conditions of Theorem 6.9. Indeed, in this case, 𝑟 = 𝐿, and |𝜚𝑘(𝑎)| = 𝑟𝑘 for all 𝑎 ∈ . Since, by
assumption, each such 𝜚𝑘(𝑎) contains at least one occurrence of a letter in 𝑃, we have that𝐶𝑘(𝑃) ⩽
𝑟𝑘 − 1 < 𝑟𝑘.
In fact, the same criterion may be used even if 𝑃 has non-isolated points in the constant length

case. Indeed, suppose that each 𝜚𝑘(𝑎) contains a letter of 𝑃, for some finite 𝑃 and 𝑘 ∈ ℕ. Define

𝑃(𝑁) =
{
𝑎 ∈ ∶ 𝑎 ⊲ 𝑣, 𝑣 ∈ 𝑃 ∪ 𝜚𝑘(𝑃) ∪ 𝜚2𝑘(𝑃) ∪⋯ ∪ 𝜚𝑁𝑘(𝑃)

}
.

Here, 𝜚𝑛(𝑃) = {𝜚𝑛(𝑎)∶ 𝑎 ∈ 𝑃}. Suppose that a given word𝑤 contains at least 𝑝 letters in 𝑃(𝑁) and
atmost𝑛 letters in its complement, where |𝑤| = 𝑝 + 𝑛. Then, 𝜚𝑘(𝑤) contains at least 𝑟𝑝 + 𝑛 letters
in𝑃(𝑁 + 1), since it has 𝑟𝑝 from applying 𝜚𝑘 to letters in𝑃(𝑁), and at least one contribution in 𝑃 =
𝑃(0) ⊆ 𝑃(𝑁 + 1) by applying 𝜚𝑘 to every other letter. So, at most 𝑟(𝑝 + 𝑛) − (𝑟𝑝 + 𝑛) = (𝑟 − 1)𝑛
letters of 𝜚𝑘(𝑤) are not in 𝑃(𝑁 + 1), since 𝑤 has 𝑝 + 𝑛 letters. In matrix form,

𝑣 ↦ 𝐴𝑣 with 𝐴 =
(
𝑟 1

0 𝑟 − 1

)
,

where 𝑣 = (𝑝, 𝑛)𝑇 and𝐴𝑣 has first coordinate a lower bound for the number of elements in 𝑃(𝑁 +
1), and second coordinate an upper bound for the number of elements not in 𝑃(𝑁 + 1). It follows
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40 of 48 MAÑIBO et al.

that, for each 𝑎 ∈  and𝑁 ∈ ℕ, the supertile 𝜚𝑁𝑘(𝑎) contains at least (𝐴𝑁(0, 1)𝑇)1 letters in 𝑃(𝑁)
and at most (𝐴𝑁(0, 1)𝑇)2 not in 𝑃(𝑁). The matrix 𝐴 has leading Perron–Frobenius eigenvector
(1,0), with eigenvalue 𝑟, and 1∕𝑟𝑁𝐴𝑁(0, 1)𝑇 → (1, 0) as 𝑛 → ∞; that is, the ratio of letters of 𝜚𝑁𝑘(𝑎)
in 𝑃(𝑁) converges to 1 as𝑁 → ∞. In particular, for some𝑁 > 0, at least half of the letters of each
𝜚𝑁𝑘(𝑎) belong to 𝑃(𝑁). Since 𝑃(𝑁) is a finite set, it follows from Theorem 6.9 that 𝑇 is quasi-
compact.

Example 6.12. Let = 𝑆1 and consider the substitution 𝜚(𝑥) = 1 𝛼𝑥. Then, wemay take 𝑃 = {1}
and every 𝜚1(𝑥) contains a letter of 𝑃, so 𝑇 is quasi-compact by Example 6.11.

Example 6.13. Suppose that 𝜚∶ → + is primitive and that  contains at least one isolated
point. Then, if 𝜚 is constant length, it satisfies the conditions of Theorem 6.9. Indeed, if 𝑎 ∈  is
isolated, then 𝑃 ∶= {𝑎} is open, so by primitivity for some 𝑝 ⩾ 1, each 𝜚𝑝(𝑏) contains at least one
occurrence of 𝑎. Then, 𝜚 is again covered by Example 6.11.
If 𝜚 is primitive (but not necessarily constant length), then it is similarly easy to show that, for

every 𝑏 ∈ , there are at least 𝛼𝑎 ⋅ |𝜚𝑘(𝑏)| occurrences of any given isolated point 𝑎 ∈  in each
𝜚𝑘(𝑏), for 𝑘 sufficiently large (depending on 𝑎) and 𝛼𝑎 > 0 not depending on 𝑘. However, it is not
clear that the condition of Theorem 6.9 is satisfied, since a priori it may happen that |𝜚𝑘(𝑏)|∕𝑟𝑘 is
unbounded. In fact, even if |𝜚𝑘(𝑏)| < 𝐶𝑟𝑘 for all 𝑘 ∈ ℕ and 𝑏 ∈ , it is not immediately clear that
there exists a finite subset 𝑃 ⊂  so that each 𝜚𝑘(𝑏) contains sufficiently many occurrences in 𝑃
so as to apply Theorem 6.9. This raises the following question.

Question 6.14. Suppose that 𝜚 is primitive and that  contains at least one isolated point. Is 𝑇
power bounded? Is 𝑇 quasi-compact?

One simplification of the above question is to restrict to primitive substitutions for which the
isolated points are dense in, and 𝜚 sends isolated points to words of isolated points. Such sub-
stitutions are natural to consider: they arise, for instance, from some combinatorial substitutions
on ℕ0 that admit a compactification to a primitive substitution.
Below, we give an example of a primitive substitution that satisfies the conditions of

Theorem 6.7 and compute the corresponding length function.

Example 6.15. Let = ℕ∞ and consider the substitution defined in Example 3.2:

𝜚∶

⎧⎪⎨⎪⎩
0 ↦ 0 0 0 1,

𝑛 ↦ 0 𝑛−1 𝑛+1,

∞ ↦ 0∞∞.

One can easily see that 𝜚 is primitive. Using the same arguments as in Example 6.10, one can show
that the operator 𝑇 is quasi-compact. Here, we give closed formulae for the letter frequencies and
for the natural length function (to the inflation factor 𝜆 = 𝑟). Let 𝜈 = (𝜈0, 𝜈1, …)𝑇 be the frequency
vector. Note that the letter frequencies satisfy the linear recurrence relation 𝜈𝑗 = 𝜆𝜈𝑗−1 − 𝜈𝑗−2, for
𝑗 ⩾ 2 with 𝜈1 = (𝜆 − 2)𝜈0 − 1. From the equation

∑∞
𝑗=0 𝜈𝑗 = 1, one gets 𝜆 = 3 + 𝜈0. This implies

𝜈1 = 𝜈
2
0
+ 𝜈0 − 1. The recurrence relation is homogeneous with characteristic polynomial 𝑝(𝑥) =
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SUBSTITUTIONS ON COMPACT ALPHABETS 41 of 48

𝑥2 − 𝜆𝑥 + 1. This means that the solution of the recurrence relation is of the form

𝜈𝑗 = 𝐶+

(
𝜆 +
√
𝜆2 − 4

2

)𝑗
+ 𝐶−

(
𝜆 −
√
𝜆2 − 4

2

)𝑗
for some constants 𝐶−, 𝐶+. Since the frequencies satisfy 𝜈𝑗 ⩽ 1, we immediately get that 𝐶+ = 0.

From the initial conditions, we get 𝐶− = 𝜈0 and 𝐶−(
𝜆−
√
𝜆2−4

2
) = 𝜈2

0
+ 𝜈0 − 1. Solving these two

equations simultaneously yields 𝜈0 = −1 or 𝜈0 =
1√
2
, where the first is obviously an extraneous

solution. This then yields 𝜆 = 3 + 1√
2
and

𝜈𝑗 =
1√
2

(
1 −

1√
2

)𝑗
for 𝑗 ⩾ 0 with 𝜈∞ = 0.
Next, we solve for the lengths 𝓁𝑗 . They satisfy the non-homogeneous linear recurrence relation

𝓁𝑗 = 𝜆𝓁𝑗−1 − 𝓁𝑗−2 − 𝓁0. If we fix 𝓁∞ = 1, we get that 𝓁0 = 𝜆 − 2 = 1 +
1√
2
. Note that the non-

homogeneous term is −𝓁0 = −𝓁0 ⋅ 1𝑗 , and since 1 is not a root of 𝑥2 − 𝜆𝑥 − 1, and the two roots
are distinct, we have a particular solution given by some constant 𝐶𝑝. Solving for 𝐶𝑝 yields 𝐶𝑝 =
𝓁0
𝜆−2

= 1. Combining this to the solution of the associated homogeneous recurrence relation leads
to

𝓁𝑗 = 1 +
1√
2

(
1 −

1√
2

)𝑗
for all 𝑗 ⩾ 0.

Remark 6.16. Recent work of Frettlöh, Garber and Mañibo [21] has shown that there exists a
certain family of substitutions on appropriate compactifications of ℕ0, which are generalisations
of the example above, so that Theorem 6.7 applies, making the subshifts 𝑋𝜚 uniquely ergodic.
By primitivity, quasi-compactness and Theorem 6.7, these substitutions have a uniquely defined,
strictly positive natural length function, and the family is large enough to realise any inflation
factor 𝜆 ∈ [2,∞). This is in contrast to the finite case, where inflation factors necessarily have to
be algebraic integers.

Example 6.17. This example satisfies the conditions of Theorem 6.9 whilst being non-constant
length and with  uncountable. Give a different compactification of ℕ0 by embedding it in the
cylinder by the map

𝑓∶ ℕ0 → [0, 1] × 𝑆1, 𝑓(𝑛) ∶= (1∕(𝑛 + 1), 𝛼𝑛).

Then, each 𝑛 ∈ ℕ0 is isolated in = 𝑓(ℕ0) ⊂ [0, 1] × 𝑆
1, where we add accumulation points𝐴 =

{0} × 𝑆1 ⊂ . Identify the isolated points (1∕(𝑛 + 1), 𝛼𝑛)with 𝑛 ∈ ℕ0 and the accumulation points
(0, 𝑥) ∈ {0} × 𝑆1 with 𝑥 ∈ 𝑆1. Then,

𝜚∶

⎧⎪⎨⎪⎩
0 ↦ 0 0 0 1,

𝑛 ↦ 0 𝑛−1 𝑛+1 for 𝑛 ∈ ℕ0,
𝑥 ↦ 0 𝛼−1𝑥 𝛼𝑥 for 𝑥 ∈ 𝑆1.

It is not hard to check again that this is primitive. Theorem 6.9 applies just as before, so 𝑇 is quasi-
compact.

 14697750, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70123 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [26/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



42 of 48 MAÑIBO et al.

6.2 Constant length substitutions

Queffélec has already considered substitutions of constant length in compactmetrisable alphabets
in [32], which she called compact automata. In this subsection,we let |𝜚(𝑎)| = 𝐿 for all𝑎 ∈ . This
greatly simplifies matters, owing to the following:

(1) ‖𝑀‖ = 𝑟 = 𝐿 and ‖𝑇‖ = 1, that is, 𝑇 is a contraction;
(2) 𝑀(𝟙) = 𝐿𝟙, so 𝟙 is a natural length function of 𝜚;
(3) 𝜚(𝑎) = 𝜚1(𝑎)𝜚2(𝑎)⋯ 𝜚𝐿(𝑎) for continuous functions 𝜚𝑖 ∶ → , which we call columns.
The last property means that the substitution operator is defined by

𝑀(𝑓) = 𝑓◦𝜚1 + 𝑓◦𝜚2 +⋯ + 𝑓◦𝜚𝐿. (12)

Let Φ be the semigroup generated by the columns {𝜚𝑖}. We call Φ equicontinuous if this set of
functions is uniformly equicontinuous (note that this notion does not require to be metrisable,
since carries a uniformity, as a compact Hausdorff space). The following results are similar to
those obtained in [32, Thm. 12.1, Cor. 12.2].

Theorem 6.18. Suppose that 𝜚 is primitive, constant length and generates an equicontinuous semi-
group Φ. Then, 𝑇 is strongly power convergent and the tiling dynamical system associated with 𝜚 is
uniquely ergodic.

Proof. Let 𝑓 ∈ 𝐾 be arbitrary. Firstly, note that

𝑇𝑛(𝑓) =
1

𝐿𝑛

𝐿𝑛∑
𝑖=1

𝑓◦𝜙(𝑛)
𝑖
,

where the sum is over all possible 𝑛-fold compositions 𝜙(𝑛)
𝑖
∈ Φ of columns. Since is compact, 𝑓

is uniformly continuous and thus themaps {𝑓◦𝜙(𝑛)
𝑖
} are uniformly equicontinuous. Since 𝑇𝑛(𝑓) is

a convex combination of these maps, it follows that {𝑇𝑛(𝑓)} is a uniformly equicontinuous family.
Since ‖𝑇‖ ⩽ 1, it is also uniformly bounded, so {𝑇𝑛(𝑓)} is relatively compact in 𝐸 by the Arzelá–
Ascoli Theorem and thus

𝑇𝑛𝑘 (𝑓) → g as 𝑘 → ∞

for some subsequence (𝑛𝑘)𝑘 and g ∈ 𝐾. By primitivity, dismissing the trivial case of 𝑓 = 0, we
must have that g > 0. We will show that g is constant.
Observe that g is itself also a cluster point of iterates of 𝑇 applied to g . Indeed,

‖𝑇𝑛𝑘+1−𝑛𝑘 (g) − g‖ = ‖𝑇𝑛𝑘+1−𝑛𝑘 (𝑇𝑛𝑘𝑓 − 𝑣𝑘) − g‖ = ‖𝑇𝑛𝑘+1𝑓 − 𝑇𝑛𝑘+1−𝑛𝑘 (𝑣𝑘) − g‖ ⩽
‖𝑇𝑛𝑘+1𝑓 − g‖ + ‖𝑇𝑛𝑘+1−𝑛𝑘 (𝑣𝑘)‖ ⩽ ‖𝑇𝑛𝑘+1𝑓 − g‖ + ‖𝑣𝑘‖→ 0 as 𝑘 → ∞,

where 𝑣𝑘 = 𝑇𝑛𝑘 (𝑓) − g → 0, so 𝑇𝑛𝑘+1−𝑛𝑘 (g) → g as 𝑘 → ∞. Suppose that 𝑛𝑘+1 − 𝑛𝑘 is bounded.
Then, 𝑇𝑝(g) = g for some 𝑝 so that 𝑇𝑛𝑝(g) = g for arbitrarily large 𝑛𝑝. Otherwise, we have that
𝑇𝑗𝑘g → g as 𝑘 → ∞ for 𝑗𝑘 → ∞. In either case, we see that g must be constant. Indeed, ‖𝑇𝑗g‖ is
monotonically decreasing in 𝑗, since ‖𝑇‖ ⩽ 1. By primitivity, ‖𝑇𝑗g‖ < ‖g‖ for sufficiently large 𝑗
and g non-constant. To see this, suppose that 𝑈 ⊂  is an open set small enough so that g(𝑎) <
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SUBSTITUTIONS ON COMPACT ALPHABETS 43 of 48

‖g‖ for all 𝑎 ∈ 𝑈. By primitivity, for sufficiently large 𝑗, we have that 𝜚𝑗(𝑎) contains a letter in 𝑈
for all 𝑎 ∈ , which implies that 𝑇𝑗(g)(𝑎) < ‖g‖ for all 𝑏 ∈ , that is, ‖𝑇𝑗g‖ < ‖g‖. But 𝑇 is a
contraction so then cannot converge to g , which is a contradiction, so g must be constant.
Recall that 𝑇𝑛𝑘 (𝑓) → g as 𝑘 → ∞. On the other hand,

‖𝑇𝑛+1(𝑓) − g‖ = ‖𝑇𝑛+1(𝑓 − g)‖ ⩽ ‖𝑇𝑛(𝑓 − g)‖ = ‖𝑇𝑛(𝑓) − g‖,
since 𝑇(g) = g , so that ‖𝑇𝑛(𝑓) − g‖ is monotonically decreasing. Hence, the whole sequence
𝑇𝑛𝑓 → g as 𝑛 → ∞, as required. If 𝑓 ∉ 𝐾, then 𝑓 = 𝑓+ − 𝑓−, where 𝑓+ and 𝑓− ∈ 𝐾, so by the
above 𝑇𝑛(𝑓) = 𝑇𝑛(𝑓+) − 𝑇𝑛(𝑓−) → g+ − g− as 𝑛 → ∞ so that 𝑇 is strongly power convergent on
all of 𝐸. By Theorem 5.22, the tiling dynamical system (Ω,ℝ) or, by Corollary 5.23, the subshift
(𝑋𝜚, 𝜎), is uniquely ergodic. □

The following substitution (considered in [32, Exp. 12.1] in the one-sided shift setting) is an
example for which 𝑇 cannot be quasi-compact, and 𝑟 cannot be a pole of the resolvent, since 𝑇 is
not uniformly power convergent, but the subshift is still uniquely ergodic by the above result:

Example 6.19. Let = 𝑆1 ⊆ ℂ and recall the substitution from Example 3.3: 𝜚(𝑧) = 𝑧 𝛼𝑧, where
𝛼 ∈ 𝑆1 is irrational (i.e. 𝛼 = 𝑒2𝜋𝛽𝑖 for 𝛽 irrational). By Kronecker’s theorem, via the density of the
orbit of 𝑧 ↦ 𝛼𝑧, it is clear that 𝜚 is primitive. Also, note that Φ = ⟨id, 𝛼⋅⟩ is an equicontinuous
semigroup because it is generated by group translations.
We do not have that 𝑇𝑛 ↦ 𝑃 uniformly as 𝑛 ↦ ∞, where 𝑃 is a projection operator to the eigen-

line spanned by 𝓁. Indeed, firstly note that an eigenmeasure is clearly provided by the Lebesgue
measure on the circle (since each letter map of the substitution is a rotation). Consider a func-
tion 𝑓 ∈ 𝐸, ‖𝑓‖ = 1 that has very small integral 𝑐 = 𝑐𝑓 > 0 and yet has 𝑓(𝑧) = 1 for 𝑧 = 1, 𝛼, 𝛼2,
. . . , 𝛼𝑛 (by taking a very spiky function this is, of course, possible; in fact, by taking a function
with negative spikes too, we may choose such a function so that 𝑐 = 0). Then, by Lemma 4.5,
(𝑀𝑛(𝑓))(1) = 2𝑛 and hence 𝑇𝑛(𝑓)(1) = 1, since all elements of 𝜚𝑛(1) are of the form 𝛼𝑛 for some
non-negative 𝑘 ⩽ 𝑛. Assuming uniform power convergence, we would have 𝑇𝑛𝑓 → 𝑐𝑓 ⋅ 𝓁 uni-
formly as 𝑛 ↦ ∞, that is, ‖𝑇𝑛(𝑓) − 𝑐𝑓𝓁‖ < 𝜖 for sufficiently large 𝑛 over all ‖𝑓‖ ⩽ 1. However,‖𝑇𝑛(𝑓) − 𝑐𝑓𝓁‖ ⩾ 1 − 𝑐𝑓 , so we do not have such uniform convergence, and thus, 𝑟 cannot be a
pole of the resolvent, and𝑀 cannot be quasi-compact, by Theorem 6.7. However, whilst 𝑇 is not
uniformly power convergent, it is strongly power convergent by Theorem 6.18.

Remark 6.20. Since Theorem 5.16 covers fusion tilings in higher dimensions, Theorems 5.22 (on
unique ergodicity and strong power convergence) and 6.18 (for constant-length substitutions) gen-
eralises in higher dimensions, under similar assumptions and proofs. This will be addressed in a
future work.

7 DISCREPANCY ESTIMATES FROMA SPECTRAL GAP

Throughout this section, we make the following assumptions on 𝜚:

(A1) 𝑇 is uniformly power convergent;
(A2) 𝑇 is irreducible.
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44 of 48 MAÑIBO et al.

The first assumption implies that 1 is a simple pole of the resolvent [28, Thm. 2.5]. It then follows
from Theorem 5.7 that

∙ 𝜎per(𝑇) = {1};
∙ 𝜚 admits a (unique) natural length function 0 ≠ 𝓁 ∈ 𝐾 with stretching factor 𝜆 = 𝑟.

Since 𝜎(𝑀) = 𝑟𝜎(𝑇) is compact, 𝑟 is a pole of the resolvent (and thus isolated) and the only
element of the peripheral spectrum of𝑀, it follows that𝑀 has a spectral gap, that is, 𝜎(𝑀) has a
‘second largest element’:

𝑟2 ∶= sup{|𝜆| ∣ 𝜆 ∈ 𝜎(𝑀), 𝜆 ≠ 𝑟} < 𝑟.
We fix a (necessarily unique) eigenmeasure 𝜇 ∈ 𝐾′, which we normalise here with 𝜇(𝓁) = 1.

Remark 7.1. By Theorem 6.7, the above conditions are satisfied whenever 𝜚 is primitive and 𝑇
is quasi-compact. This includes any primitive substitution for which Theorem 6.9 applies, so the
constructions to follow apply to those relevant examples from the last section.

The existence of a spectral gap will allow for some control on the discrepancy on the ‘expected
weight’ of a weighted selection of tiles across a large supertile relative to the ‘actual’ sum of
weights. Given 𝑓 ∈ 𝐸 (a ‘weight function’), 𝑎 ∈ , and 𝑛 ∈ ℕ, we define

Exp(𝑓, 𝑎, 𝑛) = 𝑟𝑛𝓁(𝑎) ⋅ 𝜇(𝑓). (13)

That is, we simply multiply the length of the 𝑛-supertile 𝜚𝑛(𝑎) by the ‘average weight’ of 𝑓. Such
quantities are prevalent in recent works on bounded displacement equivalence [22, 42].

Example 7.2. For a primitive substitution on a finite alphabet, 𝜇 is represented by the row vector
𝑓 = (𝑓𝛼, 𝑓𝛽, …) of frequencies 𝑓𝑎 > 0 of each letter 𝑎 ∈ . Then, the expected number of tiles of
type 𝑏 in 𝜚𝑛(𝑎) is Exp(𝟙𝑏, 𝑎, 𝑛) = 𝑟𝑛𝓁(𝑎)𝜇(𝟙𝑏) = 𝑟𝑛𝓁(𝑎)(𝑣 ⋅ 𝑓) = 𝑟𝑛𝓁(𝑎)𝑓𝑏, where 𝑣 is the vector
with entry corresponding to 𝑏 equal to 1 and all other entries 0. So, we just multiply length of
the 𝑛-supertile by the frequency of occurrence of 𝑏. More generally, given a weighted selection
𝑣 = (𝑣𝛼, 𝑣𝛽, …) of tiles, where we have one 𝑣𝑎 ∈ ℝ for each tile 𝑎 ∈ ,

Exp(𝑓, 𝑎, 𝑛) = 𝑟𝑛𝓁(𝑎)(𝑣 ⋅ 𝑓).

Here, we are identifying 𝑣 with an arbitrary function 𝑓 ∈ 𝐸, given by 𝑓(𝑎) = 𝑣𝑎.

We define the actual weighted sum of 𝑓 across an 𝑛-supertile 𝜚𝑛(𝑎) by

Act(𝑓, 𝑎, 𝑛) =
∑

𝑏⊲𝜚𝑛(𝑎)

𝑓(𝑏) = (𝑀𝑛𝑓)(𝑎),

where the second equality follows from Lemma 4.5. The result below bounds the discrepancy
between the expected and actualweight across all possible supertiles. For a treatment for primitive
substitutions on finite alphabets and applications to questions on balancedness, we refer to [3] and
[2], respectively.
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SUBSTITUTIONS ON COMPACT ALPHABETS 45 of 48

Theorem 7.3. Suppose that assumptions (A1) and (A2) hold. Then, there is some function 𝜃∶ ℕ →
ℝ>0 with

𝑛
√
𝜃(𝑛) → 1 as 𝑛 → ∞ so that for all 𝑓 ∈ 𝐸 with ‖𝑓‖ ⩽ 1, 𝑎 ∈  and 𝑛 ∈ ℕ we have

|Exp(𝑓, 𝑎, 𝑛) − Act(𝑓, 𝑎, 𝑛)| ⩽ 𝜃(𝑛)(𝑟2)𝑛.
In particular, for any 𝜖 > 0, we have the following for sufficiently large 𝑛:

|Exp(𝑓, 𝑎, 𝑛) − Act(𝑓, 𝑎, 𝑛)| ⩽ (𝑟2 + 𝜖)𝑛.
In the above, recall that 𝑟2 denotes the maximum modulus of element of 𝜎(𝑀) ⧵ {𝑟}. Before

proving this result, we require a few technical lemmas regarding the spectrum of the operator
restricted to the subspace

Π ∶= {𝑓 ∈ 𝐸 ∣ 𝜇(𝑓) = 0}.

By uniform power convergence, we have 𝑇𝑛 → 𝑃 uniformly as 𝑛 → ∞, where 𝑃 is a projection to
the eigenline Λ = ⟨𝓁⟩ℝ. Hence, Π = ker(𝑃) is a closed, co-dimension one subspace and we have
𝐸 = Λ⊕Π. We let 𝑇Π denote the restriction to Π.

Lemma 7.4. Suppose assumptions (A1) and (A2) hold. Then, we have the inclusion 𝜎(𝑇Π) ⊆ 𝜎(𝑇).

Proof. Since 𝑃 is bounded (and thus continuous), its kernel is closed, and so, 𝑇Π is a bounded
operator on a Banach space. For such operators, 𝜏 ∈ 𝜎(𝑇) if and only if 𝑇 − 𝜏𝕀 is not bijective.
Suppose that 𝜏 ∈ 𝜎(𝑇Π). Firstly assume that 𝑇 − 𝜏𝕀 is not injective, so that 𝑇(𝑓) = 𝜏𝑓 for some
𝑓 ∈ Π. The same 𝑓 demonstrates that 𝜏 ∈ 𝜎(𝑇).
So, suppose instead that𝑇 − 𝜏𝕀 is not surjective, and thus, there is some g ∈ Πwith𝑇𝑓 − 𝜏𝑓 ≠ g

for any 𝑓 ∈ Π. Assume, on the other hand, that 𝜏 ∉ 𝜎(𝑇) so that 𝑇𝑓 − 𝜏𝑓 = g for some 𝑓 ∈ 𝐸. We
may write 𝑓 = 𝑎 + 𝑏 for 𝑎 ∈ Λ and 𝑏 ∈ Π. Then,

𝑇(𝑎 + 𝑏) − 𝜏(𝑎 + 𝑏) = (𝑇𝑎 − 𝜏𝑎) + (𝑇𝑏 − 𝜏𝑏) = g ∈ Π.

But sinceΛ andΠ are complementary this implies that 𝑇𝑎 − 𝜏𝑎 = 0. If 𝑎 ≠ 0, it follows that 𝜏 = 1
(since then 𝑎 is a non-negative multiple of 𝓁), which we already know is in 𝜎(𝑇). Otherwise, we
have that 𝑇𝑏 − 𝜏𝑏 = g , contradicting that 𝑇𝑏 − 𝜏𝑏 ≠ g for all 𝑏 ∈ Π. □

We get the following consequence of uniform power convergence:

Lemma 7.5. We have that 1 ∉ 𝜎(𝑇Π).

Proof. Let 𝑓 ∈ Π be arbitrary; we have 𝑇𝑛𝑓 → 𝑃(𝑓) = 𝑐 ⋅ 𝓁 as 𝑛 → ∞, uniformly in 𝑓. Clearly,
𝑐 = 0, since 𝜇(𝑇𝑛𝑓) = 𝜇(𝑓) = 0 for all 𝑛 and 𝜇(𝑐𝓁) = 𝑐. Thus, 𝑇𝑛

Π
→ 0 uniformly so ‖𝑇𝑛

Π
‖ < 1 for

some 𝑛 ∈ ℕ. It follows from Gelfand’s formula that 𝑟(𝑇Π) < 1, and thus, 1 ∉ 𝜎(𝑇Π). □

Lemma 7.6. Suppose that 𝜅 ∈ 𝜎(𝑇) with 𝜅 ≠ 1. Then, 𝜅 ∈ 𝜎(𝑇Π).
Proof. Let 𝜅 ∈ 𝜎(𝑇) with 𝜅 ≠ 1. Firstly assume that 𝑇𝑓 − 𝜅𝑓 = 0 for some 𝑓 ∈ 𝐸 and write 𝑓 =
𝑎 + 𝑏 for 𝑎 = 𝑐𝓁 ∈ Λ and 𝑏 ∈ Π. Then,

𝑇𝑓 − 𝜅𝑓 = 𝑐(1 − 𝜅)𝓁 + (𝑇𝑏 − 𝜅𝑏) = 0.
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46 of 48 MAÑIBO et al.

Since 𝑐(1 − 𝜅)𝓁 ∈ Λ, 𝑇𝑏 − 𝜅𝑏 ∈ Π, and the subspacesΛ andΠ are complementary, it is necessary
that 𝜅 = 1 or 𝑐 = 0. Since we assume that 𝜅 ≠ 1, we have that 𝑐 = 0 and thus 𝑓 ∈ Π, so that 𝜅 ∈
𝜎(𝑇Π) too.
So suppose instead that 𝑇𝑓 − 𝜅𝑓 ≠ g for all 𝑓 ∈ 𝐸 and some g ∈ 𝐸. Write g = 𝑎 + 𝑏 = 𝑐𝓁 + 𝑏

for 𝑎 ∈ Λ and 𝑏 ∈ Π. Suppose that 𝑇𝑓 − 𝜅𝑓 = 𝑏 for some 𝑓 ∈ Π. Then,

𝑇
(

𝑐

1 − 𝜅
𝓁 + 𝑓

)
− 𝜅
(

𝑐

1 − 𝜅
𝓁 + 𝑓

)
= 𝑐𝓁 + (𝑇𝑓 − 𝜅𝑓) = 𝑐𝓁 + 𝑏 = g ,

contradicting that 𝑇𝑥 − 𝜅𝑥 ≠ g for all 𝑥 ∈ 𝐸. Hence, 𝑇𝑓 − 𝜅𝑓 ≠ 𝑏 for all 𝑓 ∈ Π and so 𝜅 ∈ 𝜎(𝑇Π),
as required. □

The three lemmas above imply the following result.

Corollary 7.7. We have 𝜎(𝑇) = 𝜎(𝑇Π) ⊔ {1} or, equivalently, 𝜎(𝑀) = 𝜎(𝑀Π) ⊔ {𝑟}.

Proof of Theorem 7.3. We may write

|Exp(𝑓, 𝑎, 𝑛) − Act(𝑓, 𝑎, 𝑛)| = |𝑟𝑛𝓁(𝑎) ⋅ 𝜇(𝑓) − (𝑀𝑛𝑓)(𝑎)| = |𝑀𝑛(𝜇(𝑓)𝓁 − 𝑓)(𝑎)|.
Since𝑀 = 𝑟𝑇, we thus have

|Exp(𝑓, 𝑎, 𝑛) − Act(𝑓, 𝑎, 𝑛)| = 𝑟𝑛|𝑇𝑛(𝜇(𝑓)𝓁 − 𝑓)(𝑎)| = 𝑟𝑛|(𝑇𝑛𝑣)(𝑎)|,
where 𝑣 = 𝜇(𝑓)𝓁 − 𝑓. We have that 𝜇(𝑣) = 𝜇(𝜇(𝑓)𝓁 − 𝑓) = 𝜇(𝑓)(𝜇(𝓁)) − 𝜇(𝑓) = 0 (since we
normalise with 𝜇(𝓁) = 1) so 𝑣 ∈ 𝑇Π.
By Corollary 7.7, 𝑟(𝑇Π) = 𝑟2∕𝑟. By Gelfand’s formula for the spectral radius,

lim
𝑛→∞

𝑛

√‖𝑇𝑛
Π
‖ = 𝑟(𝑇Π), hence 𝑛

√‖𝑇𝑛
Π
‖ ⩽ 𝜓(𝑛)(𝑟2∕𝑟),

where 𝜓(𝑛) → 1 as 𝑛 → ∞. Taking 𝑛th powers and substituting into the above,

|Exp(𝑓, 𝑎, 𝑛) − Act(𝑓, 𝑎, 𝑛)| = 𝑟𝑛|(𝑇𝑛𝑣)(𝑎)| = 𝑟𝑛|(𝑇𝑛Π𝑣)(𝑎)| ⩽ 𝑟𝑛‖𝑇𝑛Π‖‖𝑣‖ ⩽ ‖𝑣‖(𝜓(𝑛))𝑛(𝑟2)𝑛,
where (𝜓(𝑛))𝑛 has 𝑛th roots converging to 1 as 𝑛 → ∞. Note that ‖𝑣‖ = ‖𝜇(𝑓)𝓁 − 𝑓‖ is bounded
above by a constant 𝑐, since 𝜇 is bounded and ‖𝑓‖ ⩽ 1, so the discrepancy estimate follows taking
𝜃(𝑛) = 𝑐(𝜓(𝑛))𝑛.
Let 𝛿 > 0 be arbitrary. Then ℎ(𝑛) = (1 + 𝛿)𝑛 is such that 𝑛

√
ℎ(𝑛) = (1 + 𝛿) > 𝑛

√
𝜃(𝑛), and thus

ℎ(𝑛) > 𝜃(𝑛), for sufficiently large 𝑛. So for such 𝑛,

|Exp(𝑓, 𝑎, 𝑛) − Act(𝑓, 𝑎, 𝑛)| ⩽ 𝜃(𝑛)(𝑟2)𝑛 ⩽ ℎ(𝑛)(𝑟2)𝑛 ⩽ (1 + 𝛿)𝑛(𝑟2)𝑛 = ((1 + 𝛿)𝑟2)𝑛.
Setting 0 < 𝛿 < 𝜖∕𝑟2 establishes the second result. □
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